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Abstract: In this study, we consider the conformable fractional défeial equations. Based on properties of the conformable
derivative, we obtain some oscillation results for the ¢igua Finally, we present some examples to illustrate thenmesults.
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1 Introduction and Preliminaries

Fractional differential equations are more general forithefclassical differential equations. There are many aafitins

in the applied science such as image processingl&f [n the last few decades, a lot of attention was paid to figdire
more suitable definitions of fractional derivatives. Sorfithem: Riemann- Liouville, Caputo, Riesz, Riesz-Caputeyl/
Grunwald- Letnikov, Hadamard, and Chen derivatives, et@014, R. Khalil et al. 3] have suggested a new fractional
derivative, which is called the conformable derivativesBa on the conformable derivative, many authors invegtijat
differential equationsd, 4,5,6,7]. Very recently in B], the authors considered linear conformable fractionti¢intial
equation and then they obtained some oscillation resultfadt, oscillation properties of solutions of the fractd(or
integer) order differential(or difference) equations basn the subject of intensive investigati@rd,10,11,12,13,14, 15,
16,17,18,19,20,21,22]. We are strongly motivated byg] and literature and are concerned with the oscillatory bigina
of solutions of the following conformable fractional difemtial equation:

YU )+ p(t) Y () +q(t) f(y(t) =0 1)

wherep € C([tg,»),R), g € C([tg,»),[0,»)), 0< a <1 andf € C(R,R) with uf (u) > 0 for u# 0 and there exists a
constank > 0 such thatf (u) /u >k for all u## 0. As usual, a solutiop(t) of (1) is called oscillatory if the set of its zeros
unbounded from above; otherwise, it is said to be nonosailfaEquation {) is called oscillatory if all its solutions are
oscillatory.

Definition 1. [8] The left conformable fractional derivative starting frogrof a function of f: [tp, ) — R of ordera with
0 < a < 1is defined by

(T f) (1) = £ (1)
f0+£ﬂ—mfﬂ)—f@

= lim ,
£—0 &
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whena = 1, this derivative of t) coincides with f(t). If (Ttg’ f) (t) exists onto,t1) then

(T&f) (to) = lim (@ (t).

+
t-tg

Definition 2. [8] Leta € (0,1]. Then the left conformable fractional integral of orderstarting at b is defined by
1 1 1
(185) (1) = / (s—to)* f(s)ds= [ f(5)dls
to fo

If the conformable fractional integral of a given functiorexists, we call that f isr— integrable.

Lemma 1.[4] If a € (0,1] and f € C([tp,»),R), then for all t > tg, we have

g Ty (1) (1) = (1) = (to)

and
T lig (1) (1) = T (1).

Lemma 2][3]

(1) T (af +bg) = aTd (f) +bT (g) for all real constant ab.
(2) Tg (fg) = fTg (9) + 9T (f).

(3) T (tP) = ptP~7, for all p.

(4) Ty (f/9) = (tho () - 1T (@) /%

(5) T (c) =0, where c is a constant.

Lemma 3.[5] Let f,g:[to,t1] — R be two functions such that fg is differentiable. Then

t o]

199 (9= 1919095 [ als

to

In this paper, we introduce a class of functionisWe say that a functiom (t,s,|) belongs to the function clasé
denoted byd €V, if @ € C(E,R), whereE = {(t,s,1) : to <| < s<t < o} which satisfiesp (t,t,I) =0, @ (t,I,1) =0,
@ (t,s1) # 0 forl < s<t, and has the partial derivati® ®@/ds” on E such thatd? ®@/9s” is locally a— integrable
with respect tsin E and satisfies

0°@(t,sl)
T_(o(tasal)(p(tasal)' (2)
Next, we define the operator
t
A(gl,t) = /| % (t,s1)g(s)dlsfort > s>1 >ty andg € C([0,),R). (3)
It is easy to verify that linear operaté .;1,t) satisfies
A(g“’):l,t) = —2A(¢g;1,t) forge C?([0,),R). 4)

2 Main Results

In this section, we present some oscillation criteria feréquation 1).
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Theorem 1.1f p(t) < 0 on|tg, ) is such that

lim B/t (akq(s) — p?(5)) dd's| = (5)

t—oo T

where T> tg. Then any solution oflj is oscillatory.

Proof. On the contrary, suppose that Equatidjpf{as a nonoscillatory solution(t) . Then without loss of generality, we
may assume that(t) is a eventually positive solution of). Define the following Riccati function fdr> ty

(o) (t
o)=Y O ©6)
Using the properties of conformable fractional derivative have

y2) ()y(0) — (¥ (1))

R
2
Py mran fm) | (Y0 0)
y(®) Y2 (1)

Hence for every, T witht > T > tg, we have
602 0(T)+ [ (@9~ p(5)w(9) +ka(s)) s
t 2 t
:ou(T)+/T (w(s)—?) dt‘;s+%/T (4kq(s)—p2(s)) oS

From G), we getfot >t; > T
dgs (7)

Define

1o 0= (00 - P0) > w2 > e @
sincep(t) < 0. Thus,
<o
and we obtain t L4
SR RO T HAm ©

Lettingt — o in (9), we conclude that
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This is a contradiction. Then the proof is complete.

