New Trends in Mathematical Sciences

Sandwich weighted composition operators on weighted hardy spaces

S. D. Sharma¹, Mohd Arief² and Sonali Magotra³

^{1,2} Department of Mathematics, Central University of Jammu, Rahya-Suchani(Bagla), Samba-181143, J&K, India ³ Department of Mathematical Sciences, BGSB University, Rajouri-185234, J&K, India

Received: 9 March 2019, Accepted: 24 May 2019 Published online: 29 September 2019.

Abstract: Let C_{ϕ} , M_{ψ} and D be the composition, multiplication and differentiation operators defined by $C_{\phi}f = fo\phi$, $M_{\psi}f = \psi f$ and Df = f' respectively. In this paper, we study the boundedness and compactness of the sandwich weighted composition operator $DM_{\psi}C_{\phi}D$ on the weighted Hardy spaces by using the orthonormal basis of the weighted Hardy spaces.

Keywords: Composition operator, multiplication operator, differentiation operator, weighted Hardy spaces.

1 Introduction

Let ϕ be an analytic self-map of the open unit disc \mathbb{D} in the finite complex plane \mathbb{C} and $H(\mathbb{D})$ be the set of all complex valued analytic functions on \mathbb{D} . By $\partial \mathbb{D}$ we denote the boundary of \mathbb{D} ; H^p the classical Hardy space and the space H^{∞} consists of all bounded analytic functions f in the disc \mathbb{D} . Let $\beta = \{\beta_n\}_{n=0}^{\infty}$ be the sequence of positive numbers such that $\beta_0 = 1$ and $\lim_{n\to\infty} \frac{\beta_{n+1}}{\beta_n} = 1$. Then $\{\beta_n\}_{n=0}^{\infty}$ is called a weight sequence. For $1 \le p < \infty$, the weighted Hardy space $H^p(\beta)$ is the Banach space of all analytic functions f on the open unit disk \mathbb{D} defined by

$$H^p(\boldsymbol{\beta}) = \left\{ f: z \to \sum_{n=0}^{\infty} a_n z^n \quad s.t \quad \|f\|_{H^p(\boldsymbol{\beta})}^p = \sum_{n=0}^{\infty} |a_n|^p \boldsymbol{\beta}_n^p < \infty \right\}$$

where $\|.\|_{H^p(\beta)}$ is a norm on $H^p(\beta)$. If $\beta \equiv 1$, then $H^p(\beta)$ becomes the classical Hardy space H^p . For p = 2, $H^2(\beta)$ is a Hilbert space w.r.t the inner product

$$\langle f,g \rangle = \sum_{n=0}^{\infty} a_n . \bar{b_n} \beta_n^2$$

where $f, g \in H^2(\beta)$. For a detailed discussion on $H^p(\beta)$ one can see [13].

Associated with ϕ , the classical linear operator $C_{\phi} : H(\mathbb{D}) \to H(\mathbb{D})$ is defined by $f \to fo\phi$ and this operator is called the composition operator induced by self-map ϕ . Let ψ be an analytic function from the open unit disc \mathbb{D} to \mathbb{C} , then associated with ψ the multiplication operator $M_{\psi}f$ is defined by $f \to \psi f$ and the product $M_{\psi}C_{\phi}$ of composition and multiplication operators is called weighted composition operator is defined as $f \to \psi.(fo\phi)$. Let D be the differentiation operator defined by $f \to f'$ and the product of composition operator C_{ϕ} and differentiation operator D is written as $C_{\phi}D$ and DC_{ϕ} which are defined as $f \to f'o\phi$ and $f \to (fo\phi)'$ respectively, for function f analytic in the disc \mathbb{D} . Similarly, the product of multiplication operator M_{ψ} and differentiation operator D are defined as $f \to (\psi.f')$ and $f \to (\psi.f)'$.

Weighted composition operator $M_{\psi}C_{\phi}$ followed and preceded by differentiation operator *D* is denoted by $DM_{\psi}C_{\phi}D$ and is defined as $f \rightarrow (\psi.f'o\phi)'$. The operator $DM_{\psi}C_{\phi}D$ is known as sandwich weighted composition operator and it induces many other operators. For example, if $\psi(z) = 1$, then $DM_{\psi}C_{\phi}D = DC_{\phi}D$, called sandwich composition operator while if $\phi(z) = z$, then we get the sandwich multiplication operator $DM_{\psi}D$. It has been known that the composition operator C_{ϕ} is bounded on almost all spaces of analytic functions for example see [2], [3], [9] and D is usually unbounded on spaces of analytic functions. Recently, the above defined operators have received the attention of many researchers see, for example [8], [10], [11] for composition operator and [5], [12], [15], for weighted composition operator.

