
NTMSCI 7, No. 3, 320-327 (2019) 320

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2019.372

An approximate solution of a singular fractional
telegraph equation by double Laplace decomposition
method
Yahya T. Abdalla1, Hassan Eltayeb2 and Mohamed H. Khabir3

1,3Sudan University of Science and Technology, Faculty of Science, Department of Mathematics, Khartoum Sudan.
2King Saud University, Faculty of Science, Department of Mathematics, Riyadh, Saudi Arabia.

Received: 15 August 2018, Accepted: 29 May 2019
Published online: 29 September 2019.

Abstract: In this artical, we introduce a robust method for solving a singular fractional telegraph equation, called Laplac transform
decomposition method (DLDM).This method is combining between double Laplac transform method and the Adomian decomposition
method . In this mthod,the fractional derivative is consider in Caputo sense. Some illustrative example to show that (DLDM) is rigorous
and effective.

Keywords: Double Laplace transform, Adomian decomposition method, telegraph equation, Caputo fractional derivative and
generalized Mittag-leffler function.

1 Introduction

Fractional partial differential equations are focus by scientists in different fields of science such as engineering, physics

and mathematics. This focus comes from the significance and accuracy of fractional calculus. Many events in finance,

signal analysis, control theory and biomedical science andother science can be described successfully by using

fractional calculus. Telegraph equation is hyperbolic partial differential equation that is pertinent in several areas such as

engineering, signal analysis and wave propagation [1]. In recent years, many authors convert telegraph equationto

fractional telegraph equation and solved as linear, nonlinear, homogeneous and nonhomogeneous by different methods

and given exact and approximate solution, in the literatureauthors used powerful methods, For example [2] using

Laplace transform method,[3] suggested Laplace variational iteration method to obtained the approximate solution, the

author [4] obtained the approximate solution of the telegraph equation by using double laplace transform method,[5]

Homotopy perturbation technique,[6] radial basis functions and [7] introduced the Mixture of a new integral transform

and homotopy perturbation method (HPM). Recently, the mainobjective of the present work is to provide the application

of the double Laplace decomposition method to take out approximate solution of singular fractional telegraph equation

(Bessel operator).

2 Definitions

In this section, we set up some basic definitions and preliminary used in this article.

Definition 1. [8] TheEuler Gamma functionΓ (z) is defined by the integral:

Γ (z) =
∫ ∞

0
e−ttz−1dt, R(z)> 0. (1)
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Definition 2. [8] A two-parameter function of the Mittag-Leffler type is defined by the series expansion:

Eα ,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
, (α > 0,β > 0). (2)

Definition 3. [8] The Riemann-Lioville fractional integral operatorρ > 0 of a functionf (t) is defined by:

aD−ρ
t f (t) =

1
Γ (ρ)

∫ t

a
(t − τ)ρ−1 f (τ)dτ . (3)

Definition 4. [8] The left Riemann-Lioville fractional derivative is defined as:

aDρ
t f (t) =

1
Γ (k−ρ)

(

d
dt

)k ∫ t

a
(t − τ)k−ρ−1 f (τ)dτ , (k−1< ρ < k). (4)

Definition 5. [8] The Right Riemann-Lioville fractional derivative is defined as:

tD
ρ
b f (t) =

1
Γ (k−ρ)

(

−
d
dt

)k ∫ b

t
(t − τ)k−ρ−1 f (τ)dτ , (k−1< ρ < k). (5)

Definition 6. [8] Caputo fractional derivative of orderα > 0 of function an absolute continuousf (t), t > 0 is defined as:

0Dα
t f (t) =











1
Γ (α−n)

∫ t
0

f n(τ)dτ
(t−τ)α+1−n , n−1< α ≤ n ∈N

dn

dtn f (t), α = n ∈ N.

(6)

where the functionf (t) has an absolute continuous derivative up to order(n−1).

Definition 7. [9] The Laplace transform of a functionf (t) defined as:

L [ f (t)] (s) = F(s) =
∫ ∞

0
e−st f (t)dt , (7)

wheret > 0.

Definition 8. [8] The double Laplace transform for the partial fractional Caputo derivatives as:

LxLt

[

∂ α u(x,t)
∂ tα

]

= sαU(p,s)−
n−1
∑

k=0
sα−k−1

Lx

[

∂ ku(x,0)
∂ tk

]

, (n−1< α ≤ n). (8)

Definition 9. [9,10] The inverse double Laplace transformL−1
p L

−1
s [F (p,s)] = f (x, t) is defined by the complex double

integral formula:

L
−1
x L

−1
t [F (p,s)] = f (x, t) =

1
2π i

∫ c+i∞

c−i∞
epxd p

1
2π i

∫ d+i∞

d−i∞
estF (p,s)ds, (9)

whereF (p,s) must be an analytic function for allp ands in the region defined by the inequalitiesRe(p) ≥ c andRe(s)

≥ d, wherec andd are real constants to be chosen suitably.

