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Abstract: The purpose of this paper is to illustrate the use of the Chebyshev wavelet method in the solution of high-order nonlinear
ordinary differential equations with variable, proportional and constant delays. The main advantage of using Chebyshev polynomials
lies in the orthonormality property, which enables a decrease in the computational cost and runtime. The other advantage is that it
does not require domain discretization. The application of the method transforms the nonlinear equation to a system of algebraic
equations. The method is applied to five differential equations up to sixth order, and the results are compared with the exact solutions
and other numerical solutions when available. The accuracy of the method is presented in terms of absolute errors. The numerical
results demonstrate that the method is accurate, effectual and simple to apply.
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1 Introduction

Many physical phenomena are modeled by using both the present and the past states of the model. Hence, differential
equations with time delays are needed in the modeling of real life situations. Applications of these equations can be seen
in many areas such as human body control and multibody control systems, electric circuits, dynamical behaviour of a
system in fluid mechanics, chemical engineering [1], spread of bacteriophage infection [2], population dynamics,
epidemiology, physiology, immunology, neural networks and cell kinetics [3].

Several numerical techniques are introduced to find approximate solutions of nonlinear differential equations with
proportional, constant and variable delays. These methods can be listed as: Aboodh transformation method [4], Adomian
decomposition method [5], Power series method [6], Decomposition method [7], Differential transform method [8],
Hermite wavelet based method [9], Variational iteration method [10,11], Power and Padé series based method [12],
Spectral method [13], Variable multistep methods [14], Quasilinearization technique [15], Runge-Kutta-Fehlberg
methods [16], Polynomial least squares method [17], Homotopy perturbation method [18], Variational approach [19],
First Boubaker polynomial approach [20]. A new multi-step technique with differential transform method (DTM) [21],
Legendre-Gauss collocation method [22], Runge-Kutta method with Hermite interpolation [23], Legendre wavelet
method [24], and Lucas polynomial approach [25].

In the present study, our aim is to use Chebyshev wavelet method to solve the initial value problem in the form

6

∑
i=0

J

∑
j=0

Pi j(t)y(i)(t− τi j(t))+
2

∑
p=0

p

∑
q=0

Rpq(t)y(p)(αpqt)y(q)(βpqt) = g(t) ,J ≤ 6 (1)
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subject to the initial conditions
y(i)(0) = λi, i = 0,1, ...,5 (2)

where Pi j(t), Rpq(t), g(t) and the variable delays τi j(t) are given continuous functions on the interval 0≤ t ≤ 1, αpq and
βpq are given constants to express proportional delays. We note that the delays are nonnegative for t ≥ 0. The case
τi j(t) = a refers to constant delay.

Chebyshev wavelet method is applied to many problems such as one-dimensional heat equation [26], integro-differential
form of Lane-Emden type [27], Abel’s integral equation [28], advection-dispersion equation [29], nonlinear
Fredholm-Hammerstein integral equation [30], porous catalysts model [31], nonlocal BVP [32], Fredholm integral
equation [33], Ito-Volterra integral equation [34], ODE with non analytic solution [35], linear ODE [36], MHD
squeezing flow [37], telegraph equation [38]. To the best knowledge of author, this is the first application to high-order
nonlinear ODE with constant, proportional and variable delays.

In the next section, we describe the fundamentals of the wavelets and Chebyshev wavelets which is required for the
representation of the differential equation and its solution.

2 Chebyshev Polynomials

Chebyshev polynomials of second kind, usually denoted by Um(x), are m-th degree polynomials defined by [39]

Um(x) =
sin(m+1)θ

sinθ
, where x = cosθ .

Here θ is in the interval [0,π], corresponding to the range of x ∈ [−1,1]. These polynomials constitute a sequence of
polynomials {Um(x),m = 0,1,2, . . .} which can be constructed recursively by

Um+1(x) = 2xUm(x)−Um−1(x), form = 1,2,3, . . .

starting with U0(x) = 1 and U1(x) = 2x.