In [4], Hibschweiles and Portony defined the product $C_{\phi}D$ and DC_{ϕ} and studied the boundedness and compactness of these operators between Bergman and Hardy spaces by using the Carleson-type measure, whereas in [8], the author studied the boundedness and compactness of $C_{\phi}D$ and DC_{ϕ} between Hardy type spaces.

This paper is organised as follows. In the second section, we discuss the boundedness of the operator $DM_{\psi}C_{\phi}D$ on weighted Hardy spaces $H^2(\beta)$. In the third section, we study the compactness of the operator $DM_{\psi}C_{\phi}D$ on weighted Hardy spaces $H^2(\beta)$ and in the final section, we give necessary and sufficient condition for the operator $DM_{\psi}C_{\phi}D$ to be the Hilbert-Schmidt operator on weighted Hardy spaces.

2 Boundedness of the operator $DM_{\psi}C_{\phi}D$

In this section, we characterize the boundedness of the sandwich weighted composition operator $DM_{\psi}C_{\phi}D$ on the weighted Hardy Spaces. Recall that a linear operator *T* on a Hilbert space *X* is bounded if it takes every bounded set in *X* into a bounded set in *X*.

Theorem 1. Let $\phi : \mathbb{D} \to \mathbb{D}$ be an analytic self-map of \mathbb{D} and $\psi : \mathbb{D} \to \mathbb{C}$ be analytic such that $\{(n-1)\psi, \phi^{n-2}\phi' + \psi', \phi^{n-1} : n \ge 1\}$ is an orthogonal family. Then the sandwich weighted composition operator $DM_{\psi}C_{\phi}D : H^2(\beta) \to H^2(\beta)$ is bounded iff

$$\|(n-1)\psi.\phi^{n-2}\phi'+\psi'.\phi^{n-1}\|_{H^2(\beta)} \leq \frac{M.\beta_n}{n} \text{ for all } n \in \mathbb{N}.$$

Proof. Suppose that the operator $DM_{\psi}C_{\phi}D: H^2(\beta) \to H^2(\beta)$ is bounded. Then \exists +ve number M such that

$$\|DM_{\psi}C_{\phi}Df\|_{H^{2}(\beta)} \le M\|f\|_{H^{2}(\beta)} \quad \forall f \in H^{2}(\beta).$$
(1)

Let $f(z) = z^n$. Then $f \in H^2(\beta)$ and so from (1), we have

$$\begin{split} \|DM_{\psi}C_{\phi}Df\|_{H^{2}(\beta)} &= \|DM_{\psi}C_{\phi}D(z^{n})\|_{H^{2}(\beta)} = \|n.D(\psi.\phi^{n-1})\|_{H^{2}(\beta)} = n\|\psi.(n-1)\phi^{n-2}\phi' + \psi'.\phi^{n-1}\|_{H^{2}(\beta)} \\ &\therefore n\|(n-1)\psi.\phi^{n-2}\phi' + \psi'.\phi^{n-1}\|_{H^{2}(\beta)} \le M.\|z^{n}\|_{H^{2}(\beta)} = M.\beta_{n} \end{split}$$

That is

343

$$\|(n-1)\psi.\phi^{n-2}\phi'+\psi'.\phi^{n-1}\|_{H^2(\beta)}\leq \frac{M.\beta_n}{n} \text{ for all } n\in\mathbb{N}.$$

Conversely, assume that

$$\|(n-1)\psi.\phi^{n-2}\phi' + \psi'.\phi^{n-1}\|_{H^2(\beta)} \le \frac{M.\beta_n}{n}$$
(2)

© 2019 BISKA Bilisim Technology

Then, we have to prove that $DM_{\psi}C_{\phi}D$ is bounded. Let $f \in H^2(\beta)$ s.t $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Since $\{(n-1)\psi \cdot \phi^{n-2}\phi' + \psi' \cdot \phi^{n-1} : n \ge 1\}$ is an orthogonal family, we have