Definition 10. [11] The Adomian Decomposition Method is defined as:

An =
1
n!

dn

dλ n

[

G

(

∞

∑
i=0

ζiλ i

)]

λ=0

. (10)
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3 Proposed fractional double Laplace decomposition method(FDLDM)

In this section, we derive the main idea of fractional doublelaplace decomposition method to solve a singular (Bessel

operator) fractional telegraph equation.

Theorem 1. We consider singular fractional telegraph equation with boundary condition as follows:

D2α
x u(x, t) =

1
t
(tDtu(x, t))t + u(x, t)+ h(x, t), 0< α ≤ 1 and x, t ≥ 0 (11)

Subject to boundary conditions,

u(0, t) = f1(t) andux(0, t) = f2(t), (12)

where1
t (tDtu(x, t))t is the Bessel operator andh(x, t) is a continuous function.

Then the solution of Eq.(11) is given by

u0(x, t) =G(x, t) = 1
p2α H(x, t)+ 1

p F1(s)+
1
p2 F2(s)

un+1(x, t) =L
−1
x L

−1
t

[

1
p2α LxLt [Dtt un(x, t)+Dtun(x, t)+ un(x, t)]

]

, n ≥ 0

(13)

Proof. In order to obtain the solution of Eq.(11), we apply the fractional double Laplace transform of partial derivatives

for equation Eq.(11), we get

p2αU(p,s)− p2α−1U(0,s)− p2α−2Ux(0,s) = LxLt
[

Dttun(x, t)+ 1
t Dtun(x, t)+ u(x, t)+ h(x, t)

]

, (14)

using the single Laplace transform for boundaryl conditions Eq.(12), we have,

Lt [u(0, t)] = Lt [ f1(t)] = F1(s)

Lt [ux(0, t)] = Lt [ f2(t)] = F2(s),

(15)

by substituting Eq.(15) in Eq.(14), use the property of the double Laplace transform and simplifying, we obtain

U(p,s) = 1
p2α LxLt

[

Dtt u(x, t)+ 1
t Dtu(x, t)+ un(x, t)

]

+ 1
p2α H(x, t)+ 1

p F1(s)+ 1
p2 F2(s), (16)

whereH(x, t) is double Laplace ofh(x, t). Taking inverse double Laplace transform to Eq.(16), we get,

u(x, t) = G(x, t)+L
−1
x L

−1
t

[

1
p2α LxLt

[

Dtt u(x, t)+
1
t

Dtu(x, t)+ un(x, t)

]]

, (17)

whereG(x, t) is the function comes from continuous function and initial condition. The solution of Eq.(17) can be written

as infinite series terms (Adomian decomposition method) such as

u(x, t) =
∞

∑
n=0

un(x, t), (18)

then Eq.(17) become

∞
∑

n=0
un(x, t) = G(x, t)+L

−1
x L

−1
t

[

1
p2α LxLt

[

∞
∑

n=0
Dttun(x, t)+ 1

t

∞
∑

n=0
Dtun(x, t)+

∞
∑

n=0
un(x, t)

]]

, (19)
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Eq.(19) can be written as

u0+ u1+ u2+ ...= G(x, t)+L
−1
x L

−1
t

[

1
p2α LxLt [u0tt + u1tt + ...]+ 1

t [u0t + u1t + ...]+ [u0+ u1+ ...]
]

, (20)

the method suggests that the zero componentu0(x, t) is identified by terms that are not included underL
−1
x L

−1
t in Eq.(20).

u0(x, t) =G(x, t) = 1
p2α H(x, t)+ 1

p F1(s)+
1
p2 F2(s)

un+1(x, t) =L
−1
x L

−1
t

[

1
p2α LxLt

[

untt +
1
t unt + un(x, t)

]

]

. n ≥ 0

(21)

Note that the inverse double Laplace transform of each termsin the right side of Eq.(21) exists.

