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Abstract: The interest of this paper to find the solution of time-frantil Lotka-Volterra diffusion problem by implementing the
residual power series method (RPSM). The fractional dévivaés described in the Caputo sense. The desired solutittreaonlinear
equations are established in the form of rapidly convergeries whose components are computed by Matlab SoftwakagacThe
obtained results and graphical consequences show thatdgested method in this study is very efficient, effective @tiable for the
solution of the time-fractional Lotka-Volterra equation.

Keywords: Fractional differential equation, Lotka-Volterra equati Caputo derivative, residual power series method.

1 Introduction

The Lotka-Volterra diffusion equations which has many agions in ecology , chemistry, genetics, etc. have been
widely analyzed in recent years. In homogeneous model tarkl be different cases which is tough to guess. In one
case, the more diffusive species could ignore its compefiitoa long time and in another case they eliminate the
competitor gradually when they invade the whole region. Theexpected result could happen in competitive
reaction-diffusion system. The general form of Lotka-®ola diffusion equations for two species can be given in the
following form:

Dfu=diAxu+u(ry —au—kyv), Q x (0,+) (1)

DtaV = d2AxV+ V(rZ - aZV_ kZU)a Q X (Oa +°°) (2)

whereQ represents some spatial domain ahdd,,r1,r2,a1,a82,ks, ko are some positive constants. Without diffusion ,
this system can be written as an ODE system. Then, the sysaenotsteady stat@,v) = (0,1) and (u,v) = (1,0)

: r kor f
which are stable Whe% >1 andrj—ai > 1, respectively [1-4].
In recent years, fractional calculus which has been coralide interest are used in bioengineering, thermodynamics
viscoelasticity, control theory, aerodynamics, electagmetics, signal processing, chemistry, finance [5-11tiova
numerical methods have been applied and analyzed for eliffied equations with fractional order derivative of
Riemann-Liouville or Caputo sense [10-16]. The RPSM waaldished as an powerful method for fuzzy differential
equations [17]. It has been successfully applied in variielsls [18-29]. The solution of problems by RPSM are
obtained in the form of Maclaurin series.

2 Preliminaries

In this section, the fundamental definitions and varioutufies for fractional calculus are shown [10,30-32].
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Definition 1. The Riemann-Liouville fractional integral of order (a > 0) is given as [19,22]

Jf(x) = %/Ox(x—t)"*lf(t)dt, a>0,x>0 3)
I (x) = f(x) (4)

Definition 2. The Caputo fractional derivative with order is given as [19,22]

"X m
DYf(x) =J3"D"f(x) = / (x—t)m*"*l% (tdt, m—l<a<m x>0 (5)
Jo
where D" represents the differential operator with order m.
Taking the Caputo derivative, we have
D% =0, B<a (6)
rg+1) _
DI = =~ _yB-a >a 7
r+1—a) . Bz 0

Definition 3. The Caputo’s time fractional derivative of orderof u(x;t) is defined as [19,22]

1 t m—a— 1(9 U XE
== [o(t =& Jd&, m—1<a<m
DZu(x,t) = { Lm-a) Jolt=4) & (8)
S ,a=meN
Theorem 1.Suppose that(x,t) has a multiple fractional power series representation atty of the form
me (t—to)™, xel, tr<t<tr+R 9)
If D™ u(x,t), m=0,1,2,... are continuous on k (to,to + R), then fn(x) = [/)-‘n;:gitlo))
3 Application RPSM to the time-fractional Lotka-Volterra d iffusion problem
We first consider the following one-dimensional Lotka-‘éia competition-diffusion problem:
D u = diDyxu+ U(ry — agu — kyv), Rx (0, +) (10)
D'V = daDyxv + V(r2 — agv — kou), Rx (0,+0) (11)
subject to initial condition
u(x,0) = As(x), (12)
v(x,0) = B1(x) (13)

whered;,dy,r1,r2,a1,a2,ky, ko are positive constants with ecological meaning. The RPShppdied to find out series
solution for these equations with given initial conditiomg replacing its fractional power series expansion with its
truncated residual function. From each equation, a repetibrmula for the determination of coefficients is supglie
while coefficients in fractional power series expansion barcalculated by repeatedly fractional differentiatiorthod
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truncated residual function [17-24]. The RPSM propose tiatons for Eq. (10)-(13) as a fractional power series at
t=0[17]

;Aku i (14)