344

$$\begin{split} \|DM_{\psi}C_{\phi}Df\|_{H^{2}(\beta)}^{2} &= \|\sum_{n=1}^{\infty} a_{n}D(n.\psi.\phi^{n-1})\|_{H^{2}(\beta)}^{2} \\ &= \|\sum_{n=1}^{\infty} n.a_{n}[(n-1)\psi.\phi^{n-2}\phi' + \psi'.\phi^{n-1}]\|_{H^{2}(\beta)}^{2} \\ &\leq \sum_{n=1}^{\infty} n^{2}|a_{n}|^{2}\|(n-1)\psi.\phi^{n-2}\phi' + \psi'.\phi^{n-1}\|_{H^{2}(\beta)}^{2} \\ &\leq \sum_{n=0}^{\infty} n^{2}|a_{n}|^{2}\frac{M^{2}.\beta_{n}^{2}}{n^{2}} = M^{2}\sum_{n=0}^{\infty}|a_{n}|^{2}\beta_{n}^{2} \\ &= M^{2}\|f\|_{H^{2}(\beta)}^{2}. \end{split}$$

This implies that $\|DM_{\psi}C_{\phi}Df\|_{H^{2}(\beta)} \leq M\|f\|_{H^{2}(\beta)}$ and so the operator $DM_{\psi}C_{\phi}D$ is bounded.

Corollary 1.Let $\phi : \mathbb{D} \to \mathbb{D}$ be an analytic self-map of \mathbb{D} s.t $\{\phi^n : n \ge 0\}$ is an orthogonal family. Then the sandwich composition operator $DC_{\phi} D : H^2(\beta) \to H^2(\beta)$ is bounded iff

$$\|\phi^{n-2}.\phi'\|_{H^2(\beta)} \le \frac{M.\beta_n}{n(n-1)} \text{ for } n \ge 2.$$

Proof. The result following by putting $\psi(z) \equiv 1$.

Corollary 2. Let $\psi : \mathbb{D} \to \mathbb{C}$ be an analytic such that $\{(n-1)\psi \cdot e_{n-2} + \psi' e_{n-1} : n \ge 1\}$ is an orthogonal family. Then the sandwich multiplication operator $DM_{\phi} D : H^2(\beta) \to H^2(\beta)$ is bounded iff

$$\|(n-1)\psi.e_{n-2}+\psi'e_{n-1}\|\leq \frac{M.\beta_n}{n} \text{ for all } n\geq 2.$$

where $e_n : \mathbb{D} \to \mathbb{D}$ is defined as $e_n(z) = z^n$.

Proof. The result following by putting $\phi(z) = z$. Now we give an example of analytic functions $\phi : \mathbb{D} \to \mathbb{D}$ and $\psi : \mathbb{D} \to \mathbb{C}$ s.t $\{(n-1)\psi, \phi^{n-2}\phi' + \psi'\phi^{n-1} : n \ge 1\}$ is an orthogonal family.

Example 1. Define $\phi : \mathbb{D} \to \mathbb{D}$ as $\phi(z) = z^k$ and $\psi : \mathbb{D} \to \mathbb{C}$ as $\psi(z) = z^m$ for $k, m \in \mathbb{N}$. Then

$$((n-1)\psi.\phi^{n-2}\phi' + \psi'\phi^{n-1})(z) = (n-1)z^m.z^{k(n-2)}.kz^{k-1} + mz^{m-1}.z^{k(n-1)}$$
$$= (n-1)kz^{m+kn-k-1} + mz^{m+kn-k-1}$$
$$= (nk-k+m)z^{m+kn-k-1}$$

This implies that $\{(n-1)\psi, \phi^{n-2}\phi' + \psi', \phi^{n-1} : n \ge 1\}$ is an orthogonal family.

Theorem 2. Let $a \in \mathbb{C}$ and $\beta(n) = (n)^2$. For $\phi(z) = az$ and $\psi(z) = az$, the sandwich weighted composition operator $DM_{\psi}C_{\phi}D$ is bounded iff $|a| \leq 1$.