Chebyshev polynomials constitute an orthogonal set with respect to weight function w(x) =
√

1− x2, that is

∫ 1

−1
w(x)Um(x)Un(x)dx =

{
0, if m 6= n
π

2 , if m = n

When the interval of interest is [0,1], the shifted Chebyshev polynomials Ũm(t) can be defined by means of a substitution
x = 2t−1, such that Ũm(t) =Um(2t−1). Due to this transformation, all results and properties should be converted to their
shifted forms. Hence, the shifted Chebyshev polynomials are obtained by the recurrence relation

Ũ0(t) = 1

Ũ1(t) = 2(2t−1)

Ũm+1(t) = 2(2m−1)Ũm(t)−Ũm−1(t), form > 1,

and orthogonal over the interval [0,1] with respect to the weight function w̃(t) =
√

t− t2, that is

c© 2019 BISKA Bilisim Technology

www.ntmsci.com/jacm
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∫ 1

0
w̃(t)Ũm(t)Ũn(t)dt =

{
0, if m 6= n
π

8 , if m = n.

3 Chebyshev Wavelets and properties

A family of functions constructed by dilation and translation of a single function

ψd,e(t) = |d|−1/2
ψ

(
t− e

d

)
, d,e ∈ R, d 6= 0,

is referred as wavelets (child wavelets). Here d is the dilation parameter, e is the translation parameter. Their generating
function ψ(t) is called mother wavelet.

If these parameters are restricted to be d = d−k
0 and e = ne0d−k

0 for d0 > 1, e0 > 0 and for integers k > 0, n then we
obtain the discrete wavelets which form an orthonormal basis in L2(R), in the case d0 = 2, e0 = 1. Chebyshev wavelets,
Legendre wavelets, Haar wavelets are some of these discrete wavelets. Chebyshev wavelets like the others combine the
basic properties of corresponding polynomials with a compact support, which gives it the advantage of being good at
modeling localized features in applications [40]. Due to this and such advantages, Haar wavelet [41], Legendre wavelet
[42,43], Chebyshev wavelet [44] are frequently used to solve varieties of differential and integral equations.

Second kind Chebyshev wavelets ψnm = ψnm(k,n,m, t) with four arguments can be defined on [0,1) for integers k > 0, n,
using the shifted Chebyshev polynomials Ũm(t), of order m as

ψnm(t) =

{
1√
π

2(k+3)/2Ũm(2kt−n), if n
2k < t < n+1

2k ,

0, otherwise

where m = 0,1,2, . . . ,M and n = 0,1,2 . . . ,2k−1 and t is normalized time. Here, the coefficient 1√
π

2(k+3)/2 is used to get

an orthonormal set of Chebyshev wavelets with respect to the dilated and translated weight function w̃n(t) = w̃(2kt−n).
Note that Chebyshev wavelets ψnm(t) form a wavelet basis in L2(R), so that a square integrable function f (t), defined in
[0,1] can be expanded by an infinite series of Chebyshev wavelets [44]

f (t) =
∞

∑
n=0

∞

∑
m=0

Anmψnm(t), (3)

where Anm =< f (t),ψnm(t)>w̃n=
∫ 1

0 w̃n(t) f (t)ψnm(t)dt. If the series is truncated then

f (t) ≈
2k−1

∑
k=0

M

∑
m=0

Anmψnm(t) = AT
Ψ(t) (4)

where A and Ψ(t) are 2k(M+1)×1 matrices in the form

A = [A00,A01, . . . ,A0M,A10, . . . ,A1M,A(2k−1)0, . . . ,A(2k−1)M]T , (5)

Ψ(t) = [ψ00(t),ψ01(t), . . . ,ψ0M(t),ψ10(t), . . . ,ψ1M(t), . . . ,ψ(2k−1)0(t), . . . ,ψ(2k−1)M(t)]T (6)
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3.1 Operational Matrix of Differentiation

The i-th derivative of the vector Ψ(t), defined in Eq. (6) can be obtained by

di

dt iΨ(t) = Di
Ψ(t), (7)

where Ψ(t) is the vector of Chebyshev wavelets, Di is the i-th power of the 2k(M+1)×2k(M+1) operational matrix for
differentiation D, derived in [44] as

D =


F 0 . . . 0
0 F . . . 0
...

. . .
...

0 . . . 0 F

 (8)

where

F = 2k+2



0 0 0 0 0 0 · · · 0 0
1 0 0 0 0 0 · · · 0 0
0 2 0 0 0 0 · · · 0 0
1 0 3 0 0 0 · · · 0 0
0 2 0 4 0 0 · · · 0 0
1 0 3 0 5 0 · · · 0 0
...

...
...

...
...

... · · ·
...

