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Abstract: The interest of this paper to find the solution of time-fractional Lotka-Volterra diffusion problem by implementing the
residual power series method (RPSM). The fractional derivative is described in the Caputo sense. The desired solution of the nonlinear
equations are established in the form of rapidly convergentseries whose components are computed by Matlab Software Package. The
obtained results and graphical consequences show that the suggested method in this study is very efficient, effective and reliable for the
solution of the time-fractional Lotka-Volterra equation.
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1 Introduction

The Lotka-Volterra diffusion equations which has many applications in ecology , chemistry, genetics, etc. have been

widely analyzed in recent years. In homogeneous model therecould be different cases which is tough to guess. In one

case, the more diffusive species could ignore its competitor for a long time and in another case they eliminate the

competitor gradually when they invade the whole region. Theunexpected result could happen in competitive

reaction-diffusion system. The general form of Lotka-Volterra diffusion equations for two species can be given in the

following form:

Dα
t u= d1∆xu+u(r1−a1u− k1v), Ω × (0,+∞) (1)

Dα
t v= d2∆xv+ v(r2−a2v− k2u), Ω × (0,+∞) (2)

whereΩ represents some spatial domain andd1,d2, r1, r2,a1,a2,k1,k2 are some positive constants. Without diffusion ,

this system can be written as an ODE system. Then, the system has to steady state(u,v) = (0,1) and (u,v) = (1,0)

which are stable whenk1r2
r1a2

> 1 andk2r1
r2a1

> 1, respectively [1-4].

In recent years, fractional calculus which has been considerable interest are used in bioengineering, thermodynamics,

viscoelasticity, control theory, aerodynamics, electromagnetics, signal processing, chemistry, finance [5-11]. Various

numerical methods have been applied and analyzed for differential equations with fractional order derivative of

Riemann-Liouville or Caputo sense [10-16]. The RPSM was established as an powerful method for fuzzy differential

equations [17]. It has been successfully applied in variousfields [18-29]. The solution of problems by RPSM are

obtained in the form of Maclaurin series.

2 Preliminaries

In this section, the fundamental definitions and various features for fractional calculus are shown [10,30-32].

c© 2019 BISKA Bilisim Technology ∗ Corresponding author e-mail:aylin@kocaeli.edu.tr

 http://dx.doi.org/10.20852/ntmsci.2019.367


279 M.A. Bayrak and A. Demir: On time-fractional Lotka-Volterra diffusion model

Definition 1. The Riemann-Liouville fractional integral of orderα (α ≥ 0) is given as [19,22]

Jα f (x) =
1

Γ (α)

∫ x

0
(x− t)α−1 f (t)dt, α > 0, x> 0 (3)

J0 f (x) = f (x) (4)

Definition 2. The Caputo fractional derivative with orderα is given as [19,22]

Dα f (x) = Jm−αDm f (x) =
∫ x

0
(x− t)m−α−1 dm

dtm
f (t)dt, m−1< α < m, x> 0 (5)

where Dm represents the differential operator with order m.

Taking the Caputo derivative, we have

Dαxβ = 0, β < α (6)

Dαxβ =
Γ (β +1)

Γ (β +1−α)
xβ−α

, β ≥ α (7)

Definition 3. The Caputo’s time fractional derivative of orderα of u(x, t) is defined as [19,22]

Dα
t u(x, t) =

{

1
Γ (m−α)

∫ t
0(t − ξ )m−α−1 ∂ mu(x,ξ )

∂ tm dξ , m−1< α < m
∂ mu(x,t)

∂ tm ,α = m∈ N
(8)

Theorem 1.Suppose that u(x, t) has a multiple fractional power series representation at t= t0 of the form

u(x, t) =
∞

∑
m=0

fm(x)(t − t0)
mα

, x∈ I , t0 ≤ t ≤ t0+R (9)

If Dmα
t u(x, t), m= 0,1,2, ... are continuous on I× (t0, t0+R), then fm(x) =

Dmα
t u(x,t0)

Γ (mα+1) .