4 Numrical examples

In this section, we demonstrate the applicability and stability of our method by applying numerical examples

Example 1.We consider the following singular fractional telegraph equation:

D2α
x u(x, t) = 1

t (tDtu(x, t))t + u+2t2−4x2− x2t2,

x, t ≥ 0 and 0< α ≤ 1

(22)

Subject to the initial condition:

u(0, t) = 0, ux(0, t) = 0. (23)

Solution 1.
Appling the double Laplace transform on both sides of Eq.(22) to get,

p2αU(p,s)− p2α−1U(0,s)− p2α−2Ux(0,s) = 2 2!
ps3 −4 2!

p3s
− 2!2!

p3s3 +LxLt
[

Dtt u(x, t)+ 1
t Dtu(x, t)+ un(x, t)

]

, (24)

taking single Laplace transform to Eq.(23) and substitute in Eq.(24) gives,

U(p,s) = 2 2!
p2α+1s3 −4 2!

p2α+3s
− 2!2!

p2α+3s3 +
1

p2α LxLt
[

Dtt u(x, t)+ 1
t Dtu(x, t)+ un(x, t)

]

, (25)

using the inverse double Laplace transform for Eq.(25) we have,

u(x, t) = 2 x2α

Γ (2α+1) t
2−8 x2α+2

Γ (2α+3) −2 x2α+2

Γ (2α+3) t
2+L

−1
x L

−1
t

[

1
p2α LxLt

[

Dttu(x, t)+ 1
t Dtu(x, t)+ un(x, t)

]

]

, (26)

now we define the functionu(x, t) by the decomposition series,

u(x, t) =
∞

∑
n=0

un(x, t), (27)

insert Eq.(27) into both sides Eq.(26) gives

∞
∑

n=0
un(x, t) = 2 x2α

Γ (2α+1) t
2−8 x2α+2

Γ (2α+3) −2 x2α+2

Γ (2α+3) t
2

+L
−1
x L

−1
t

[

1
p2α LxLt

[

∞
∑

n=0
untt(x, t)+ 1

t

∞
∑

n=0
unt(x, t)+

∞
∑

n=0
un(x, t)

]]

,

(28)
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by using the Eq.(28) we find a few terms of the series ofu(x, t) as,

u0(x, t) = 2 x2α

Γ (2α+1)t
2−8 x2α+2

Γ (2α+3) −2 x2α+2

Γ (2α+3) t
2 ,

un+1(x, t) =L
−1
x L

−1
t

[

1
p2α LxLt

[

∑∞
n=0untt(x, t)+ 1

t ∑∞
n=0 unt(x, t)+∑∞

n=0un(x, t)
]

]

, n ≥ 0,

(29)

then

u1(x, t) =8
x4α

Γ (4α +1)
−16

x4α+2

Γ (4α +3)
+2

x4α

Γ (4α +1)
t2−2

x4α+2

Γ (4α +3)
t2
, (30)

u2(x, t) =16
x6α

Γ (6α +1)
−24

x6α+2

Γ (6α +3)
+2

x6α

Γ (6α +1)
t2−2

x6α+2

Γ (6α +3)
t2
, (31)

therefore, the (FDLDM) give us the series solution of Eq.(22) is,

u(x, t) = u0(x, t)+ u1(x, t)+ u2(x, t)+ u3(x, t)+ ...

= 2 x2α

Γ (2α+1) t
2−8 x2α+2

Γ (2α+3) −2 x2α+2

Γ (2α+3) t
2+8 x4α

Γ (4α+1) −16 x4α+2

Γ (4α+3) +2 x4α

Γ (4α+1)t
2

−2 x4α+2

Γ (4α+3) t
2+16 x6α

Γ (6α+1) −24 x6α+2

Γ (6α+3) +2 x6α

Γ (6α+1) t
2−2 x6α+2

Γ (6α+3)t
2+... .

(32)

If we take(α = 1) then we get exact solution of standard telegraph equation as,

u(x, t) = x2t2
. (33)

Example 2.Consider the following singular fractional telegraph equation:

D2α
x u(x, t) = 1

t (tDtu(x, t))t + u− x ln(t),

x, t ≥ 0 and 0< α ≤ 1

(34)

Subject to the initial condition:

u(0, t) = 0, ux(0, t) = ln(t). (35)

Solution 2.
Appling double Laplace transform for Eq.(34) we get,

p2αU(p,s)− p2α−1U(0,s)− p2α−2Ux(0,s) =
ln(s)+γ

p2s
+LxLt

[

Dtt u(x, t)+ 1
t Dtu(x, t)+ un(x, t)

]

, (36)

taking single Laplace transform Eq.(35) and substitute in Eq.(36) gives,

U(p,s) = ln(s)+γ
p2s

+ ln(s)+γ
p2α+2s

+ 1
p2α LxLt

[

Dtt u(x, t)+ 1
t Dtu(x, t)+ un(x, t)

]

, (37)

using the inverse double laplace transform transform for Eq.(37) we have,

u(x, t) = x ln(t)+ x2α+1

Γ (2α+2) ln(t)+L
−1
x L

−1
t

[

1
p2α LxLt

[

Dttu(x, t)+ 1
t Dtu(x, t)+ un(x, t)

