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Abstract: This paper presents a new approach for the restoration and edge detection in ultrasound images corrupted with
Rayleigh-distributed multiplicative noise (speckle). We consider a semilinear PDE from which we derive the asymptotic expansion of
the associated Dirichlet energy functional. We give a theoretical expansion of the topological sensitivity approach to detect and
preserve the edge set in the ultrasound image during the restoration process. For the numerical solution, we design a fully-discrete
forward Euler-Galerkin stepping algorithm and we present some results which illustrate the efficiency of the proposed approach.
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1 Introduction

The restoration of images, such as active Radar, coherent Synthetic Aperture Radar (SAR), or medical images, is a
challenging task in the processing and the understanding of images. Various approaches using different frameworks were
proposed to deal with this kind of problem. These approaches differ by the mathematical tools used to model the problem
and the type of noise that contaminates the image (additive, multiplicative). Various types of PDEs (linear, quasilinear
or nonlinear) were suggested in the image restoration problem, especially, in the case of additive noise. However, the
multiplicative noise model has not yet been studied thoroughly using PDEs. As far as we know, the first effective approach
treating the case of Gaussian multiplicative noise, with known mean and variance was proposed by Rudin, Lions and Osher
(RLO) [26]. Over the years, several variational approaches have been proposed to the multiplicative noise, also called
“speckle”, removal problem such as the Aubert-Aujol model (AA) [3] for SAR images. They considered a minimization
problem which is derived from a maximum a posteriori (MAP) regularization approach under the assumption that the
noise follows a Gamma law with mean equals one. It is well known that ultrasound images are strongly corrupted by a
speckle noise [24]. For these images, the noise model reads

g = u+
√

uη , (1)

where g : Ω → R is the observed image, u : Ω → R is the original image and η : Ω → R is the multiplicative noise
which is a positive function and follows the Rayleigh distribution (see e.g., [20,21,24]), with Ω is an open subset in R2.

Conventional filtering techniques that operate on additive noises do not apply directly to the multiplicative noise. Many
authors have made contributions to improve speckle filtering techniques like the Kuan [10,22] and Frost [15,23] filters.
The major challenge when we deal with such images is how to choose and design a good model which can selectively
smooth a noisy image without losing significant features such as edges. In [21], the authors proposed a speckle denoising
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model based on (1) by solving the following minimization problem

min
{u>0, u∈BV (Ω)}

{
λTV (u)+

∫
Ω

(g−u)2

u
dx
}
, (2)

where BV (Ω) is the space of functions with bounded variation. The first term TV (u) :=
∫

Ω

|Du| dx is the total variation

regularization term. The second one is the data fitting term and the parameter λ is a positive weight, which represents the
trade-off between regularization and data fitting terms.

In order to preserve the edges of the image the Total Variation (TV) shows a low level of smoothing which has
stair-casing effect in the homogeneous parts of the image. Motivated by the denoising model (2), to remove the speckle
noise from an ultrasonic images, we here propose to study the following variational denoising model

min
{u>0, u∈H1(Ω)}

{
λ

2

∫
Ω

|∇u|2 dx+
∫

Ω

(g−u)2

u
dx
}
, (3)

where λ is a positive constant.

To increase the effect of smoothness in the homogeneous parts and to improve the quality of the restored image, we here
use the square of the H1-seminorm instead of the total variation. The main disadvantage of the H1-seminorm is the high
level of smoothing but we can control it by the topological gradient method which is the main idea to identify the edges
and preserve them during the restoration process.

This paper is organized as follows. In Section 2, we present the mathematical formulation of the image restoration
problem for ultrasound images, for which we show that the proposed nonlinear problem admits a unique solution in
H1(Ω) and satisfies a min/max principal. Then, Section 3 is devoted to computing the topological gradient by the
generalized adjoint method in the case of a perforated domain by a small ellipse, which includes the perforated domain
by a ball or a crack as special cases. We report the results of many numerical experiments in Section 4, in order to
discuss the behavior and the efficiency of our algorithm and to validate the theoretical results. Finally, in Section 5 some
concluding remarks are given.