^{© 2019} BISKA Bilisim Technology

Proof. We have

BISKA

345

$$\begin{split} \| (DM_{\psi}C_{\phi}D)\hat{e}_{n+1} \|_{H^{2}(\beta)} &= \| \frac{(n+1)D(\psi.\phi^{n})}{\beta_{n+1}} \|_{H^{2}(\beta)} \\ &= \frac{(n+1)}{\beta_{n+1}} \| n\psi.\phi^{n-1}\phi' + \psi'\phi^{n} \|_{H^{2}(\beta)} \\ &= \frac{(n+1)}{\beta_{n+1}} \| az.na^{n-1}z^{n-1}.a + a.a^{n}z^{n} \|_{H^{2}(\beta)} \\ &= (n+1)^{2} \| a^{n+1}z^{n} \|_{H^{2}(\beta)} \\ &= \frac{(n+1)^{2} |a^{n+1}|.\beta_{n}}{\beta_{n+1}} \\ &= |a^{n+1}| \end{split}$$

Hence the Theorem.

3 Compactness of the operator $DM_{\psi}C_{\phi}D$

Recall that a linear operator A on a Hilbert space H is called compact if A takes bounded sets into sets with compact closures. This definition is equivalent to the statement that the image of every bounded sequence under A has a convergent subsequence. In this section, we study the compactness of the operator $DM_{\psi}C_{\phi}D$ on weighted Hardy space $H^2(\beta)$. For this, we need the following Lemma.

Lemma 1. Let $\phi : \mathbb{D} \to \mathbb{D}$ and $\psi : \mathbb{D} \to \mathbb{C}$ be analytic mapping. Then the sandwich weighted composition operator $DM_{\psi}C_{\phi}D: H^2(\beta) \to H^2(\beta)$ is compact iff for every bounded sequence $\{f_n\}_{n=0}^{\infty}$ converging to zero uniformly on compact subset of \mathbb{D} , we have

$$||DM_{\psi}C_{\phi}Df_n||_{H^2(\mathcal{B})} \rightarrow 0.$$

Proof. We first suppose that the sandwich weighted composition operator $DM_{\psi}C_{\phi}D$ is compact on $H^2(\beta)$. Further, suppose that $\{f_n\}$ is a bounded sequence in $H^2(\beta)$ with $f_n \to 0$ uniformly on compact subsets of \mathbb{D} . Then $\{f'_n\}$ and $\{f''_n\}$ converge to zero uniformly on compact subsets of \mathbb{D} and since $DM_{\psi}C_{\phi}D$ is compact, $\{(DM_{\psi}C_{\phi}D)f_n\}$ has a subsequence which converges in $H^2(\beta)$. That is $\{(\psi, \phi'f''_n o\phi + \psi'.f'_n o\phi)\}$ has a subsequence which converges in $H^2(\beta)$. Since $\{\phi(z)\}$ is a compact set, $\{f'_n(\phi(z))\}$ and so $\{\psi'(z).f'_n(\phi(z))\}$ converges to zero for each $z \in \mathbb{D}$ and the limit function is necessarily zero. Similarly, $\{\psi(z).\phi'(z)f''_n(\phi(z)) + \psi'(z)f'_n(\phi(z))\}$ converges to zero for each $z \in \mathbb{D}$ and the limit function is necessarily zero. But this is true for any subsequence of the $f_n s$, we see that the limit of $\{(\psi, \phi'.f''_n o\phi + \psi'.f'_n o\phi)\}$ in $H^2(\beta)$ is zero. Hence for every bounded sequence $\{f_n\}$ which converges to zero uniformly on compact subsets of \mathbb{D} , $\{(DM_{\psi}C_{\phi}D)f_n\}$ converges to zero in $H^2(\beta)$.

Conversely we assume that whenever $\{f_n\}$ is bounded in $H^2(\beta)$ and $f_n \to 0$ uniformly on compact subsets of \mathbb{D} , then $(DM_{\psi}C_{\phi}D)f_n \to 0$ in $H^2(\beta)$. We have to show that $DM_{\psi}C_{\phi}D$ is compact on $H^2(\beta)$. Let $\{g_n\}$ be a bounded sequence in $H^2(\beta)$. Since $\{g_n\}$ is a normal family we may extract a subsequence $\{g_{nk}\}$ converging to zero uniformly on compact subsets of \mathbb{D} to some function g. It is easy to check that $g \in H^2(\beta)$ and $\{g_{nk} - g\}$ is a bounded sequence in $H^2(\beta)$ converging almost uniformly to zero. Therefore, by hypothesis $\|(DM_{\psi}C_{\phi}D)g_{nk} - (DM_{\psi}C_{\phi}D)g\|_{H^2(\beta)} \to 0$. Thus image under $DM_{\psi}C_{\phi}D$ of every bounded sequence in $H^2(\beta)$ has a convergent subsequence. Hence $DM_{\psi}C_{\phi}D$ is compact on $H^2(\beta)$.