3 Application RPSM to the time-fractional Lotka-Volterra d iffusion problem

We first consider the following one-dimensional Lotka-Volterra competition-diffusion problem:

Dα
t u= d1Dxxu+u(r1−a1u− k1v), R× (0,+∞) (10)

Dα
t v= d2Dxxv+ v(r2−a2v− k2u), R× (0,+∞) (11)

subject to initial condition

u(x,0) = A1(x), (12)

v(x,0) = B1(x) (13)

whered1,d2, r1, r2,a1,a2,k1,k2 are positive constants with ecological meaning. The RPSM isapplied to find out series

solution for these equations with given initial conditionsby replacing its fractional power series expansion with its

truncated residual function. From each equation, a repetition formula for the determination of coefficients is supplied,

while coefficients in fractional power series expansion canbe calculated by repeatedly fractional differentiation ofthe
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truncated residual function [17-24]. The RPSM propose the solutions for Eq. (10)-(13) as a fractional power series at

t = 0 [17]

u(x, t) =
∞

∑
k=0

Ak+1(x)
tkα

Γ (kα +1)
, (14)

v(x, t) =
∞

∑
k=0

Bk+1(x)
tkα

Γ (kα +1)
(15)

wherex ∈ I ,0≤ t < R. To obtain the numerical values from this series, letum(x, t) denotes them-th truncated series of

u(x, t). That is

um(x, t) =
m

∑
k=0

Ak+1(x)
tkα

Γ (kα +1)
, (16)

vm(x, t) =
m

∑
k=0

Bk+1(x)
tkα

Γ (kα +1)
. (17)

By the condition att = 0, we have

u0(x, t) = f0(x) = u(x,0) = A1(x), (18)

v0(x, t) = g0(x) = v(x,0) = B1(x) (19)

From Eqs.(14)-(15)

um(x, t) = A1(x)+
m

∑
k=2

Ak(x)
tkα

Γ (kα +1)
, 0< α ≤ 1, (20)

vm(x, t) = B1(x)+
m

∑
k=2

Bk(x)
tkα

Γ (kα +1)
, 0< α ≤ 1. (21)

Define the residual function as for Eqs.(10)-(11)[35]

Resu0 = Dα
t u0−d1Dxxu0+u0(r1−a1u0− k1v0) (22)

Resv0 = Dα
t v0−d2Dxxv0+ v0(r2−a2v0− k2u0) (23)

Resum = Dα
t um−d1Dxxum+um(r1−a1um− k1vm) (24)

Resvm = Dα
t vm−d2Dxxvm+ vm(r2−a2vm− k2um) (25)

From [17-24], by making use of some results such asRes(x, t) = 0 and

Dkα
t Resm(x,0) = 0, k= 0,1,2, ...,m,m= 1,2,3, ... are used to obtain the solution.

Substitutingum(x, t),vm(x, t) into Eqs. (24)-(25), calculating the fractional derivative D(m−1)α
t of Res(x, t) at t = 0 and

solving the following obtained algebraic system

D(m−1)α
t Resm(x,0) = 0,0< α ≤ 1,m= 1,2,3, ... (26)

the required coefficientsAk(x),k = 2,3, ...,m in Eq. (20) are determined.
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In order to determineA2(x) andB2(x), the 1st residual function in Eqs. (24)-(25) can be written as follows:

Resu0 = Dα
t u0−d1Dxxu0+u0(r1−a1u0− k1v0) (27)

Resv0 = Dα
t v0−d2Dxxv0+ v0(r2−a2v0− k2u0) (28)

whereu0(x, t) = A1(x)+A2(x)
tα

Γ (1+α) andv0(x, t) = B1(x)+B2(x)
tα

Γ (1+α) . Therefore,

Resu0(x, t) = A2−d1(A
′′
1 +A′′

2
tα

Γ (1+α)
)− r1(A1+A2

tα

Γ (1+α)
)+a1(A1+A2

tα

Γ (1+α)
)2

+k1(A1+A2
tα

Γ (1+α)
)(B1+B2

tα

Γ (1+α)
) (29)

Resv0(x, t) = B2−d2(B
′′
1 +B′′

2
tα

Γ (1+α)
)− r2(B1+B2

tα

Γ (1+α)
)+a2(B1+B2

tα

Γ (1+α)
)2

+k2(A1+A2
tα

Γ (1+α)
)(B1+B2

tα

Γ (1+α)
) (30)