2 Notations and problem formulation

Let Ω be a bounded Lipschitz open set in R2. The minimizer u of the minimization problem (3) is assumed be positive.
For convenience, in the sequel we will denote by

Φ(u) :=
(g−u)2

u
, J (u) :=

1
2

∫
Ω

|∇u|2 dx, E(u) := λJ (u)+
∫

Ω

Φ(u) dx. (4)

Then, equation (3) can be written as

min
u>0, u∈H1(Ω)

{
E(u) := λJ (u)+

∫
Ω

Φ(u) dx
}
. (5)

The well-posedness of the minimization problem (5) is established in the following theorem.

Theorem 1. Let g > 0 be in L2(Ω) with inf
Ω

g > 0, then the problem (5) has a unique minimizer u in H1(Ω) satisfying

inf
Ω

g≤ u≤ sup
Ω

g.
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This result is proved using classical arguments such as compactness, semicontinuity and the convexity of the energy
functional E(·). For background materials we refer the reader to e.g., [3,12,20].

The Euler-Lagrange equation associated with the minimization problem (5) yields the boundary-value problem−div(λ∇u)+
(

u2−g2

u2

)
= 0, in Ω ,

∂nu = 0, on Γ ,
(6)

where ∂n denotes the normal derivative and n is the outward unit normal to Γ = ∂Ω .

We first write this problem in a weak, or variational, form: we multiply the elliptic equation by a smooth function
v ∈ H1(Ω), integrate over Ω , and apply Green’s formula on the first left-hand side term, to obtain{

Find u ∈ H1(Ω) such that,

〈F (u),v〉= 0, ∀v ∈ H1(Ω),
(7)

where

〈F (u),v〉= λ

∫
Ω

∇u ·∇v dx+
∫

Ω

(
u2− f 2

u2

)
v dx.

Here, the brackets 〈·, ·〉 denote the duality product between H−1(Ω) and H1(Ω). In the sequel, for brevity we write

F v(u) := 〈F (u),v〉 and DuΦ(u) =
u2−g2

u2 the first derivative of Φ evaluated at u.

3 The topological gradient approach

3.1 Asymptotic expansion

The topological gradient method is a very well established method used in optimal design problem, see e.g., [1,2,8,16,
18]. In optimal design problems, one is usually interested in finding the optimal shape and its complement. In the context
of image processing, the goal is to split the image domain into an edge set and its complement.

To present the basic idea of the topological gradient method, let x0 be a point in Ω and ω a smooth open bounded subset
in R2 containing the origin. For a small parameter ρ > 0, let Ωρ be the perturbed domain obtained by making a
perforation ωρ = x0 +ρω around the point x0, i.e., Ωρ = Ω \ωρ . Let Jρ(uρ) where uρ is a solution of a given PDE on
the perturbed domain Ωρ and Jρ(·) is a cost function. Let J0(u0) where u0 is the solution of the given PDE on the
initial domain Ω . The topological asymptotic expansion of Jρ(uρ) when ρ goes to zero is the following

Jρ(uρ)−J0(u0) = f (ρ)G(x0)+o( f (ρ)).

In this expansion, f (ρ) denotes a positive function going to zero with ρ (in general, this function depends on the
dimension of the space) and G(x0) is called the topological gradient or topological derivative at x0. The topological
gradient is usually simple to compute and is obtained using the solution of direct and adjoint problems defined on the
initial domain. To minimize the criterion j, one has to create small holes at some points where the topological gradient G
is negative. It will be possible to build fast algorithms using this gradient-type information.

Specifically, if Ω is an image domain in R2, let Ω e
ρ = Ω \Eρ be the perturbed domain of Ω obtained by removing an

ellipse Eρ of size ρ centered at x0 where Eρ = x0 +ρE and E is the ellipse with boundary defined by

∂E = {X(θ) = (acos(θ),bsin(θ)),0≤ θ ≤ 2π}, (8)
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a, b > 0 are the lengths of the semi-axes of E.

In order to preserve the edges of an image and smooth it elsewhere, we compute the asymptotic expansion of the
following cost function

Jρ(uρ) =
1
2

∫
Ω e

ρ

|∇uρ |2 dx, (9)

where uρ is a solution of the minimization problem (5). Next, we give links to a cracked domain by a flat crack and a
perforated domain by a unit ball.

The corresponding perturbed problem associated to (6) is given by
−div(λ∇uρ)+

(
u2

ρ−g2

u2
ρ

)
= 0, in Ω e

ρ ,

∂nuρ = 0, on Γ ,

∂nuρ = 0, on ∂Eρ .