Zo Bir1(X kor ey (15)

wherex € 1,0 <t < R. To obtain the numerical values from this seriesulgtx,t) denotes then-th truncated series of
u(x,t). Thatis

m tka
- - 1
0= 2 Al gy (16)
tka
B 17
z 1 (X r(ka+1) a7
By the condition at = 0, we have
Uo(X,t) = fo(X) = u(x,0) = A1(X), (18)
Vo(%,t) = go(X) = V(x,0) = B1(x) (19)
From Eqgs.(14)-(15)
tka
t) = Aq( — 0 <1 20
Um(X,t) = Aq (X JF;AK Foat1 0<0=t (20)
xt) =B1(X)+ $ By( O<a<l 21
Vim( 1(X ; k(X k a1l < (21)
Define the residual function as for Egs.(10)-(11)[35]
Reslg = D Up — d1DxxUo + Ug(r1 — aUo — Kq Vo) (22)
Resy = D{ Vg — daDyxVo + Vo(r2 — axvip — kaup) (23)
Res = D Um — d1DyxUm + Um(r1 — @1Um — K1Vim) (24)
Resy = Dy’ Vim — d2DyxVim + Vim(2 — @2Vm — KaUm) (25)
From [17-24], by making use of some results such asRegxt) = O and

DKYRegn(x,0) =0, k=0,1,2,....mm=1,2,3, ... are used to obtain the solution.

Substitutingum(x,t),vm(X,t) into Egs. (24)-(25), calculating the fractional derivatDt(mfl)a of Regx;t) att =0 and
solving the following obtained algebraic system

D™ Y9Res(x,0)=0,0< a < 1,m=1,2,3, ... (26)

the required coefficient(x),k = 2,3,...,min Eqg. (20) are determined.
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In order to determinéy(x) andB;(x), the 1st residual function in Egs. (24)-(25) can be written as fokow

Reslg = D up — d1DxxUo + Uo(r1 — astp — kqVo) (27)
Resy = D?Vo—dzDXXVO—I—Vo(rZ —axVp— k2U0) (28)
whereup(x,t) = A1(X) +A2(x)r({—ia) andvp(x,t) = By(X) + BZ(X)F(ﬁa) . Therefore,
U " te “ te 2
R =P (Al +A—— ) —11(Ar+Ap——— Al +Ap————
esy(x,t) = Ap— di (AT + 2/’(1+a)) ri(Ac+ 2,_(1+a))+a1( 1+ 2F(1+a))
a a
ki(At+Ao——)(B1+By——— 2
ki (A1 + 2F(1+a))( 1+ 2F(1+a)) (29)
ReSY(x1) = By — da(B) + By—— ) — ra(By+ By ) + ap(By + Byt )?
¥(X,1) = b2 —Uz(b1 2F(1+a) 2(b1 2F(1+a) o(B1 2I'(1+a)
ta a
kKo(A1+A2——)(B1+Bo——
the(Aa+ 2F(1+a))( Lt 2F(1+a)) (30)
From Eq.(26), it is concluded th&esuy(x,0) = 0 andResy(x,0) = 0, which leads to
Az(X) = dlA’j{+ riA; — alAff k1A1B1 (31)
Ba(X) = d2BY +r2B1 — aB% — koA1By (32)

Similarly, to obtainAz(x) andBsz(x), the 2hd residual function in Egs. (24)-(25) becomes

Resy(x,t) = Dffuy — diDyxly + Uy (r1 — aguy — kqvy) (33)

Resy(x,t) = Dfvy — dpDyxV1 + Vi (r2 — agvy — koUg ) (34)
a 2a a 2a
whereuy (x,t) = A1(X) +A2(x)ﬁ +A3(x)m andv (x,t) = By(X) + Bz(x)ﬁ + B3(X)m. Therefore,

ta ta t2a
R 1) =(Ap+ Ag——— ) — iy (A + AL Al
esu(xt) =(Az + 3F(1+a)) (A + 2F(ita) 3F(1+2a))
ta 2a ta t2cx
(At A A A
f1(A+ Fii+a) 3F(1+2a)) 1t+a) 3F(1+2a))

o 2a o tZOr

v TTaT20) B By Y B 2y

2

+ al(A1+A2r

4+ k]_(Aj_ + Ao r (35)

a d B// B// ta B// tza
Fara) 2B B r gy T B2y
a 2a ta t2a
B Bi+B B
Ara)  BFazea) TRB B B o)

a t2cx o t2cx
B1+B B 36
e ETTe T 3/’(1+20{)) (36)

Resy(x,t) =(Bx+ B3

2

—r2(B1+Bo r

t
Fhel+ oy H A o))
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The operatobf is applied on both sides of Egs.(34)-(35) as follows:

a tC(
Y (Aot Age
Fara)  Wethragy)

a a tZOr
281 (Ag+ Ag———)(Aq + A A
+2a(A+ 3/’(1+a))( e ET Ty 3r(1+2a)>

a a tZOr
_ 1 yB+B B
rara) B By Y B2

a 2a ta

Fara  rarea)) Bt B rar e

DfResy(x,t) =Ag — di (A + Aj

+ki(Ao+ Az

+ k(AL + A2 ) (37)

a a

//7 _ B B -
Fagra) 2Bt B )
a a tZa

t
285(By + Bs———)(By + B B
+28(Bp + 3/’(1+a))( R E Ty T 3/’(1+20{))

ta a tZOr
ko(Ao+A3———)(B; +B B
+ha(Ao+ 3/’(1+a))( 1+ 2/‘(1+a)+ 3/’(1+20{))

a 2a a

(1+a) +A3F(1+Za))(BZ+le'(l+a))

DfResy(x,t) =Bz — dy(Bj + B!