...
1 0 3 0 5 0 · · · M 0 }M is odd

0 2 0 4 0 6 · · · M 0 }M is even



.

We note that F is a (M+1)× (M+1) submatrix whose components satisfy

Fab =

{
2k+2b, a=2,. . . ,(M+1), b=1,. . . ,(a-1), and a+b is odd;
0, otherwise.

3.2 Application of the Operational Matrix of Differentiation

Let y(t) be the approximate solution of the given IVP Eqs. (1)− (2). To find this solution, first we write it in terms of the
series in Eq. (4), using Chebyshev wavelets as

y(t) =
2k−1

∑
k=0

M

∑
m=0

Anmψnm(t) = AT
Ψ(t) (9)

where Anm are unknown coefficients to be determined.

Then, we use Eq. (7) and Eq. (8) to approximate the derivatives of y(t) as follows, [43]

yi(t) = AT Di
Ψ(t), for i = 1, ...,6. (10)
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The differential equation (1) can be written by substituting t− τi j(t), αpqt and βpqt in place of t in Eq. (10) as

6

∑
i=0

J

∑
j=0

Pi j(t)AT D(i)
Ψ(t− τi j(t)) (11)

+
2

∑
p=0

p

∑
q=0

Rpq(t)
(

AT D(p)
Ψ(αpqt)

)(
AT D(q)

Ψ(βpqt)
)
= g(t), J ≤ 6

In order to find the unknown coefficients Anm in the vector A, we need 2k(M + 1) equations. The first six equations are
obtained from the initial conditions

y(0) = AT
Ψ(0),

y(i)(0) = AT Di
Ψ(0), i = 1, ...,5

and (2k(M+1))−6 equations are obtained by substituting the first (2k(M+1))−6 roots of shifted Chebyshev polynomial
Ũ(2k(M+1))(t) in Eq. (11). The resulting system of nonlinear equations are solved for the coefficients Anm by MATLAB
tools; then, the approximate solution in Eq. (9) is computed.

4 Convergence Analysis of Chebyshev Wavelets

In this section, we analyze the convergence of the Chebyshev wavelet expansion of a function f (t) defined in [0,1] , and
error estimation of the approximation by using the theorems in [33].

Theorem: Let f (t) be a square integrable function in [0,1] with a bounded first and second derivatives such that
| f ′(t)| ≤ S1 and | f ′′(t)| ≤ S2, then f (t) can be expanded by the infinite series of Chebyshev wavelet basis as in Eq. (3)
and the series converges to f (t) uniformly.

Proof: The justification of this theorem can be done similar to [33]. We begin with

Anm =< f (t),ψnm(t)>w̃n=
∫ 1

0
w̃n(t) f (t)ψnm(t)dt,

and we firstly assume that m > 1. Since, ψnm(t) is nonzero in the subintervals
[

n
2k ,

n+1
2k

]
,

Anm =
2(k+3)/2
√

π

∫ n+1
2k

n
2k

w̃(2kt−n) f (t)Ũnm(2kt−n)dt.

Note that Ũnm(2kt−n) is shifted Chebyshev polynomial such that

Ũnm(2kt−n) =Unm(2k+1t−2n−1).

Using the substitution 2kt−n = cosθ+1
2 , and Unm(2k+1t−2n−1) =Unm(cosθ) = sin(m+1)θ

sinθ
, w̃n(

cosθ+1
2 ) = sinθ

2 , we get

Anm =
2−(k+1)/2
√

π

∫
π

0
f
(

cosθ +2n+1
2k+1

)
sin((m+1)θ)sinθdθ

=
2−(k+3)/2
√

π

∫
π

0
f
(

cosθ +2n+1
2k+1

)
[cos(mθ)− cos((m+2)θ)]dθ
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Applying integration by parts gives

Anm =
2−(3k+5)/2
√

π

∫
π

0
[

1
m

sinmθ − 1
m+2

sin(m+2)θ ]sin(θ) f ′
(

cosθ +2n+1
2k+1

)
dθ (12)