We are now in a position to prove the necessary and sufficient criteria for compactness of sandwich weighted composition operator on $H^2(\beta)$.

346

Theorem 3. Let $\phi : \mathbb{D} \to \mathbb{D}$ and $\psi : \mathbb{D} \to \mathbb{C}$ be analytic mappings such that $\{(n-1)\psi.\phi^{n-2}\phi' + \psi'.\phi^{n-1} : n \ge 1\}$ is an orthogonal family. Then the sandwich weighted composition operator $DM_{\psi}C_{\phi}D : H^2(\beta) \to H^2(\beta)$ is compact iff

$$\lim_{n \to \infty} \frac{n}{\beta_n} \| (n-1) \psi . \phi^{n-2} \phi' + \psi' . \phi^{n-1} \|_{H^2(\beta)} = 0.$$

Proof. Let us suppose that $DM_{\psi}C_{\phi}D: H^2(\beta) \to H^2(\beta)$ is compact. Now the sequence $\{\frac{z^n}{\beta_n}\}_{n=1}^{\infty}$ converges uniformly to zero on compact subsets of \mathbb{D} , so by Lemma 1

$$\|DM_{\psi}C_{\phi}D\{\frac{z^n}{\beta_n}\}\|_{H^2(\beta)} \to 0 \text{ as } n \to \infty.$$

Hence

$$\lim_{n \to \infty} \frac{n}{\beta_n} \| (n-1) \psi. \phi^{n-2} \phi' + \psi'. \phi^{n-1} \|_{H^2(\beta)} = 0$$

Conversely, suppose that

$$\lim_{n \to \infty} \frac{n}{\beta_n} \| (n-1) \psi . \phi^{n-2} \phi' + \psi' . \phi^{n-1} \|_{H^2(\beta)} = 0.$$

Then for given any $\varepsilon > 0$, there exists +ve integer m, such that

$$\|(n-1)\psi.\phi^{n-2}\phi'+\psi'.\phi^{n-1}\|\frac{n}{\beta_n}<\varepsilon \quad \forall \quad n\geq m.$$

Now, let $f \in H^2(\beta)$ s.t $f(z) = \sum_{n=0}^{\infty} a_n z^n$. Define an operator T_k on $H^2(\beta)$ as

$$T_k f = \sum_{n=0}^k a_n (DM_{\psi}C_{\phi}D) z^n = \sum_{n=0}^k n \cdot a_n [(n-1)\psi \cdot \phi^{n-2}\phi' + \psi' \cdot \phi^{n-1}]$$

Then T_k is a finite rank and so a compact operator on $H^2(\beta)$. Since $\{(n-1)\psi.\phi^{n-2}\phi' + \psi'.\phi^{n-1} : n \ge 1\}$ is an orthogonal family, for $k \ge m$

$$\begin{split} \|(DM_{\psi}C_{\phi}D - T_{k})f\|_{H^{2}(\beta)}^{2} &= \|\sum_{n=k+1}^{\infty} n.a_{n}[(n-1)\psi.\phi^{n-2}\phi' + \psi'\phi^{n-1}]\|_{H^{2}(\beta)}^{2} \\ &\leq \sum_{n=k+1}^{\infty} n^{2}|a_{n}|^{2}\|(n-1)\psi.\phi^{n-2}\phi' + \psi'.\phi^{n-1}\|_{H^{2}(\beta)}^{2} \\ &\leq \sum_{n=0}^{\infty} |a_{n}|^{2}.\varepsilon^{2}.\beta_{n}^{2} = \varepsilon^{2}\sum_{n=0}^{\infty} |a_{n}|^{2}.\beta_{n}^{2} \\ &= \varepsilon^{2}\|f\|_{H^{2}(\beta)}^{2}. \end{split}$$

This implies that $\|DM_{\psi}C_{\phi}D - T_k\| < \varepsilon \quad \forall \quad k \ge m$ and so the operator $DM_{\psi}C_{\phi}D$ is compact.