(10)

We note that ∂Ω e
ρ = Γ ∪∂Eρ .

From Green’s formula, it follows that uρ satisfies{
Find uρ ∈ H1(Ω e

ρ) such that,

F v
ρ(uρ) = 0, ∀v ∈ H1(Ω e

ρ),
(11)

where
F v

ρ(uρ) =
∫

Ω e
ρ

λ∇uρ ·∇v dx+
∫

Ω e
ρ

DuΦ(uρ)v dx.

Our goal is to study the asymptotic behavior of the variation Jρ(uρ)−J0(u0) when ρ goes to zero, in order to obtain
the topological gradient Ge of the proposed problem (10).

3.2 Expression of the topological gradient

In [1,17] the authors insert a small ball and use the Laplace operator with Dirichlet boundary conditions for some
semilinear PDEs. We refer the reader to the works [7,13] that study the topological gradient method for semilinear
problems with Neumann boundary conditions leading to images processing and cardiac electrophysiology problems.

Let u0 and uρ be the solutions of problems (6) and (10), respectively. For simplicity, and without loss of generality, in our
investigation we focus on the case of an ellipse Eρ = ρE, centered at the origin 0 ∈ Eρ . In order to prove the main result,
we need the following lemmas.

Lemma 1. We have the following equality

Jρ(uρ)−J0(u0) = Lρ(uρ −u0)+ρ
2
δJ+(ρ2), (12)

where

Lρ(uρ −u0) =−
∫

Ω e
ρ

DuΦ(u0)(uρ −u0) dx−
∫

Ω e
ρ

D2
uΦ(u0)(uρ −u0)u0 dx,

δJ = πab
(

u2
0(0)−g2(0)

u2
0(0)

)
u0(0). (13)
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Proof. Let us write the functional J0 (resp. Jρ ) at u0 (resp. uρ ), with the help of the variational formulation (7) (resp.
variational formulation (11)) as follows

J0(u0) =−
∫

Ω

DuΦ(u0)u0 dx, Jρ(uρ) =−
∫

Ω e
ρ

DuΦ(uρ)uρ dx.

This implies that

Jρ(uρ)−J0(u0) =
∫

Ω e
ρ

DuΦ(u0)u0 dx−
∫

Ω e
ρ

DuΦ(uρ)uρ dx+
∫

Eρ

DuΦ(u0)u0 dx

=−
∫

Ω e
ρ

DuΦ(u0)(uρ −u0) dx−
∫

Ω e
ρ

(DuΦ(uρ)−DuΦ(u0))u0 dx

+
∫

Eρ

DuΦ(u0)u0 dx−
∫

Ω e
ρ

(DuΦ(uρ)−DuΦ(u0))(uρ −u0) dx.

On the other hand, since Φ(u) is C3 and using Taylor’s expansion we have

(DuΦ(uρ)−DuΦ(u0))u0 = D2
uΦ(u0)(uρ −u0)u0 +

1
2

D3
uΦ(ũ

ζ 1
ρ
)(uρ −u0)

2u0,

and
(DuΦ(uρ)−DuΦ(u0))(uρ −u0)u0 = D2

uΦ(ũ
ζ 2

ρ
)(uρ −u0)

2u0,

where
ũ

ζ i
ρ
= θiu0 +(1−θi)uρ , 0≤ θi ≤ 1, for i = 1,2.

From which we deduce the variation of the cost function

Jρ(uρ)−J0(u0) = Lρ(uρ −u0)+ j1(ρ)+E1(ρ), (14)

where

Lρ(uρ −u0) =−
∫

Ω e
ρ

DuΦ(u0)(uρ −u0) dx−
∫

Ω e
ρ

D2
uΦ(u0)(uρ −u0)u0 dx,

j1(ρ) =
∫

Eρ

DuΦ(u0(x))u0(x) dx, (15)

E1(ρ) =−
1
2

∫
Ω e

ρ

[
D3

uΦ(ũ
ζ 1

ρ
)(uρ −u0)

2u0 +D2
uΦ(ũ

ζ 2
ρ
)(uρ −u0)

2u0

]
dx. (16)

By using the change of variables x = ρy and applying Taylor’s expansion in (15), we get j1(ρ) = ρ2δJ+o(ρ2), where

δJ = πabDuΦ(u0(0))u0(0).

