On the generalized continued fractions

Amara Chandoul ${ }^{1}$ and Fahad Aljuaydi ${ }^{2}$
${ }^{1}$ Higher Institute of Informatics and Multimedia of Sfax, Sfax University, Tunisia.
${ }^{2}$ Department of mathematics, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.

Received: 20 January 2019, Accepted: 4 March 2019
Published online: 4 October 2019.

Abstract

We introduce a class of continued fractions called Oppenheim continued fractions (OCF). Basic properties of these expansions are discussed and studied in the formal powers series case.

Keywords: Oppenhein continued fraction, Laurent series, finite fields.

1 On generalized continued fractions

Let \mathbb{F}_{q} be a finite field with q elements of characteristic $p, \mathbb{F}_{q}[X]$ the set of polynomials of coefficients in \mathbb{F}_{q} and $\mathbb{F}_{q}(X)$ its field of fractions. The set $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ is the field of formal power series over \mathbb{F}_{q}

$$
\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)=\left\{\omega=\sum_{j=s}^{+\infty} a_{j} X^{-j}: a_{j} \in \mathbb{F}_{q}, s \in \mathbb{Z}\right\}
$$

Let $\omega=\sum_{j=s}^{+\infty} a_{j} X^{-j} \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$, where $a_{s} \neq 0$. We denote its polynomial part by [ω] and $\{\omega\}$ its fractional part. We remark that $\omega=[\omega]+\{\omega\}$. We define a non-archimedean absolute value on $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$ by $|\omega|=e^{-s}$. It is clear that, for all $P \in \mathbb{F}_{q}[X],|P|=e^{\operatorname{deg} P}$ and, for all $Q \in \mathbb{F}_{q}[X]$, such that $Q \neq 0,\left|\frac{P}{Q}\right|=e^{\operatorname{deg} P-\operatorname{deg} Q}$.

Let $E=\left(\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)\right)^{n}, E$ is a vectorial space over $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$. We define a norm over E as follows, for all $f=\left(f_{1}, \ldots, f_{n}\right) \in E$,

$$
\|f\|=\max _{1 \leq i \leq n}\left|f_{i}\right| .
$$

Let $A_{1}, \ldots, A_{m} \in E$, then we can verify that

$$
\left\|A_{1}+\cdots+A_{m}\right\| \leq \max _{1 \leq i \leq m}\left\|A_{i}\right\| .
$$

We begin by giving a few basics facts about the generalized continued fractions over $\mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$.

1.1 Basics concepts

Let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ and $\left(\beta_{n}\right)_{n \in \mathbb{N}} \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)$, a continued fraction

$$
\begin{equation*}
K\left(\frac{\alpha_{n}}{\beta_{n}}\right)=\frac{\alpha_{1}}{\beta_{1}+\frac{\alpha_{2}}{\beta_{2}+\frac{\alpha_{3}}{\beta_{3}+\ddots}}} \tag{1}
\end{equation*}
$$

is said to converge if its sequence of approximants $\left\{\omega_{n}\right\}$ converges. Here

$$
\begin{equation*}
\omega_{n}=K_{i=1}^{n}\left(\frac{\alpha_{i}}{\beta_{i}}\right)=\frac{\alpha_{1}}{\beta_{1}+\frac{\alpha_{2}}{\beta_{2}+\frac{\alpha_{3}}{\ddots+\frac{\alpha_{n}}{\beta_{n}}}}} \text {, for } n=1,2, \ldots \tag{2}
\end{equation*}
$$

The value of the continued fraction is then $\omega=K\left(\frac{\alpha_{n}}{\beta_{n}}\right)=\lim _{n \rightarrow+\infty} \omega_{n}$.
Remark. If $\alpha_{i}=1$ and β_{i} is a non constant polynomial, then we obtain the Regular continued fraction (RCF).
If α_{i} is a fixed polynomial P and $\left.\left(\beta_{i}\right)_{i \geq 1}\right)$ is a sequence of non constant polynomials, then we obtain the P-continued fraction.
If $K\left(\frac{\alpha_{n}}{\beta_{n}}\right)$ converges, its tails $K_{n=N+1}^{+\infty}\left(\frac{\alpha_{n}}{\beta_{n}}\right)$ for $N=0,1,2, \ldots$ also converge, and we let $\omega^{(N)}=K_{n=N+1}^{+\infty}\left(\frac{\alpha_{n}}{\beta_{n}}\right)$ denote the values of these tails for $N=0,1,2, \ldots$. It is easy to see that $\left\{\omega^{(N)}\right\}$ is a sequence with $\omega^{(0)}=\omega$, satisfying the recursion relations

$$
\begin{equation*}
\omega^{(N)}=\frac{\alpha_{N+1}}{\beta_{N+1}+\omega^{(N+1)}} \text { for } N=1,2, \ldots \tag{3}
\end{equation*}
$$