From Eq.(26), it is concluded thatResu0(x,0) = 0 andResv0(x,0) = 0, which leads to

A2(x) = d1A′′
1 + r1A1−a1A2

1− k1A1B1 (31)

B2(x) = d2B′′
1 + r2B1−a2B2

1− k2A1B1 (32)

Similarly, to obtainA3(x) andB3(x), the 2nd residual function in Eqs. (24)-(25) becomes

Resu1(x, t) = Dα
t u1−d1Dxxu1+u1(r1−a1u1− k1v1) (33)

Resv1(x, t) = Dα
t v1−d2Dxxv1+ v1(r2−a2v1− k2u1) (34)

whereu1(x, t) = A1(x)+A2(x) tα

Γ (1+α)
+A3(x) t2α

Γ (1+2α)
andv1(x, t) = B1(x)+B2(x) tα

Γ (1+α)
+B3(x) t2α

Γ (1+2α)
. Therefore,

Resu1(x, t) =(A2+A3
tα

Γ (1+α)
)−d1(A

′′
1 +A′′

2
tα

Γ (1+α)
+A′′

3
t2α

Γ (1+2α)
)

− r1(A1+A2
tα

Γ (1+α)
+A3

t2α

Γ (1+2α)
)+a1(A1+A2

tα

Γ (1+α)
+A3

t2α

Γ (1+2α)
)2

+ k1(A1+A2
tα

Γ (1+α)
+A3

t2α

Γ (1+2α)
)(B1+B2

tα

Γ (1+α)
+B3

t2α

Γ (1+2α)
) (35)

Resv1(x, t) =(B2+B3
tα

Γ (1+α)
)−d2(B

′′
1 +B′′

2
tα

Γ (1+α)
+B′′

3
t2α

Γ (1+2α)
)

− r2(B1+B2
tα

Γ (1+α)
+B3

t2α

Γ (1+2α)
)+a2(B1+B2

tα

Γ (1+α)
+B3

t2α

Γ (1+2α)
)2

+ k2(A1+A2
tα

Γ (1+α)
+A3

t2α

Γ (1+2α)
)(B1+B2

tα

Γ (1+α)
+B3

t2α

Γ (1+2α)
) (36)
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The operatorDα
t is applied on both sides of Eqs.(34)-(35) as follows:

Dα
t Resu1(x, t) =A3−d1(A

′′
2 +A′′

3
tα

Γ (1+α)
)− r1(A2+A3

tα

Γ (1+α)
)

+2a1(A2+A3
tα

Γ (1+α)
)(A1+A2

tα

Γ (1+α)
+A3

t2α

Γ (1+2α)
)

+ k1(A2+A3
tα

Γ (1+α)
)(B1+B2

tα

Γ (1+α)
+B3

t2α

Γ (1+2α)
)

+ k1(A1+A2
tα

Γ (1+α)
+A3

t2α

Γ (1+2α)
)(B2+B3

tα

Γ (1+α)
) (37)

Dα
t Resv1(x, t) =B3−d2(B

′′
2 +B′′

3
tα

Γ (1+α)
)− r2(B2+B3

tα

Γ (1+α)
)

+2a2(B2+B3
tα

Γ (1+α)
)(B1+B2

tα

Γ (1+α)
+B3

t2α

Γ (1+2α)
)

+ k2(A2+A3
tα

Γ (1+α)
)(B1+B2

tα

Γ (1+α)
+B3

t2α

Γ (1+2α)
)

+ k2(A1+A2
tα

Γ (1+α)
+A3

t2α

Γ (1+2α)
)(B2+B3

tα

Γ (1+α)
) (38)

From Eq. (26),

A3(x) = d1A′′
2 + r1A2−2a1A1A2− k1A2B1− k1A1B2 (39)

B3(x) = d2B′′
2 + r2B2−2a2B1B2− k2A2B1− k2A1B2 (40)

The same manner is repeated as above, the following recurrence results is obtained

A4(x) = d1A′′
3 + r1A3−2a1A

2
2−2a1A1A3− k1A3B1−2k1A2B2− k1A1B3 (41)

B4(x) = d2B′′
3 + r2B3−2a2B

2
2−2a2B1B3− k2A3B1−2k2A2B2− k2A1B3 (42)

and so on.