The use of Lemma A.3 in (16) yields E1(ρ) = o(ρ2), which implies the announced result.

According to Taylor’s expansion of F
vρ

ρ , we have

F
vρ

ρ (uρ)−F
vρ

ρ (u0) = DuF
vρ

ρ (u0)(uρ −u0)+
1
2

D2
uF

vρ

ρ (ũζρ
)(uρ −u0)

2

= DuF
vρ

ρ (u0)(uρ −u0)+E2(ρ),
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where

DuF
vρ

ρ (u0)ϕ = λ

∫
Ω e

ρ

∇ϕ∇vρ dx+
∫

Ω e
ρ

D2
uΦ(u0)vρ ϕ dx, ∀ϕ ∈ H1(Ω e

ρ),

E2(ρ) =
1
2

D2
uF

vρ

ρ (ũζρ
)(uρ −u0)

2 =
1
2

∫
Ω e

ρ

D3
uΦ(ũζρ

)(uρ −u0)
2vρ dx, (17)

For ϕ,φ ∈ H1(Ωρ), we introduce the Lagrangian associated to problem (11)

L (ϕ,φ) := Jρ(ϕ)+F φ

ρ (ϕ).

The adjoint state equation is obtained by differentiating L with respect to ϕ evaluated at ϕ = u0 and φ = vρ ,

DϕL (ϕ,φ) = 0, ∀ ϕ ∈ H1(Ω),

or, equivalently,
DuF

vρ

ρ (u0)(ϕ) =−Lρ(ϕ), ∀ ϕ ∈ H1(Ω). (18)

By using Green’s formula, we deduce the corresponding strong form of (18)
−div(λ∇vρ)+D2

uΦ(u0)vρ = DuΦ(u0)+D2
uΦ(u0)u0, in Ω e

ρ ,

∂nvρ = 0, on Γ ,

∂nvρ = 0, on ∂Eρ .

(19)

Lemma 2. Let vρ be the solution of the adjoint equation (19) and v0 be the solution of (19) when ρ = 0, then we have

F
vρ

ρ (u0)−F
vρ

ρ (uρ) =−
∫

∂Eρ

∂u0

∂n
v0 dσ(x)−

∫
∂Eρ

∂u0

∂n
wρ dσ(x), (20)

where wρ = vρ − v0.

Proof. The proof of this lemma is fairly standard: it is enough to apply (11), use the Green’s formula and split vρ as
vρ = wρ + v0.

Let us now introduce the auxiliary exterior-domain problem
−∆φ(x) = 0, x ∈ R2 \E,

∇φ(x) ·n = Λ , x ∈ ∂E,

lim
|x|→∞

|φ(x)|= 0,
(21)

where Λ ∈ H−1/2(∂E).

Theorem 2. [9,11,25]

(1) The solution φ of the exterior-domain problem (21) can be written with the help of the single-layer potential

φ(x) =
∫

∂E
ϒ (x− y)η(y) dσ(y),

where ϒ is the fundamental solution of the 2D Laplace operator, which is given by

ϒ (x− y) =
1

2π
ln
(
(x1− y1)

2 +(x2− y2)
2) .
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(2) There exists Ψ ∈ H
− 1

2
0 (∂E) solution of the boundary integral equation

Ψ(x)
2

+
∫

∂E
Ψ(y)∇ϒ (y− x) ·ny dσ(y) = Λ , ∀y ∈ ∂E. (22)

(3) The jump conditions across ∂E can be written as

∇φ ·n−∇lφ ·n =−Ψ , and φ − lφ = 0, on ∂E,

where lφ is the solution of the boundary-value problem{
−∆ lφ = 0, in E,

lφ = φ , on ∂E.
(23)

We recall that E is the ellipse with boundary defined by (8). Let y = X(θ) and x = X(ϕ) be two points on ∂E. Then,

∫
∂E

Ψ(y)∇ϒ (y− x) ·ny dσ(y) =
1

2π

∫
∂E

〈y− x,ny〉
|x− y|2

Ψ(y) dσ(y),

=
ab
4π

∫ 2π

0

Ψ(X(θ))

b2 cos2
(

θ+ϕ

2

)
+a2 sin2

(
θ+ϕ

2

) dθ .