This sequence is what Waadeland [10] named the sequence of right tails for $K\left(\frac{\alpha_{n}}{\beta_{n}}\right)$.
In this section, we describe a necessary and sufficient conditions for the convergence of (1). For which, we assume the existence of the limits

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \alpha_{n}=\alpha \neq 0 \text { and } \lim _{n \rightarrow+\infty} \beta_{n}=\beta . \tag{4}
\end{equation*}
$$

The continued fraction expansion (1) can be generated by means of the sequence $\left\{s_{n}(\theta)\right\}$ of linear fractional transformations,

$$
\begin{equation*}
s_{n}(\theta)=\frac{\alpha_{n}}{\beta_{n}+\theta}, \text { for } \theta \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right) \text { and } n=1,2,3, \ldots \tag{5}
\end{equation*}
$$

Defining $S_{n}(\theta)$ as their composition,

$$
\begin{equation*}
S_{0}(\theta)=\theta, S_{n}(\theta)=S_{n-1}\left(s_{n}(\theta)\right) \text { for and } n=1,2,3, \ldots \tag{6}
\end{equation*}
$$

gives us $\omega_{n}=S_{n}(0)$, from (2). Straightforward computation shows that $S_{n}(\theta)$ can be written

$$
\begin{equation*}
S_{n}(\theta)=\frac{A_{n}+A_{n-1} \theta}{B_{n}+B_{n-1} \theta} \text { for } n=0,1,2, \ldots \tag{7}
\end{equation*}
$$

where A_{n} and B_{n}, the numerator and denominator of $K_{i=0}^{n}\left(\frac{\alpha_{i}}{\beta_{i}}\right)$, respectively, are given by

$$
\begin{equation*}
A_{-1}=1, A_{0}=0, A_{n}=\beta_{n} A_{n-1}+\alpha_{n} A_{n-2}, \text { for } n=1,2, \ldots \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
B_{-1}=1, B_{0}=0, B_{n}=\beta_{n} B_{n-1}+\alpha_{n} B_{n-2}, \text { for } n=1,2, \ldots \tag{9}
\end{equation*}
$$

This notation is in accordance with [9], and it will be used throughout this paper. If we regard the N th tail $K_{m=N+1}^{+\infty}\left(\frac{\alpha_{m}}{\beta_{m}}\right)$ as a continued fraction, we use the notation $S_{n}^{(N)}, A_{n}^{(N)}$ and $B_{n}^{(N)}$ to denote the similar expressions connected with $K_{m=N+1}^{+\infty}\left(\frac{\alpha_{m}}{\beta_{m}}\right)$.

1.2 Convergence results

Theorem 1. Let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ and $\left(\beta_{n}\right)_{n \in \mathbb{N}} \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right)[z]$. If in the generalized continued fraction

$$
\begin{equation*}
\omega(z)=K_{n=1}^{+\infty} \frac{\alpha_{n}(z)}{\beta_{n}(z)} \tag{10}
\end{equation*}
$$

$\lim _{i \rightarrow+\infty} \alpha_{i}(z)=\alpha(z) \neq 0$ and $\lim _{i \rightarrow+\infty} \beta_{i}(z)=\beta(z)$, the continued fraction expansion (10) will converge if and only if $z \in\left\{z \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right) ; a(z)=\frac{|\alpha(z)|}{|\beta(z)|^{2}}<1\right\}$ except possibly at certain isolated points p_{1}, p_{1}, \ldots, which are poles.