(38)

+ko(A1L+ Ar r

From Eq. (26),
Az (X) = dlA/zl +r1A2 — 2a:A1A; — k1AoB1 — kiA1Bo (39)

Bg(X) = ngIZI + 2By — 2a,B1By — koAyB1 — koA1 By (40)

The same manner is repeated as above, the following recearresults is obtained

A4(X) = dlAg + I'1A3 — 2a1A§ — 2&1A1A3 — kj_A3Bj_ — 2k1Asz — kj_A]_B3 (41)

B4(X) = ngg + 1Bz — ZagB% — 2ayB1B3 — k2A3Bl — 2k2Asz — szlBg (42)

and so on.

4 Numerical results

Example 1. We take d; = d» = 0.1,r; = rp = 01,84 = ao = 0.1,k = kp = 0.2 and initial conditions
A1(X) = 1,B1(x) = 1—x%in Egs.(3)-(4).

Based on the obtained results, we conclude that RPS appaitxisolution is getting closer to the exact solution of
time-fractional Lotka-Volterra diffusion problem as theder of fractional derivativer increases to one.lt is clear from
Figs. 1-2 that convergence of the approximate solution wiépa the order of the fractional derivative.

In Tables 1-2, the approximate solutiomgx,t),v(x,t),k = 0,1,2 3 are given fora = 0.25,0.5,1. These tables show
that as the fractional derivative is getting closer to 1, approximate solution getting clogethe exact solution of
time-fractional Lotka-Volterra diffusion problem.
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t a=025| a=05 a=1 t a=025| a=05 a=1

0 1.00000 | 1.00000| 1.00000 0 0.75000 | 0.75000| 0.75000

0.2 | 0.92888| 0.94624| 0.97274 0.2 | 0.52964 | 0.60076| 0.68627

0.4 | 0.91550| 0.93116] 0.95042 0.4 | 0.48152| 0.54185| 0.62687

0.6 | 0.90480 | 0.91970| 0.93223 0.6 | 0.44577 | 0.49413| 0.57071

0.8 | 0.89527 | 0.90905| 0.91735 0.8 | 0.41580 | 0.45075| 0.51670

1 0.88641 | 0.89823| 0.90498 1 0.38929 | 0.40926| 0.46375
Table 1: The u solution for Ex. 1 for several Table 2: The v solution for Ex. 1 for several
valuesa andx=0.5. valuesa andx=0.5.

u(z,t),v(z, )

-04 .

t ~ - 04

Fig. 1: The RPS solution for Ex.1 far = 0.5. Fig. 2: The RPS solution for Ex.1 far = 1.

t a=025| a=05 a=1 t a=025| a=05 a=1

0 1.00000 | 1.00000| 1.00000 0 0.75000 | 0.75000| 0.75000

0.2 | 0.03685 | 0.01989| 0.00573 0.2 | 0.60314 | 0.65555| 0.71365

0.4 | 0.04799 | 0.03241| 0.01290 0.4 | 0.56927 | 0.61268| 0.67689

0.6 | 0.05621 | 0.04372| 0.02154 0.6 | 0.54485| 0.57731| 0.63945

0.8 | 0.06299 | 0.05442| 0.03163 0.8 | 0.52492 | 0.54545| 0.60103

1 0.06886 | 0.06472| 0.04318 1 0.50770 | 051559 | 0.56135
Table 3: The u solution for Ex. 2 for several Table 4: The v solution for Ex. 2 for several
valuesa andx=0.5. valuesa andx=0.5.

Figs. 1-2, the approximate solutiongx,t),v(x,t) for o = 0.5,1 are plotted. It is clear from these figures that as the
amount ofa enlarges to one, the approximate solution getting closexaat solution.

Example2. Let d; = d» = 01r; = r, = 029 = ap = 01,ky = kb = 0.1 and initial conditions
A1(X) = 1,B1(X) = 1— X% in Egs.(3)-(4).

Based on the obtained results, we conclude that RPS appatisolution is getting closer to the exact solution of
time-fractional Lotka-Volterra diffusion problem as theder of fractional derivativer increases to one.lt is clear from
Figs. 1-2 that convergence of the approximate solution gpa the order of the fractional derivative.

In Tables 3-4, the approximate solutiongx,t),vk(x,t),k = 0,1,2,3 are presented far = 0.25,0.5,1. These tables
show that as the fractional derivatigeis getting closer to 1, approximate solution getting cldsehe exact solution of
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u(z, t), v(z,t)

Fig. 3: The RPS solution for Ex.2 fax = 0.5. Fig. 4: The RPS solution for Ex.2 far = 1.

time-fractional Lotka-Volterra diffusion problem.

Figs. 3-4, the approximate solutiar{x,t),v(x,t) are drawn fora = 0.5,1. It is clear from these figures that as the
amount ofa enlarges to one, the approximate solution getting closexaat solution.
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