Remark. It is worthwhile to remark here that the necessary part of the above Theorem is true even if $\{(n-1)\psi, \phi^{n-2}\phi' + \psi', \phi^{n-1} : n \ge 1\}$ is not an orthogonal family.

© 2019 BISKA Bilisim Technology

Corollary 3. Let $\phi : \mathbb{D} \to \mathbb{D}$ be an analytic self-map of \mathbb{D} such that $\{\phi^n : n \ge 1\}$ is an orthogonal family. Then the sandwich composition operator $DC_{\phi}D : H^2(\beta) \to H^2(\beta)$ is compact iff

$$\lim_{n \to \infty} \frac{n(n-1)}{\beta_n} \|\phi^{n-2} \cdot \phi'\|_{H^2(\beta)} = 0$$

Proof. The result following by putting $\psi(z) \equiv 1$.

347

Corollary 4. Let $\psi : \mathbb{D} \to \mathbb{C}$ be an analytic s.t $\{(n-1)\psi . e_{n-2} + \psi' e_{n-1} : n \ge 1\}$ is an orthogonal family. Then the sandwich multiplication operator $DM_{\phi}D : H^2(\beta) \to H^2(\beta)$ is compact iff

$$\lim_{n \to \infty} \frac{n}{\beta_n} \| (n-1) \psi . e_{n-2} + \psi' . e_{n-1} \|_{H^2(\beta)} = 0$$

where $e_n : \mathbb{D} \to \mathbb{D}$ is defined as $e_n(z) = z^n$.

Proof. The result following by putting $\phi(z) = z$. We now give a sufficient condition for sandwich weighted composition operator $DM_{\psi}C_{\phi}D$ to be compact on $H^2(\beta)$.

Theorem 4. Let $\beta = {\{\beta_n\}_{n=0}^{\infty}}$ be the sequence of positive numbers such that $\beta_0 = 1$, $\lim_{n \to \infty} \frac{\beta_{n+1}}{\beta_n} = 1$ and $\beta_n \le 1 \forall n$. Further, let $\phi : \mathbb{D} \to \mathbb{D}$ and $\psi : \mathbb{D} \to \mathbb{C}$ be analytic mappings such that $\|\phi\|_{\infty} < 1$ and ϕ', ψ' and ψ are bounded. Then the sandwich weighted composition operator $DM_{\psi}C_{\phi}D$ is compact on $H^2(\beta)$.

Proof. Suppose $\{f_n\}$ is a bounded sequence in $H^2(\beta)$ converging to zero uniformly on compact subset of \mathbb{D} . In view of Lemma 1, to show that $DM_{\psi}C_{\phi}D$ is compact, it is sufficient to show that $\|(DM_{\psi}C_{\phi}D)f_n\|_{H^2(\beta)} \to 0$ as $n \to \infty$. Since $\|\phi\|_{\infty} < \infty$, $\phi(\mathbb{D})$ is relatively compact subset of \mathbb{D} and so $f_n \to 0$ uniformly on $\phi(\mathbb{D})$. Therefore, the sequences $\{f'_n\}$ and $\{f''_n\}$ also converge to zero uniformly on $\phi(\mathbb{D})$. Since $\beta_n \le 1 \forall n, H^2(\mathbb{D}) \subseteq H^2(\beta)$. But $H^{\infty} \subseteq H^2(\mathbb{D})$. Thus $H^{\infty} \subseteq H^2(\beta)$, which implies that

$$\begin{split} \|(DM_{\psi}C_{\phi}D)f_{n}\|_{H^{2}(\beta)} &= \|D(\psi.f_{n}'o\phi)\|_{H^{2}(\beta)} \\ &= \|\psi(f_{n}'o\phi)' + \psi'.f_{n}'o\phi\|_{H^{2}(\beta)} \\ &\leq \|\psi.f_{n}''o\phi.\phi'\|_{H^{2}(\beta)} + \|\psi'.f_{n}'o\phi\|_{H^{2}(\beta)} \\ &\leq \|\psi\|_{\infty}\|\phi'\|_{\infty}\|f_{n}''o\phi\|_{H^{2}(\beta)} + \|\psi'\|_{\infty}\|f_{n}'o\phi\|_{H^{2}(\beta)} \\ &\leq \|\psi\|_{\infty}\|\phi'\|_{\infty}\|f_{n}''o\phi\|_{\infty} + \|\psi'\|_{\infty}\|f_{n}'o\phi\|_{\infty} \\ &\leq \|\psi\|_{\infty}\|\phi'\|_{\infty}\sup_{z\in\mathbb{D}}|(f_{n}''o\phi)(z)| + \|\psi'\|_{\infty}\sup_{z\in\mathbb{D}}|(f_{n}'o\phi)(z)| \\ &\leq \|\psi\|_{\infty}\|\phi'\|_{\infty}\sup_{w\in\phi(\mathbb{D})}|f_{n}''(w)| + \|\psi'\|_{\infty}\sup_{w\in\phi(\mathbb{D})}|f_{n}'(w)| \\ &\to 0 \text{ as } n \to \infty \end{split}$$