Proof. If a sufficient number of terms of (10) are omitted at the outset in which $\left(\left|\alpha_{N+i}(z)\right|,\left|\beta_{N+i}(z)\right|\right)=(|\alpha(z)|,|\beta(z)|)$ $\forall i \geq 1$, a new continued fraction will be obtained

$$
\begin{equation*}
\omega^{(N)}(z)=K_{i=1}^{+\infty} \frac{\alpha_{N+i}(z)}{\beta_{N+i}(z)} \tag{11}
\end{equation*}
$$

For this continued fraction

$$
\begin{equation*}
B_{0}^{(N)}=1, B_{1}^{(N)}=\beta_{N+1}(z) \text { and } B_{i+1}^{(N)}=\beta_{N+i+1}(z) B_{i}^{(N)}+\alpha_{N+i+1}(z) B_{i-1}^{(N)} \tag{12}
\end{equation*}
$$

Suppose first that $|a(z)|=\frac{|\alpha(z)|}{|\beta(z)|^{2}}<1$, then, for all $i \geq 1$,

$$
\begin{equation*}
\frac{\left|\beta_{N+i}(z)\right|^{2}}{\left|\alpha_{N+i}(z)\right|}=\frac{1}{|a(z)|}>1 \tag{13}
\end{equation*}
$$

Let us proof that

$$
\begin{equation*}
\left|B_{n}^{(N)}\right|=|\beta(z)|^{n} . \tag{14}
\end{equation*}
$$

If $\left|B_{s}^{(N)}\right|=|\beta(z)|^{s}$ for $s \leq n$, then $\left|\beta_{N+n+1}(z) B_{n}^{(N)}\right|=|\beta(z)|^{n+1}$ and $\left|\alpha_{N+n+1}(z) B_{n-1}^{(N)}\right|=|\alpha(z)||\beta(z)|^{n-1}$. We have immediately from (12) and (13).

$$
\left|B_{n+1}^{(N)}\right|=\left|\beta_{N+n+1}(z) B_{n}^{(N)}\right|=|\beta(z)|^{n+1}
$$

We claim that the sequence $\left(\frac{A_{n}^{(N)}}{B_{n}^{(N)}}\right)_{n}$ converges. The difference between the $(n-1)$ th and the nth $(n>0)$ convergent is

$$
\begin{equation*}
\frac{A_{n}^{(N)}}{B_{n}^{(N)}}-\frac{A_{n-1}^{(N)}}{B_{n-1}^{(N)}}=\frac{(-1)^{n} \prod_{i=1}^{n} \alpha_{N+i}(z)}{B_{n-1}^{(N)} B_{n}^{(N)}} \tag{15}
\end{equation*}
$$

Then from (14), $\left|\frac{A_{n}^{(N)}}{B_{n}^{(N)}}-\frac{A_{n-1}^{(N)}}{B_{n-1}^{(N)}}\right|=\frac{|\alpha(z)|^{n}}{|\beta(z)|^{2 n-1}}$.
Consequently for $k \in \mathbb{N}$,

$$
\left|\frac{A_{n+k}^{(N)}}{B_{n+k}^{(N)}}-\frac{A_{n}^{(N)}}{B_{n}^{(N)}}\right|=\frac{|\alpha(z)|^{n}}{|\beta(z)|^{2 n-1}}=|a(z)|^{n}|\beta(z)| \longrightarrow 0
$$

Now, suppose that $|a(z)| \geq 1$, one shows, using a simple recurrence on n and (12) that

$$
\begin{equation*}
\left|B_{2 n}^{(N)}\right| \leq|\alpha(z)|^{n} \text { and }\left|B_{2 n+1}^{(N)}\right| \leq|\beta(z)||\alpha(z)|^{n} \tag{16}
\end{equation*}
$$

Now, we are able to prove the divergence of $\frac{A_{n}^{(N)}(z)}{B_{n}^{(N)}(z)}$ under the assumption $|a(z)| \geq 1$. Indeed, if $\frac{A_{n}^{(N)}(z)}{B_{n}^{(N)}(z)}$ converge, then from (15), we deduce that

$$
\omega^{(N)}(z)=\sum_{k=1}^{+\infty} \frac{(-1)^{k} \prod_{i=1}^{k} \alpha_{N+i}(z)}{B_{k}^{(N)} B_{k-1}^{(N)}}
$$

then $A_{N}^{(N)}(z)$ diverge since from (16)

$$
\left|\frac{(-1)^{k} \prod_{i=1}^{k} \alpha_{N+i}(z)}{B_{k}^{(N)} B_{k-1}^{(N)}}\right| \geq\left|\frac{\alpha}{\beta}\right|>0
$$