]

]

, (38)
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now we define the functionu(x, t) by the decomposition series,

u(x, t) =
∞

∑
n=0

un(x, t), (39)

insert Eq.(39) into both sides of Eq.(38) gives,

∞
∑

n=0
un(x, t) = x ln(t)− x2α+1

Γ (2α+2) ln(t)+L
−1
x L

−1
t

[

1
p2α LxLt

[

∞
∑

n=0
Dtt un(x, t)+ 1

t

∞
∑

n=0
Dtun(x, t)+

∞
∑

n=0
un(x, t)

]]

, (40)

by using Eq.(40) we find a few terms of the series ofu(x, t),

u0 = x ln(t)− x2α+1

Γ (2α+2) ln(t),

un+1(x, t) =L
−1
x L

−1
t

[

1
p2α LxLt

[

Dtt un(x, t)+ 1
t Dtun(x, t)+ un(x, t)

]

]

, n ≥ 0,

(41)

u1(x, t) =
x2α+1

Γ (2α +2)
ln(t)−

x2α+3

Γ (2α +4)
ln(t), (42)

u2(x, t) =
x2α+3

Γ (2α +3)
ln(t)−

x2α+5

Γ (2α +6)
ln(t), (43)

u3(x, t) =
x2α+5

Γ (2α +5)
ln(t)−

x2α+7

Γ (2α +8)
ln(t). (44)

therefore, the (FDLDM) give us the series solution of Eq.(34) is,

u(x, t) = u0(x, t)+ u1(x, t)+ u2(x, t)+ u3(x, t)+ ...

u(x, t) = x ln(t)− x2α+1

Γ (2α+2) ln(t)+ x2α+1

Γ (2α+2) ln(t)− x2α+3

Γ (2α+4) ln(t)+ x2α+3

Γ (2α+3) ln(t)

− x2α+5

Γ (2α+6) ln(t)+ x2α+5

Γ (2α+5) ln(t)− x2α+7

Γ (2α+8) ln(t)+ ... .

(45)

The solution of Eq.(34) is equal to the exact solution of standard telegraph equation ( whenα = 1 ):

u(x, t) = ln(tx) (46)

5 Numrical results

In this section, we shall illustrated the accuracy and efficiency of the fractional double Laplace decomposition method

(FDLDM).Figure (1) discuss the exact solution and approximate solution of example(1) we get infinitesimal error equal

(2.775557561562891e−17) that means the present method is forceful and accurately method.Figure (2) approximate

solution of example(1) the behavior of the function with various values of fractional α = 0.94,0.96,0.98 and 1, we see

that the functionu(x, t) increasing whenα is decreasing with increasing thex at the value oft = 1. Table (1), tells us the

absolute error for example(1) by compering the exact solution and approximate solutionu8 obtained by the (FDLDM) at

α = 1 and different values oft. In example (2). The exact solution and approximate solution are equal ln(tx) by

canceling the noise terms, notice that the solution is verified in Eq.(34) whenα = 1.
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Fig. 1: The graph of Exact and approximate solutions of u(x,t) for Example 1.

t Exact Solution Approximate Solution E8(u) = |u− u8|
α = 1 for α = 1

0.2 0.010000000000000 0.010000000000000 1.734723475976807e-18
0.4 0.040000000000000 0.040000000000000 0
0.6 0.090000000000000 0.090000000000000 1.387778780781446e-17
0.8 0.160000000000000 0.160000000000000 2.775557561562891e-17
1.0 0.250000000000000 0.250000000000000 2.775557561562891e-17

Table 1: Exact Solution and Approximate Solution ofu(x, t) for Example 1 withn = 51 atα = 1.

6 Conclusion

We have successfully applied double Laplace transform and adomian decomposition method to obtain the approximate

solutions of the fractional telegraph equation.The (FDLDM) give us small error and high convergence. As seen in Table

1, this techniques lead us to say the mathod has high accurateand efficient solutions.
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Fig. 2: The approximate solutions of u(x,t) for Example 1 forα = 0.94,0.96,0.98, and 1.
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[10] A. Kılıçman and H. Eltayeb, A note on defining singular integral as distribution and partial differential equations with convolution

term, Mathematical and Computer Modelling 49 (2009), no. 1-2, 327-336.

[11] A.-M. Wazwaz, Partial differential equations and solitary waves theory, Springer Science & Business Media, 2010.

c© 2019 BISKA Bilisim Technology


	Introduction
	Definitions
	Proposed fractional double Laplace decomposition method (FDLDM)
	Numrical examples
	Numrical results
	Conclusion