Repeating this process gives

Anm =
2−5(k+1)/2

4
√

π

∫
π

0
σm(θ) f ′′

(
cosθ +2n+1

2k+1

)
sinθdθ

where

σm(θ) =
1
m

[
1

m−1
sin(m−1)θ − 1

m+1
sin(m+1)θ

]
− 1

m+2

[
1

m+1
sin(m+1)θ − 1

m+3
sin(m+3)θ

]
Note that

|σm(θ)sinθ | ≤
∣∣∣∣ sinθ

m

[
1

m−1
sin(m−1)θ − 1

m+1
sin(m+1)θ

]∣∣∣∣
+

∣∣∣∣ sinθ

m+2

[
1

m+1
sin(m+1)θ − 1

m+3
sin(m+3)θ

]∣∣∣∣
≤
∣∣∣∣ 1
m

∣∣∣∣(∣∣∣∣ 1
m−1

∣∣∣∣+ ∣∣∣∣ 1
m+1

∣∣∣∣)+

∣∣∣∣ 1
m+2

∣∣∣∣(∣∣∣∣ 1
m+1

∣∣∣∣+ ∣∣∣∣ 1
m+3

∣∣∣∣)
≤ 4

(m−1)(m+3)

<
4

(m−1)2

Since n+1≤ 2k, |Anm|< S2
√

π

4
√

2
1

(n+1)5/2(m−1)2 , for n≥ 0 and m > 1.

Now, if m = 1, we use Eq. (12), then

|An1|<
S1
√

π

3
√

2
1

(n+1)3/2 .

Thus, the infinite series ∑
∞
n=0 ∑

∞
m=0 Anm is absolutely convergent and note that if m = 0, the sequence

{ψn0, n = 0,1, . . . ,2k − 1} construct an orthogonal set of Haar scaling function which implies the convergence of
∑

∞
n=0 An0ψn0(t), [45]. So, the convergence of the series ∑

∞
n=0 ∑

∞
m=0 Anmψnm(t) is coming from

∣∣∣∣∣ ∞

∑
n=0

∞

∑
m=0

Anmψnm(t)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∞

∑
n=0

An0ψn0(t)

∣∣∣∣∣+ ∞

∑
n=0

∞

∑
m=1
|Anm||ψnm(t)|

≤

∣∣∣∣∣ ∞

∑
n=0

An0ψn0(t)

∣∣∣∣∣+ ∞

∑
n=0

∞

∑
m=1
|Anm|< ∞ for t ∈ [0,1].

Lemma: The Chebyshev wavelet series expansion Eq. (3) of a continuous function f (t) converges to a unique function
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f (t).

Proof: Assume that the infinite series of Chebyshev wavelet basis converges to the function f (t) that is

f (t) =
∞

∑
n=0

∞

∑
m=0

Anmψnm(t),

where Anm =< g(t),ψnm >w̃n . Now we multiply f (t) by ψrs(t)w̃n(t) for fixed values of r and s then integration term by
term gives the inner product

< f (t),ψrs >w̃n=
∫ 1

0
f (t)ψrs(t)w̃n(t)dt =

∫ 1

0

∞

∑
n=0

∞

∑
m=0

Anmψnm(t)ψrs(t)w̃n(t)dt

=
∞

∑
n=0

∞

∑
m=0

Anm

∫ 1

0
ψnm(t)ψrs(t)w̃n(t)dt

= Ars

= < g(t),ψrs >w̃n .

This implies f (t) = g(t) which is the desired result.

These theorems stated above imply the convergence of the infinite series of Chebyshev wavelets ∑
∞
n=0 ∑

∞
m=0 Anmψnm(t)

to a unique function f (t). If the only finite terms of the approximation are considered then the error bound
| f (t)−∑

2k−1
n=0 ∑

M
m=0 Anmψnm(t)| can be determined by the next theorem.

Theorem: Let f (t) be i-times differentiable function on [0,1], then there exists a mean error bound for the approximation
of Chebyshev wavelets ∑

2k−1
n=0 ∑

M
m=0 Anmψnm(t) = AT

Ψ(t) to f (t) as follows [46]

|| f (t)−AT
Ψ(t)|| ≤ 1

i!2ik sup
t∈[0,1]

| f (i)(t)|

where A and Ψ(t) are defined in Eq. (5) and Eq. (6).