Theorem 2.1f p (t) < 0on|tg,) and there exists a positive functiored=? [tp, «0) such that

ot
tlﬂ;ro]o b @d«[os—m (10)

and

—2p(9) g<a> (s) —4kg(s)q(s) dt‘;s+ g(";(t) = (11)

for every T> tg, then any solution ofl)) is oscillatory.

Proof.On the contrary, suppose that Equatiéhpifas a nonoscillatory solution(t) . Then without loss of generality, we
may assume that(t) is a eventually positive solution of). Define the following Riccati function fdr> ty

_ Y (1)
Then we get
2
(@) ye @)y (t) — (Y@ (t)
@l 1) =g 0 L - a0 yz(t)( )
2
gy ()
=0 “U0Y e e
2
g9 ¥ ) () (00)
=% 00+l catan — 5 o) o
1 a
> o5 (7 000 -gpOen) +e? 1) +ka®a)
Now for [to, ), defining
H() = wt)+ 58 (1), (13

we have

@ )
@ 1 Cpg®)? (pMgm))’ (6“0)"  pwgme®
02 g | (10 ) -(*2Y) 2

that is

2
a 1 PN\ pPP(Hgl) (g(a)(t)) p(t)g®@ (1)
w()(t)zﬁ(H(t)— ) -

~—
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For everyt > T > tg, we get

2
a2 oM+ [ - (M-I qes (14)

6 (9))°
_% t (DZ(S)Q(SH (#°9) ~2p(s)g'™ (9) 4kg(S)q(S)) d s

g(s)

Using (13) in (14),

2
H(t)zw(T)+/TtF18> (H(s)_%) ds

2
9@ (s)
- %/Tt (p2 ()9(9) + ( i ) 2p(s)g'(s) 4k9(S)Q(S)) dgs
N g("; ©

From (11), we have fot >t; > T

t 2
Mo > [ (Hi- PO g
Now define a functior® by

ot P99\
Q- [ (W9 - P22 ) azs

Usingp(t) <0, we getH (t) > Q(t) > 0. Hence,

@y L 3 p(t)g(t)>2
Q0= o (M0 - 24
1 POIM))?
=g (o025
1
> @Q (t)
Thatis @ 1)
1 QU (t
— 15
o = @0 (o)
From (15), we have
/t ids< t 1 < 1
1.9(5) QM) Q) QM)
This is a contradiction. So the proof is complete.
Theorem 3.If there exists aP € Y such that the inequality
. P\2.
Ilrslswupox (kq (qof E) ,tl,t) >0 (16)

holds, whergp = @(t,s,1) and A are defined by2J and @), respectively. Then Equatiofi)(is oscillatory.
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Proof. On the contrary, suppose that Equatiéjpifas a nonoscillatory solution(t) . Then without loss of generality, we
may assume that(t) is a eventually positive solution ot). Define the following Riccati function far> tg

_ YU
w(t) = O a7)
Then we get
Yy - (YO )
W?(0) = V)
2

_ —POY M —a® fFy®) (o) (18)

a y(t) y2 (1)

< —pt)w(t) —ka(t) — w?(t)
Thatis

ka(t) < —w'@ () - p(t) w(t) — ?(t) (19)

Applying A(.;t1,t) (t > t3 > tp) to (19), we get
Akgty,t) < —A <m<">;tl,t) — A(pw;ty,t) — A(w?ty,t).

Then we have
A(katy,t) < 2A(@w;ty,t) — A(pw;ty,t) — A(w?ty,t) .

and

A(kgity,t) < A(((O— 2)2_ (OJ— ((0— g))z;tl,t)

A((qog)z;tl,t).
A<kq (qof g)z;tl,t) <0

fort > t; > tp, which contradictsX6). Therefore, all solutions of Equatiofi)(are oscillatory. So the proof is complete.

IN

Hence

3 Applications

In this section, we give some example for the illustrate tlaénmesults.

Example 1.Consider the following fractional differential equation

y2a) %y(a) (t)+€y(t) =0, t>0. (20)
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with a = 0,7. The equationZ0) corresponds with1), p(t) = —1/t ; q(t) = € and f (t) = t. Then we havep(t) <0 ;
q(t) > 0 andf (t) /t = 1=k. Hence foreveryl >ty =1

lim E/Tt (4kq(s)p2(s))dt‘;s} = lim E/Tt (s— 1)1 <4e5é) ds}

Then every solution of the equatioRq) is oscillatory by Theorer.

Example 2.Consider the following equation

y(2a) _ tZyw) (t)+ (1+ t%) y(t)=0,t>0. (21)

with a = 1. Then we have (t) = —2/t ; q(t) = 1+ 2/t*and f (t) = t. Hence we get

t—o0 T t—o0 T

= lim [/Tt ((1+2/t2) —#) ds]

= 00,

lim [%/t (4ka(s) - pZ(S))dt‘SS} = Jim [%/t (s—1t (4(1+ 2/t?) (2/t)2)ds]

Then every solution of the equatiol] is oscillatory by Theoreri.

Remark.[8] The singularity of integral aty has no affection on the oscillation of conformable fractibdifferential
equations since oscillation is a qualitative property éinite. The results are still true if the lower bound of the any
integration is replaced by any other point larger than

RemarkAs in the example](], we have the equatior2{). One can see that our results are original complementidg an
generalizing on already existing results in the literanfriateger order equations.
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