Note that ∫ 2π

0

cos(2t)
b2 cos2(t)+a2 sin2(t)

dt = π
a−b

ab(a+b)
,

∫ 2π

0

sin(2t)
b2 cos2(t)+a2 sin2(t)

dt = 0.

Thus, if we take Ψ(X(θ)) = α cos(θ)+β sin(θ) and g =−∇v0(0) ·n, using (22), we obtain

α =−a+b
a

∂xv(0), β =−a+b
b

∂yv(0).

Hence, we have ∫
∂E

xΨ(x) dσ(x) =−(a+b)πD∇v0(0), (24)

where D = diag(b,a). The main result is stated in the following theorem.

Theorem 3. Let u0, v0 be of class C1 in the vicinity of the boundary of the ellipse, we have the following asymptotic
expansion

Jρ(uρ)−J0(u0) = ρ
2Ge(x0)+o(ρ2),

where

Ge(x0) =−π

(
ab
(

u2
0(x0)−g2(x0)

u2
0(x0)

)
(v0(x0)−u0(x0))+λ (a+b)∇u0(x0) ·P∇v0(x0)

)
, (25)

and

P =

[
bcos2 ϕ +asin2

ϕ (a−b)cosϕ sinϕ

(a−b)cosϕ sinϕ bsin2
ϕ +acos2 ϕ

]
,

for all ϕ ∈ [0,π].

Proof. For all wρ

∣∣
∂Eρ
∈ H

1
2 (∂Eρ), we introduce the following extension lwρ

ρ of wρ on Eρ which satisfies the
boundary-value problem (23).
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Applying Green’s formula twice on (20), from (12) and (18), we obtain

Jρ(uρ)−J0(u0) = ρ
2
δJ+ j2(ρ)+ j3(ρ)+

4

∑
i=2

Ei(ρ),

where

j2(ρ) =−
∫

Eρ

DuΦ(u0)v0 dx,

j3(ρ) =−
∫

∂Eρ

(u0−u0(0))(
∂v0

∂n
+

∂ lwρ

ρ

∂n
) dσ(x),

E3(ρ) = λ

∫
Eρ

(u0−u0(0))∆v0 dx, (26)

E4(ρ) =−
∫

Eρ

DuΦ(u0)l
wρ

ρ dx. (27)

To finish the proof of main result we need to prove the following lemma.

Lemma 3. For sufficiently small ρ ≥ 0, we have the following estimations

j2(ρ) =−ρ
2
πab

(
u2

0(0)−g2(0)
u2

0(0)

)
v0(0)+o(ρ2), (28)

j3(ρ) =−ρ
2
π(a+b)∇u0(x0) ·D∇v0(x0)+o(ρ2), (29)

where D = diag(b,a).

Proof. The first estimation follows directly by the change of variables x = ρy and Taylor’s expansion. For the second one,
we split the variation of the adjoint state wρ := vρ − v0 into

vρ − v0 = hρ + eρ ,

where hρ and eρ are the solutions of the following problems, respectively
−∆hρ = 0, in R2 \Eρ ,

hρ → 0, at ∞,

∇hρ =−∇v0(0) ·n, on ∂Eρ ,

(30)

and 
−div(λ∇eρ)+D2

uΦ(u0)vρ −D2
uΦ(u0)v0 = 0, in Ω e

ρ ,

∇eρ ·n =−∇hρ ·n, on Γ ,

∇eρ ·n = ∇v0(0) ·n−∇v0 ·n, on ∂Eρ .

(31)

c© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 4, 421-440 (2019) / www.ntmsci.com 429

Then, j3 becomes

j3(ρ) =−
∫

∂Eρ

(u0−u0(0))(∇v0 ·n+∇lhρ

ρ ·n) dσ(x)+E5(ρ),

=
∫

∂Eρ

(u0−u0(0))Ψ(
x
ρ
) dσ(x)+

6

∑
i=5

Ei(ρ),

= ρ

∫
∂E

(u0(ρx)−u0(0)+ρx∇u0(0)−ρx∇u0(0))Ψ(x) dσ(x)+
6

∑
i=5

Ei(ρ),

= ρ
2
∇u0(0)

∫
∂E

xΨ(x) dσ(x)+
7

∑
i=5

Ei(ρ),

where

E5(ρ) =−
∫

∂Eρ

(u0−u0(0))(∇lwρ

ρ ·n−∇lhρ

ρ ·n) dσ(x), (32)

E6(ρ) =−
∫

∂Eρ

(u0−u0(0))(∂nv0−∇v0(0) ·n) dσ(x), (33)

E7(ρ) = ρ

∫
∂E

Ψ(x)(u0(ρx)−u0(0)−∇u0(0)ρx) dσ(x). (34)

Using (24) and Lemma A.3, then (29) holds.