4 Numerical results

Example 1. We take d1 = d2 = 0.1, r1 = r2 = 0.1,a1 = a2 = 0.1,k1 = k2 = 0.2 and initial conditions

A1(x) = 1,B1(x) = 1− x2 in Eqs.(3)-(4).

Based on the obtained results, we conclude that RPS approximate solution is getting closer to the exact solution of

time-fractional Lotka-Volterra diffusion problem as the order of fractional derivativeα increases to one.It is clear from

Figs. 1-2 that convergence of the approximate solution depend on the order of the fractional derivative.

In Tables 1-2, the approximate solutionsuk(x, t),vk(x, t),k = 0,1,2,3 are given forα = 0.25,0.5,1. These tables show

that as the fractional derivativeα is getting closer to 1, approximate solution getting closerto the exact solution of

time-fractional Lotka-Volterra diffusion problem.
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t α = 0.25 α = 0.5 α = 1
0 1.00000 1.00000 1.00000

0.2 0.92888 0.94624 0.97274
0.4 0.91550 0.93116 0.95042
0.6 0.90480 0.91970 0.93223
0.8 0.89527 0.90905 0.91735
1 0.88641 0.89823 0.90498

Table 1: The u solution for Ex. 1 for several
valuesα andx= 0.5 .

t α = 0.25 α = 0.5 α = 1
0 0.75000 0.75000 0.75000

0.2 0.52964 0.60076 0.68627
0.4 0.48152 0.54185 0.62687
0.6 0.44577 0.49413 0.57071
0.8 0.41580 0.45075 0.51670
1 0.38929 0.40926 0.46375

Table 2: The v solution for Ex. 1 for several
valuesα andx= 0.5 .

Fig. 1: The RPS solution for Ex.1 forα = 0.5. Fig. 2: The RPS solution for Ex.1 forα = 1.

t α = 0.25 α = 0.5 α = 1
0 1.00000 1.00000 1.00000

0.2 0.03685 0.01989 0.00573
0.4 0.04799 0.03241 0.01290
0.6 0.05621 0.04372 0.02154
0.8 0.06299 0.05442 0.03163
1 0.06886 0.06472 0.04318

Table 3: The u solution for Ex. 2 for several
valuesα andx= 0.5 .

t α = 0.25 α = 0.5 α = 1
0 0.75000 0.75000 0.75000

0.2 0.60314 0.65555 0.71365
0.4 0.56927 0.61268 0.67689
0.6 0.54485 0.57731 0.63945
0.8 0.52492 0.54545 0.60103
1 0.50770 051559 0.56135

Table 4: The v solution for Ex. 2 for several
valuesα andx= 0.5 .

Figs. 1-2, the approximate solutionsu(x, t),v(x, t) for α = 0.5,1 are plotted. It is clear from these figures that as the

amount ofα enlarges to one, the approximate solution getting closer toexact solution.

Example 2. Let d1 = d2 = 0.1, r1 = r2 = 0.2,a1 = a2 = 0.1,k1 = k2 = 0.1 and initial conditions

A1(x) = 1,B1(x) = 1− x2 in Eqs.(3)-(4).

Based on the obtained results, we conclude that RPS approximate solution is getting closer to the exact solution of

time-fractional Lotka-Volterra diffusion problem as the order of fractional derivativeα increases to one.It is clear from

Figs. 1-2 that convergence of the approximate solution depend on the order of the fractional derivative.

In Tables 3-4, the approximate solutionsuk(x, t),vk(x, t),k = 0,1,2,3 are presented forα = 0.25,0.5,1. These tables

show that as the fractional derivativeα is getting closer to 1, approximate solution getting closerto the exact solution of
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Fig. 3: The RPS solution for Ex.2 forα = 0.5. Fig. 4: The RPS solution for Ex.2 forα = 1.

time-fractional Lotka-Volterra diffusion problem.

Figs. 3-4, the approximate solutionu(x, t),v(x, t) are drawn forα = 0.5,1. It is clear from these figures that as the

amount ofα enlarges to one, the approximate solution getting closer toexact solution.
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