Hence $DM_{\psi}C_{\phi}D$ is compact on $H^2(\beta)$.

Corollary 5. Let $\phi : \mathbb{D} \to \mathbb{D}$ be analytic. If $\overline{\phi(\mathbb{D})} \subset \mathbb{D}$, then sandwich weighted composition operator $DM_{\psi}C_{\phi}D$ is compact on $H^2(\beta)$.

Proof. Suppose that $\{f_n\}$ is a bounded sequence and $f_n \to 0$ uniformly on compact subsets of \mathbb{D} . Since $\overline{\phi(\mathbb{D})} \subset \mathbb{D}$, it follows that $f_n \to 0$ uniformly on $\overline{\phi(\mathbb{D})}$ and so $\{f'_n\}$ and $\{f''_n\}$ also converge to zero uniformly on $\overline{\phi(\mathbb{D})}$. Hence, as in the proof of above theorem, $\|(DM_{\psi}C_{\phi}D)f_n\|_{H^2(\beta)} \to 0$ as $n \to \infty$. This implies that $DM_{\psi}C_{\phi}D$ is compact.

Example 2. Let $\beta_0 = 1$ and $\beta_n = \frac{n}{n+1}$, $n \ge 2$. Further, let $\phi : \mathbb{D} \to \mathbb{D}$ and $\psi : \mathbb{D} \to \mathbb{C}$ be defined as $\phi(z) = \frac{z}{2}$ and $\psi(z) = P(z)$, a polynomial of degree n. Then clearly $\beta_n \le 1$, $\|\phi\|_{\infty} < 1$, $\psi'(z) = \frac{1}{2}$ and ψ , ψ' are bounded. Hence by Theorem 4, the sandwich composition operator $DM_{\psi}C_{\phi}D$ is compact

4 Necessary and Sufficient Condition for the operator $DM_{\psi}C_{\phi}D$ to be Hilbert Schmidt operator on $H^2(\beta)$

In this section, we give a necessary and sufficient condition for the operator $DM_{\psi}C_{\phi}D$ to be Hilbert Schmidt operator on $H^2(\beta)$. Recall that a linear operator T on Hilbert space H is said to be Hilbert-Schmidt operator if $\sum_{n=0}^{\infty} ||Te_n||^2 < \infty$ for some orthonormal basis $\{e_n\}$ of H.

348

Theorem 5. Let $\phi : \mathbb{D} \to \mathbb{D}$ be an analytic such that $\{(n-1)\psi, \phi^{n-2}\phi' + \psi', \phi^{n-1} : n \ge 1\}$ is an orthogonal family and $\psi : \mathbb{D} \to \mathbb{C}$ be analytic map. Then the sandwich weighted composition operator $DM_{\psi}C_{\phi}D$ is Hilbert-Schmidt operator on $H^2(\beta)$ iff

$$\sum_{n=0}^{\infty} \frac{n^2}{\beta_n^2} \| (n-1) \psi.\phi^{n-2} \phi' + \psi'.\phi^{n-1} \|_{H^2(\beta)}^2 < \infty$$

Proof. Since $\{\frac{z^n}{\beta_n}: n \ge 0\}$ is an orthonormal basis for $H^2(\beta)$. The operator $DM_{\psi}C_{\phi}D$ is Hilbert Schmidt operator

$$\begin{split} & iff \quad \sum_{n=0}^{\infty} \|DM_{\psi}C_{\phi}D(\frac{z^{n}}{\beta_{n}})\|_{H^{2}(\beta)}^{2} < \infty. \\ & iff \quad \sum_{n=0}^{\infty} \|\frac{n}{\beta_{n}}[(n-1)\psi.\phi^{n-2}\phi' + \psi'\phi^{n-1}]\|_{H^{2}(\beta)}^{2} < \infty. \\ & iff \quad \sum_{n=0}^{\infty} \frac{n^{2}}{\beta_{n}^{2}}\|(n-1)\psi.\phi^{n-2}\phi' + \psi'.\phi^{n-1}\|_{H^{2}(\beta)}^{2} < \infty. \end{split}$$

This completes the proof.