We now proceed to complete the proof of Theorem 3.
This implies

More generally, if E ′ is an ellipse of the form (8), there exists a
rotation

Rϕ =

[
cosϕ −sinϕ

sinϕ cosϕ

]
,

such that E = Rϕ(E ′). Therefore, we get

P = RT
ϕDRϕ .

j3(ρ) =−ρ
2
π(a+b)∇u0(x0) ·P∇v0(x0)+o(ρ2). (35)

Let δJ, j2 and j3 given by (13), (28), (35), respectively, then we obtain the topological gradient for the perforated domain
by an ellipse centered at x0

Ge(x0) =−π

(
ab
(

u2
0(x0)−g2(x0)

u2
0(x0)

)
(v0(x0)−u0(x0))+λ (a+b)∇u0(x0) ·P∇v0(x0)

)
.

Remark. In the proof of Lemma 3, we made a change of variable into the ellipse E, in this case we pose hρ(x) = ρH
(

x
ρ

)
,

where H is the solution of the exterior-domain problem (21) defined in R2 \E with Λ =−∇v0(0) ·n.

3.3 Perforation by ellipses connection’s to perforation by balls and cracks

The results of this article generalize results obtained for the case of topological gradient for domains perforated by balls
or cracks. To recover results of a perforated domain by a ball centered at x0 it suffices to take a = b = 1 (see [14, Chapter
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2]). So the expression of the topological gradient (3.2) in the case of a perforated domain by a ball reduces to

Gb(x0) =−π

((
u2

0(x0)−g2(x0)

u2
0(x0)

)
(v0(x0)−u0(x0))+2λ∇u0(x0) ·∇u0(x0)

)
. (36)

Similarly, when we take a = 1 and tend b to zero, the expression of the topological gradient (3.2) becomes the expression
of the topological gradient for a domain with a crack at the point x0, with unit outward normal vector nc, given by

Gc(x0,nc) =−πλ∇u0(x0) ·nc∇v0(x0)nc. (37)

4 Numerical experiments

In this section, we discuss a fully discrete forward Euler-Galerkin method for our semilinear equation (6). As is well
known, a time marching method is one of many convenient ways to solve the resulting Euler-Lagrange equations like (6).
The main idea is to introduce an artificial time parameter t and compute the steady-state solution of the time-dependent
semilinear partial differential equation as the follows

∂u0

∂ t
=−div(λ∇u0)+DuΦ(u0), on Ω × [0,T ],

∂u0

∂n
= 0, in ∂Ω × [0,T ],

u0(.,0) = g, on Ω ,

(38)

where, T > 0 denotes the final time of the evolutionary process. It is well known [12,19,20] that, for g ∈ L2(Ω) such that
infΩ g > 0 there exists a unique solution u ∈ L2([0,T ];H1(Ω)) to the semilinear parabolic problem (38) satisfying

(ut ,φ) = (λ∇u,∇φ)+(DuΦ(u),φ), ∀ φ ∈ H1(Ω), (39)

where (·, ·) denotes the L2(Ω)-inner product. In order to obtain a numerical approximation of problem (6), we will
discretize the spatial and temporal variables in the weak formulation of the evolution (39) and use a finite-element
method in space and a fully implicit finite-difference scheme in time.

Let Th = {T}T∈Th denote a partition of Ω into disjoint triangles T such that no vertex of any triangle lies in the interior
or on a side of another triangle and such that the union of the triangles determines a polygonal domain Ωh ⊂ Ω with
boundary vertices on ∂Ω . The maximum value of the diameter of all triangles T ∈ Th is denoted by h. Based on the
mesh Th, we define the finite-element space Xh ⊂ H1(Ω) such that

Xh = {φ ∈C(Ω); φ |T ∈ P1(T ) ∀T ∈Th},

where P1 is the standard linear space of polynomials of degree less or equal to 1.