Proof: If we assume that the function f (t), defined in [0,1], is i-times continuously differentiable function then there
exists an approximation of Chebyshev wavelets ∑

2k−1
n=0 ∑

M
m=0 Anmψnm(t) = AT

Ψ(t) to f (t) where A and Ψ(t) are defined
in Eqs. (5) and (6), the mean error bound for this approximation follows

|| f (t)−AT
Ψ(t)|| ≤ 1

i!2ik sup
t∈[0,1]

| f (i)(t)|

To show this inequality, the interval [0,1] is divided into subintervals [ n
2k ,

n+1
2k ] and f (t) is approximated by i−th degree

polynomial AT
Ψ(t) in these subintervals. Then

|| f (t)−AT
Ψ(t)||2 =

2k−1

∑
n=0

∫ n+1
2k

n
2k

w̃n(t)[ f (t)−AT
Ψ(t)]2dt

≤
2k−1

∑
n=0

∫ n+1
2k

n
2k

w̃n(t)[ f (t)− f ∗(t)]2dt
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where f ∗(t) is the i−th order interpolation of f (t) on these subintervals with the following error bound [46]

| f (t)− f ∗(t)| ≤ 1
i!2ik sup

t∈[0,1]
| f (i)(t)|

Then

|| f (t)−AT
Ψ(t)||2 ≤

2k−1

∑
n=0

∫ n+1
2k

n
2k

w̃n(t)[
1

i!2ik sup
t∈[0,1]

| f (i)(t)|]2dt

≤
∫ 1

0
w̃n(t)[

1
i!2ik sup

t∈[0,1]
| f (i)(t)|]2dt

= || 1
i!2ik sup

t∈[0,1]
| f (i)(t)|||2

Taking square roots of both sides gives the desired result.

5 Results and Discussion

In this section, we solve five problems to show that the application of the method results in either the exact solution
or accurate numerical solutions. The first two problems are first and second order nonlinear differential equations with
variable delays. The third problem is a second order equation with both constant and proportional delays. The last two
problems are third and sixth order equations with proportional delays. We solve these problems using quite small values
of M and compare the results with the exact and other numerical solutions. Comparisons are given in terms of absolute
error tables.

5.1 Problem 1

As a first example we consider the first order nonlinear differential equation with variable delay t2

{
y′(t)+ ty(t− t2)+ ty2(t) = 1+ t2, 0≤ t ≤ 1
y(0) = 0

(13)

The analytical solution of the above problem is y(t) = t. We approximate the solution by taking k = 0 and M = 1 as

y(t) = AT
Ψ(t) =

[
A00 A01

][
ψ00(t)
ψ01(t)

]

where A00 and A01 are unknown coefficients, ψ00(t) = 2
√

2
π

, and ψ01(t) = 2
√

2
π

(4t−2). Hence, y(t) and y(t− t2) can be
written as

y(t) = A00
2
√

2
π

+A01
2
√

2
π

(4t−2)
y(t− t2) = A00

2
√

2
π

+A01
2
√

2
π

(4(t− t2)−2).
(14)

Following the procedure described in the previous section, we approximate y′(t) as follows

y′(t) = AT DΨ(t) =
[

A00 A01

][0 0
4 0

][
2
√

2
π

2
√

2
π

(4t−2)

]
= A01

8
√

2
π

.
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Once we substitute these approximations in Eq. (13), we get

A01
8
√

2
π

+ t(A00
2
√

2
π

+A01
2
√

2
π

(4(t− t2)−2))+ t(A00
2
√

2
π

+A01
2
√

2
π

(4t−2))2−1− t2 = 0. (15)

Solution of the problem requires two equations. The first equation is obtained by inserting the initial condition y(0) = 0
into Eq. (14)

A00
2
√

2
π

+A01(
−4
√

2
π

) = 0.

and the second equation is obtained by inserting the first root of the second order shifted Chebyshev polynomial, t = 0.75,
into Eq. (15)

A01
8
√

2
π

+0.75(A00
2
√

2
π

+A01
2
√

2
π

(4(0.75− (0.75)2)−2))
+0.75(A00

2
√

2
π

+A01
2
√

2
π

(4(0.75)−2))2−1− (0.75)2 = 0

Solving this 2×2 system of nonlinear equations using Newton’s method results in

AT =
[

A00,A01

]
=
[

0.313328,0.156664
]

Thus, the solution of the given initial value problem is obtained as

y(t) = AT
Ψ(t) =

[
0.313328,0.156664

][ 2
√

2
π

2
√

2
π

(4t−2)

]
= t,

which is the exact solution. This shows that the proposed method is capable of finding the analytical solution once it is in
the form of a polynomial.