Corollary 6. Let $\phi : \mathbb{D} \to \mathbb{D}$ be an analytic self-map of \mathbb{D} such that $\{\phi^n : n \ge 1\}$ is an orthogonal family. Then the sandwich composition operator $DC_{\phi}D : H^2(\beta) \to H^2(\beta)$ is Hilbert Schmidt operator iff

$$\sum_{n=0}^{\infty} \frac{n^2}{\beta_n^2} \|(n-1)\phi^{n-2}\phi'\|_{H^2(\beta)}^2 < \infty$$

Proof. The result following by putting $\psi(z) \equiv 1$.

Corollary 7. Let $\psi : \mathbb{D} \to \mathbb{C}$ be an analytic such that $\{(n-1)\psi \cdot e_{n-2} + \psi' e_{n-1} : n \ge 1\}$ is an orthogonal family. Then the sandwich multiplication operator $DM_{\phi} D : H^2(\beta) \to H^2(\beta)$ is Hilbert Schmidt operator iff

$$\sum_{n=0}^{\infty} \frac{n^2}{\beta_n^2} \| (n-1) \psi . e_{n-2} + \psi' . e_{n-1} \|_{H^2(\beta)}^2 < \infty$$

where $e_n : \mathbb{D} \to \mathbb{D}$ is defined as $e_n(z) = z^n$.

Proof. The result following by putting $\phi(z) = z$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

^{© 2019} BISKA Bilisim Technology

References

349

- [1] M. D. Contreras and A. G. Hernandez,: Weighted composition operators on Hardy space, J. Math. Anal. Appl. 263(2001), 224-233.
- [2] C. C. Cowen and B. D. MacCluear,: Composition operators on spaces of analytic functions, Stud. Adv. Math., CRC Press. Boca Ration, 1995.
- [3] P. L. Duren,: Theory of H^p spaces, Academic Press New York, 1970.
- [4] R. A. Hibschweiler and N. Portnoy,: *Composition operators followed by differentiation between Bergman and Hardy spaces,* Rocky Mountain J.Math.35, 843-855 (2005).
- [5] Pawan Kumar and S. D. Sharma,: Weighted composition operators from weighted Bergman-Nevanlinna spaces to zygmund spaces, Int.J.Mod. Math. Sci.3(1), (2012), 31-54.
- [6] S. Li and S. Stevic,: *Composition followed by differentiation between* H^{∞} *and* α *-Bloch spaces,* Houston J. Math. 35(2009), 327-340.
- [7] B. D. MacCluer, X. Zong and N. Zorboska,: Composition operators on small weighted Hardy Spaces, Illinious Journal of Mathematics, 40(1996), No. 4, 662-667.
- [8] S. Ohno,: Product of composition and differentiation between Hardy spaces, Bull Austral Math. Soc. 73(2006), 235-243.
- [9] H. J. Schwartz,: *Composition operators on H^p*, Ph.D thesis, University of Toledo, 1969.
- [10] J. H. Shapiro,: Composition operators and classical function theory, Springer-Verlag New York 1993.
- [11] A. K. Sharma,: Product of composition, multiplication and differentiation between Bergman and Bloch type spaces, Turkish. J. Math. 34 (2010), 1-17.
- [12] A. K. Sharma and S.D. Sharma,: Weighted composition operators between Bergman type spaces, Comm. Korean Math. Soc. 21 No. 3(2006), 465-474.
- [13] A. L. Shield,: *Weighted shift operator and analytic function theory*, in topic in operator theory, Math surveys, No 13, Amer. Math. soc. Providence 1947.
- [14] S. Stevic,: Products of composition and differentiation operators on weighted Bergman spaces, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 623-635.
- [15] X. Zhu,: Weighted composition operators from area Nevanlinna spaces into Bloch spaces, Applied Mathematics and computation, 215 (2010), 4340-4346.