2 Oppenheim continued fraction expansions (OCF)

Now, we introduce Oppenheim continued fraction expansion. Let $\mathscr{J}=\left\{\omega \in \mathbb{F}_{q}\left(\left(X^{-1}\right)\right):|\omega|<1\right.$ and $\left.\omega \neq 0\right\}$ and $\left\{h_{j}\right\}_{j \geq 1}$ be a sequence of polynomials valued map defined on $\mathbb{F}_{q}[X]$. Let $\omega \in \mathscr{J}$, as in the real case [8] we define the Oppenheim algorithm T_{0} by

$$
\begin{equation*}
T_{0}(\omega)=\frac{1}{h_{1}\left(D_{1}\right)+1}\left(\frac{1}{\omega}-D_{1}\right) \in \mathscr{J} \text { where } D_{1}=\left[\frac{1}{\omega}\right] \tag{17}
\end{equation*}
$$

Now we define the polynomials $D_{j}=D_{j}(\omega)$ and the formal power series ω_{j} for $j=1,2, \ldots$ as follows :

$$
\left\{\begin{array}{l}
\omega_{1}=\omega, \quad D_{j}=\left[\frac{1}{\omega_{j}}\right] \tag{18}\\
\omega_{j+1}=T_{0}^{j}(\omega)=T_{0}\left(T_{0}^{j-1}(\omega)\right)=\frac{1}{h_{j}\left(D_{j}\right)+1}\left(\frac{1}{\omega_{j}}-\left[\frac{1}{\omega_{j}}\right]\right)
\end{array}\right.
$$

This algorithm generates the Oppenheim continued fraction expansion of ω as follows

$$
\begin{equation*}
\omega=\frac{1}{D_{1}+\frac{h_{1}\left(D_{1}\right)+1}{D_{2}+\frac{h_{2}\left(D_{2}\right)+1}{D_{3}+\ddots+\frac{h_{j-1}\left(D_{j-1}\right)+1}{D_{j}+\ddots}}}}, \tag{19}
\end{equation*}
$$

where $D_{j} \in F_{q}[X] \backslash F_{q}$
Proposition 1. we have

$$
\begin{equation*}
\left|D_{j+1}\right|>\left|h_{j}\left(D_{j}\right)+1\right| \text { for all } j \geq 1 \tag{20}
\end{equation*}
$$

In fact,

$$
D_{j+1}=\left[\frac{1}{T_{0}^{j}(\omega)}\right]=\left[\frac{h_{j}\left(D_{j}\right)+1}{\left\{\frac{1}{T_{0}^{j-1}(\omega)}\right\}}\right]
$$

then $\left|D_{j+1}\right|>\left|h_{j}\left(D_{j}\right)+1\right|$.
Proposition 2.Let A_{n} and B_{n}, the numerator and denominator of $K_{i=0}^{n}\left(\frac{h_{i}\left(D_{i}\right)+1}{D_{i}}\right)$, then from (8) and (9), (A_{n}), (B_{n}) are recursively defined by

$$
\begin{align*}
& A_{0}=0, \quad A_{1}=1, \quad A_{n}=D_{n} A_{n-1}+\left(h_{n-1}\left(D_{n-1}\right)+1\right) A_{n-2}, \quad \text { for } \quad n \geq 2 \tag{21}\\
& B_{0}=1, \quad B_{1}=B_{1}, \quad B_{n}=D_{n} B_{n-1}+\left(h_{n-1}\left(D_{n-1}\right)+1\right) B_{n-2}, \quad \text { for } \quad n \geq 2 \tag{22}
\end{align*}
$$

Then, for $n \geq 2$

$$
\begin{equation*}
A_{n} B_{n-1}-A_{n-1} B_{n}=(-1)^{n} \prod_{j=1}^{n-1}\left(h_{n-1}\left(D_{n-1}\right)+1\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{gather*}
\frac{1}{D_{1}+\frac{\left(h_{1}\left(D_{1}\right)+1\right)}{D_{2}+\frac{\left(h_{2}\left(D_{2}\right)+1\right)}{D_{3}+\ddots+\frac{\left(h_{n-1}\left(D_{n-1}\right)+1\right)}{D_{n}}}}}=\frac{A_{n}}{B_{n}} \tag{24}\\
\left|B_{n}\right|>\left|A_{n}\right| \tag{25}\\
\left|B_{n+1}\right| \geq\left|\prod_{i=0}^{n} h_{i}\left(D_{i}+1\right)\right| \tag{26}
\end{gather*}
$$

Remark. (i) It is clear that the Oppenheim continued fraction is a particular case of the generalized continued fraction (1).
(ii) If $h_{j}\left(D_{j}\right)=0$, then we obtain the Regular continued fraction (RCF).
(iii) If $h_{j}\left(D_{j}\right)=D_{j}-1$, then we obtain the Engel continued fraction (ECF).