5.2 Problem 2:

The second example is a second order DE with variable delays t2 and −t
2

y′′(t)+ y′(t− t2)− t2y(t + t/2)+(y′(t))2− y′(t)y(t) = et + et−t2 − t2e3t/2

with the initial conditions
y(0) = y′(0) = 1.

In this problem, the exact solution is y(t) = et . We solved this problem using k = 0 and several values of M. Recall that
M refers to the order of the approximated polynomial. Table 1 present the results for M = 2,3,4, and 5. The absolute
error is calculated by EM(ti) = |y(ti)−yM(ti)| for each ti ∈ [0,1]. We observe that increasing M results in a decrease in the
absolute error as expected. We also observed that the error increases as t gets closer to 1 for each case.
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Table 1: Comparison of the absolute errors for M=2,3,4 and 5

ti E2(ti) E3(ti) E4(ti) E5(ti)
0.1 2.227358e-03 4.805855e-05 3.196217e-06 1.543342e-07
0.2 8.190349e-03 8.585366e-05 3.568915e-06 1.079453e-07
0.3 1.672568e-02 3.847302e-05 8.672288e-07 1.398890e-07
0.4 2.654773e-02 4.665166e-05 3.471759e-06 5.019619e-07
0.5 3.623565e-02 1.312229e-05 1.552754e-05 6.806498e-07
0.6 4.421917e-02 5.498689e-04 2.272381e-05 1.231363e-08
0.7 4.876286e-02 2.060809e-03 2.342189e-05 2.060657e-07
0.8 4.794880e-02 5.225680e-03 2.229323e-04 7.046704e-06
0.9 3.965732e-02 1.092593e-02 7.465659e-04 4.010630e-05
1 2.154587e-02 2.026593e-02 1.857031e-03 1.362319e-04

5.3 Problem 3:

The third problem is a second order nonlinear DE with both proportional and constant delays [11,17,18]

y′′(t)− e−ty′(t−1/5)− (t−1)y(t)+2y(t/3)− y2(t) =− 1
4 sin2( t

3 )+
4
9 sin( t

3 )+ sin( t
9 )−

−e−t( 1
6 cos( t

3 −
1
15 )−

1
6 sin( t

2 −
1
10 ))−

1
9 cos2( t

2 )+
1
4 cos( t

2 )+
2
3 cos( t

6 )−
1
3 sin( t

3 )cos( t
2 )+

+t(− 1
2 sin( t

3 )−
1
3 cos( t

2 ))

with the mixed initial conditions
3y(0)+6y′(0) = 2, −2y(0)+ y′(0) =−1/2

Exact solution of this problem is y(t) = 1
2 sin( t

3 )+
1
3 cos( t

2 ). We solved this problem by taking k = 0 and M = 4 and the
numerical solution is obtained as

y(t) = A00
2
√

2
π

+A01
2
√

2
π

(4t−2)+A02
2
√

2
π

(16t2−16t +3)

+A03
2
√

2
π

(64t3−96t2 +40t−4)+A04
2
√

2
π

(256t4−512t3 +336t2−80t +5)

where A00 = 0.252614, A01 = 0.019263, A02 =−0.001755, A03 =−1.2992e−05, A04 = 2.1589e−06.

Table 2 presents the comparison of absolute errors of the present method with variational iteration method (VIM) [11],
polynomial least square method (PLSM) with a 5− th order polynomial [17] and Homotopy perturbation method (HPM)
with n = 3 [18]. One can see that the present method has a better accuracy with a smaller degree polynomial.

Table 2: Comparison of the solutions in terms of absolute errors

ti Present Method VIM [11] PLSM [17] HPM [18]
0.2 4.60e-09 5.00e-05 1.02e-08 2.44e-05
0.4 1.75e-08 1.00e-04 6.14e-08 6.11e-05
0.6 2.08e-08 5.00e-05 8.92e-08 8.60e-05
0.8 5.53e-08 1.00e-04 1.02e-07 9.66e-05
1 4.68e-08 5.00e-04 1.53e-07 1.18e-04
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5.4 Problem 4:

The fourth problem is a third order equation with proportional delay [5,7]

y′′′(t)+1−2y2(
t
2
) = 0 0≤ t ≤ 1

with the initial conditions
y(0) = 0, y′(0) = 1, y′′(0) = 0.