Proposition 3. A formal power series $\omega \in \mathscr{J}$ has a finite Oppenheim continued fraction expansion if and only if $\omega \in$ $\mathbb{F}_{q}(X)$.
Proof. Using the expression (19) of ω, we state that if ω has a finite expansion then $\omega \in \mathbb{F}_{q}(X)$. Suppose now ω is rational fraction. By the algorithm, we know that for $j \geq 1, \omega_{j}$ is a rational fraction in \mathscr{J}, then $\omega_{j}:=\frac{R_{j}}{S_{j}}=\frac{R_{j}}{D_{j} R_{j}+R_{j+1}}$ where $\left|R_{j+1}\right|<\left|R_{j}\right|$ and $D_{j}=\left[\frac{S_{j}}{R_{j}}\right]$. Thus, by the algorithm, we have

$$
\begin{equation*}
\omega_{j+1}=\frac{1}{h_{j}\left(D_{j}\right)+1}\left(\frac{1}{\omega_{j}}-D_{j}\right)=\frac{1}{h_{j}\left(D_{j}\right)+1} \frac{R_{j+1}}{R_{j}}:=\frac{R_{j+1}}{S_{j+1}} . \tag{27}
\end{equation*}
$$

Since $\left|R_{j+1}\right|<\left|R_{j}\right|$, then this procedure will stop at finite steps, it follows that $\omega_{j}=0$ for some j.

Proposition 4. For all $\omega \in \mathscr{J}$, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{A_{n}(\omega)}{B_{n}(\omega)}=\omega \tag{28}
\end{equation*}
$$

Proof. If ω is rational we conclude (28) by (20). Now let ω be irrational, (24) implies that

$$
\begin{gathered}
\omega=\frac{A_{n}(\omega)+\left(h_{n}\left(D_{n}(\omega)\right)+1\right) \omega_{n+1} A_{n-1}(\omega)}{B_{n}(\omega)+\left(h_{n}\left(D_{n}(\omega)\right)+1\right) \omega_{n+1} B_{n-1}(\omega)} \\
\left|\omega-\frac{A_{n}}{B_{n}}\right|=\frac{\left|\left(h_{n}\left(D_{n}(\omega)\right)+1\right) \omega_{n+1} \prod_{j=1}^{n-1}\left(h_{j}\left(D_{j}\right)+1\right)\right|}{\left|B_{n}\right|\left|\left(B_{n}+\left(h_{n}\left(D_{n}(\omega)\right)+1\right) \omega_{n+1} B_{n-1}\right)\right|}
\end{gathered}
$$

Since $\left|\left(h_{n}\left(D_{n}(\omega)\right)+1\right) \omega_{n+1}\right|<1,\left|B_{n-1}\right|<\left|B_{n}\right|$ and $\left|\prod_{j=1}^{n-1}\left(h_{j}\left(D_{j}\right)+1\right)\right|<\left|B_{n}\right|$, then

$$
\begin{equation*}
\left|\omega-\frac{A_{n}}{B_{n}}\right|<\frac{1}{\left|B_{n}\right|} \longrightarrow 0 \tag{30}
\end{equation*}
$$

Proposition 5. Let $\left(D_{1}, \ldots, D_{n}, \ldots\right)$ and $\left(h_{1}\left(D_{1}\right), \ldots, h_{n}\left(D_{n}\right), \ldots\right)$ be two sequences of polynomials such that $\left|D_{i+1}\right|>\mid$ $h_{i}\left(D_{i}\right)+1 \mid$ Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ and $\left(B_{n}\right)_{n \in \mathbb{N}}$ be given by (21) and (22), Then $\frac{A_{n}}{B_{n}}$ converge to some $\omega \in \mathscr{J}, D_{n}(\omega)=D_{n}$ and $h_{j}\left(D_{j}\right)=h_{j}\left(D_{j}(\omega)\right.$ for all $n \geq 1$.

Proof. Let $k \in \mathbb{N}$, we have

$$
\begin{aligned}
\left|\frac{A_{n+k}}{B_{n+k}}-\frac{A_{n}}{B_{n}}\right| & =\left|\sum_{i=n}^{n+k-1}\left(\frac{A_{i}}{B_{i}}-\frac{A_{i-1}}{B_{i-1}}\right)\right| \\
& \leq \max _{n \leq i \leq n+k-1}\left|\frac{A_{i}}{B_{i}}-\frac{A_{i-1}}{B_{i-1}}\right| \\
& <\max _{n \leq i \leq n+k-1} \frac{1}{\left|B_{i}\right|}=\frac{1}{\left|B_{n}\right|} \longrightarrow 0
\end{aligned}
$$

then $\frac{A_{n}}{B_{n}}$ is a cauchy sequence which implies that it converge. Let $\omega \in F_{q}\left(\left(X^{-1}\right)\right)$ be its limit.
Let us prove that $\omega \in \mathscr{J}, D_{n}(\omega)=D_{n}$ and $h_{n}\left(D_{n}(\omega)\right)=h_{n}\left(D_{n}\right)$. Since $\exists n_{0} \in N$ such that $\forall n \geq n_{0}$ we have $\left|\omega-\frac{A_{n}}{B_{n}}\right|<1$ then we obtain that

$$
|\omega| \leq \max \left(\left|\omega-\frac{A_{n}}{B_{n}}\right|,\left|\frac{A_{n}}{B_{n}}\right|\right)<1 .
$$

For the third part, let

$$
C_{n}=\left[0 ;\binom{B_{1}}{A_{1}}, \ldots,\binom{B_{n}}{A_{n}}\right]=\frac{1}{B_{1}+A_{1}\left[0 ;\binom{B_{2}}{A_{2}}, \ldots,\binom{B_{n}}{A_{n}}\right]}
$$

$=\frac{1}{B_{1}+A_{1} \widetilde{C}_{n}}$. It follows from the first part of the proof that there exists $\widetilde{\omega} \in \mathscr{J}$ such that $\lim _{n \rightarrow+\infty} \widetilde{C}_{n}=\widetilde{\omega}$. We find that $\omega=\frac{1}{B_{1}+A_{1} \widetilde{\omega}}$ which implies that $\widetilde{\omega}=\frac{\frac{1}{\omega}-B_{1}}{A_{1}} \in \mathscr{J}$. Since D_{1} and $h_{1}\left(D_{1}\right)$ are unique for which $\frac{\frac{1}{\omega}-D_{1}}{h_{1}\left(D_{1}\right)} \in \mathscr{J}$, then $D_{1}=B_{1}$ et $A_{1}=h_{1}\left(D_{1}\right)$. By induction we find the result.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] Amara Chandoul, On periodic Jacobi-Perron algorithm over the field of formal power series. New Trends in Mathematical Science, v. 1, p. 145-152, 2018.
[2] Amara Chandoul, Hela Ben Amar and Mohamed Mkaouar, On the continued fraction expansion of fixed period in finite fields. (CMB) Canadian mathematical bulletin, 58(4):1-10, 2015. Doi: 10.4153/CMB-2015-055-9.
[3] Amara Chandoul, Hela Ben Amar and Mohamed Mkaouar, On periodic P-continued fraction having period length one. Bull. Korean Math. Soc. 50, No. 5, 1623-1630, 2013.
[4] Amara Chandoul, On continued fractions over the field of formal power series. Int. J. Contemp. Math. Sci. 6, No. 25-28, 1351-1356, 2011.
[5] Amara Chandoul, Simple proof of convergenvce of the Brun algorithm over the field of formal power series. (IJA) International Journal of Algebra, Vol. 5, no. 1, 25-30, 2011.
[6] Amara Chandoul and Hela Ben Amar, Convergenvce of the Brun algorithm over the field of formal power series. (JNT) Journal of Number Theory, 129, 621-631, 2009.
[7] L. Jacobsen, Convergence of limit k-periodic continued fractions $K\left(\frac{a_{n}}{b_{n}}\right)$, and of subsequences of their tails Proc. London Math. Soc. (3), 51 (1985), 563-576.
[8] Ai-Hua Fan, Bao-Wei Wang, Junn Wu, Arithmetic and metric properties of Oppenheim continued fraction, Journal of number theory 127 (2007), 64-82.
[9] W. J. Jones and W. J.Thron, Continued fractions, Analytic theory and applications, Encyclopedia of math 11 (Addison Wesley, Reading, Massachusetts, 1980).
[10] H. Waadeland, Tales about tails, Proc. Amer. Math. Soc, 90 (1984), 57-64.
[11] Amara Chandoul, Fractions continues multidimensionnelles: fractions continues multidimensionelles, polynômes irréductibles et nombres de Pisot. Editions universitaires europeennes, 2012, ISBN : 3838180542, 9783838180540.