Analytical solution of this equation is y(t) = sin(t). Comparison of the present method using 5− th and 6− th order
polynomials, Decomposition method (DM) with 13− th order polynomial [7], and Adomian decomposition method
(ADM) with 9− th order polynomial [5] are given in Table 3. The results in [5] were not given explicitly, so we derived
this polynomial for comparison purposes. When the results are compared, one can see that approximately the same
accuracy is obtained by using smaller degree polynomials with the present method. This shows that the present method is
more efficient than the other two methods.

Table 3: Comparison of the absolute errors

ti Present Method DM [7] ADM [5]
0.1 7.28e-09 0.0 1.02e-15
0.2 2.10e-08 0.0 5.28e-13
0.3 2.73e-08 0.0 2.02e-11
0.4 7.87e-08 0.0 2.69e-10
0.5 2.04e-07 2.61e-09 2.00e-09
0.6 2.66e-08 1.04e-08 1.03e-08
0.7 2.01e-06 4.07e-08 4.12e-08
0.8 9.91e-06 1.38e-07 1.36e-07
0.9 3.19e-05 4.00e-07 3.92e-07
1 8.29e-05 1.03e-06 1.00e-06

5.5 Problem 5:

The final problem is a sixth order equation with again proportional delay

yvi(t) = 1−2y2(
t
2
) = 0; 0≤ t ≤ 1

with the initial conditions

y(0) = 1, y′(0) = 0, y′′(0) =−1, y′′′(0) = 0, yiv(0) = 1, yv(0) = 0.

Exact solution of this equation is y(t) = cos(t). We solved this problem by taking k = 0 and M = 6 and obtained the
solution as
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y(t) = A00
2
√

2
π

+A01
2
√

2
π

(4t−2)+A02
2
√

2
π

(16t2−16t +3)

+A03
2
√

2
π

(64t3−96t2 +40t−4)

+A04
2
√

2
π

(256t4−512t3 +336t2−80t +5)

+A05
2
√

2
π

(1024t5−2560t4 +2304t3−896t2 +140t−6)

+A06
2
√

2
π

(4096t6−12288t5 +14080t4−7680t3 +2016t2−224t +7)

where A00 = 0.5329, A01 = −0.0736, A02 = −0.0169, A03 = 0.000771, A04 = 8.8193e− 05, A05 = −2.5480e− 06 and
A06 =−2.1234e−07.
Table 4 presents the comparison of the absolute errors obtained from the present method and Legendre wavelet method
(LWM) [24] for each point ti ∈ [0,1]. M = 6 is used in both methods. It is observed that the accuracy of the methods are
similar and both of them agree very well with the exact solution. This shows that the wavelet method is very effective
even for high-order nonlinear delay differential equations.

Table 4: Comparison of the absoulte errors taking M=6

ti Present Method LWM [24]
0.1 7.57727214306669e-13 2.01616501271928e-13
0.2 9.09050612563078e-13 3.46787043525865e-11
0.3 8.92359297566259e-10 1.29772448342891e-09
0.4 1.21052460277937e-08 1.43828530196899e-08
0.5 8.08965713305909e-08 8.95849524562564e-08
0.6 3.67981882964941e-07 3.93925250197213e-07
0.7 1.30367234418838e-06 1.36909182280043e-06
0.8 3.86789826289924e-06 4.01366510993650e-06
0.9 1.00462337447871e-05 1.03417449105470e-05
1 2.35222648431455e-05 2.40783212364093e-05

6 Conclusions

In this study, Chebyshev wavelet method is used to solve high-order nonlinear differential equations with variable,
proportional and constant delays. Fiveproblems are considered to show the efficiency of the proposed method. The
application of the method to the first problem results in the exact solution. The other problems are solved numerically.
These solutions are compared with the exact solutions and other numerical solutions, and presented in terms of absolute
error tables. It is observed that the present method yields high-order accuracy even for small values of M and absolute
errors are lesser than the other numerical solutions.

References

[1] Ha, P.Analysis and Numerical Solutions of Delay Differential-Algebraic Equations. PhD Thesis, pp. 4-9, Berlin (2015)
[2] Stephen, A.G., Kuang, Y.A Delay Reaction-Diffusion Model of the spread of Bacteriophage Infection. SIAM J. Appl. Math. 65(2),

550-566 (2015)
[3] Bocharova, G.A., Rihanb, F.A. Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math.

125, 183-199 (2000)

c© 2019 BISKA Bilisim Technology

www.ntmsci.com/jacm
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