Based on the weak formulation (39), we formulate the spatially semi-discrete problem, which for t ≥ 0 consists in
finding uh(·, t) ∈Vh = H1(0,T ;Xh), such that

(uh,t ,φh) = (λ∇uh,∇φh)+(DuΦ(uh),φh), ∀ φh ∈ Xh, t > 0, with uh(0) = gh, (40)

where gh is some approximation of g in Xh. Moreover, we consider a partition of the time interval [0,T ] into M equally-
spaced sub-intervals In = [tn−1, tn], n = 1, . . . ,M, defined by the following points

0 = t0 < t1 < · · ·< tM−1 < tM = T,
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with tn = n∆ t and ∆ t = T/M is the time-step. We then define the fully-discrete solution to be the piecewise constant in
time function, uh(x, t), given by

uh(x, t) =Un(x), ∀t ∈ In, 1≤ n≤M.

The fully-discrete finite-element approximation to the problem (39) is defined as follows: For n = 0,1, . . . ,M, find Un ∈Vh

such that (
∂ tUn,φh

)
=
(
λ∇Un−1,∇φh

)
+
(
DuΦ(Un−1),φh

)
, ∀ φh ∈ Xh, (41)

where ∂ tUn = (Un−Un−1)/∆ t is an approximation of ∂tu at t = tn. Furthermore, for each n = 1, . . . ,M, there exists a
unique solution to (41). The proof is similar to that presented in [29,31].

Remark. The approximation of the adjoint problem (19), which is a linear problem, immediately leads to the solution of a
linear algebraic system, for which a well-posedness is guaranteed via the Lax–Milgram lemma.

4.1 Algorithm

Our algorithm consists in inserting small cracks in regions where the topological gradient is smaller than a given
threshold α < 0 and which can be seen as edges of the image. In addition, we assume that the edges of the images can be
considered as cracks [4,6,18] which justifies the use of the topological gradient (37).

Let us now make precise the structure of the topological gradient. We write Gc as Gc(x0,nc) = 〈M(x)nc,nc〉E , where
〈·, ·〉E is the Euclidean inner product and M(x) is the 2×2 symmetric matrix defined by [4,6,18]

M(x) =−πλ

2
(
∇u0(x)∇v0(x)T +∇v0(x)∇u0(x)T ) ,

where u0 and v0 are the solutions of the direct and adjoint state, respectively.

Remark. The direct state and the adjoint state are computed in the initial domain without cracks. For a given x, Gc(x0,nc)

takes its minimal value when nc is the eigenvector associated to the smallest eigenvalue emin of M. This value will be
considered as the topological gradient associated to the optimal orientation of the crack.

The steps of the algorithm are the following:

Algorithm 1 RESTORATION ALGORITHM

1.Initialize: λ = λ0.
2.Compute u0 and v0 the solutions of the equations (6) and (19) with ρ = 0, respectively.
3.Compute the topological gradient Gc(x0,nc) for each point x0 ∈Ω .
4.Take

λ =

{
λ1 if x0 ∈ {x ∈Ω such that Gc(x0,nc)< α < 0},
λ0 otherwise (λ1� λ0).

5.Compute u0 with the new value of λ .

4.2 Results

In this work, all simulations were implemented in Matlab 8.5 (R2015a) running on a Desktop with Intel core i3 processor,
CPU at 2.4 GHz and 4GB RAM memory. In the numerical experiments, we considered gray-value images and the quality
of the restored image is measured by the Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR) and the

c© 2019 BISKA Bilisim Technology

www.ntmsci.com


432 H. Houichet, M. Moakher and B. Rjaibi: Topological gradient for noise removal and edge detection

Structural Similarity Index Measurement (SSIM) [30]. For example, the latter allows to estimate the quality of an image,
I, with respect to a reference image, I0, and is defined by the following expression

SSIM =
(2µI µI0 + c1)(2σI1I0 + c2)

(µ2
I +µ2

I0
+ c1)(σ2

I +σ2
I0
+ c2)

,

where µ , σ2, σ are the mean, the variance, the covariance, respectively, and c1 and c2 are two positive parameters.

The performance of the proposed approach is illustrated for multiplicative speckle noise removal and edges detection.
We compare our approach between the classical nonlinear filters like the Frost filter [15], the Kuan filter [22], the TV
model (2) and the Laplace model, i.e., with the model (5) without using the topological gradient in order to see its
importance in image denoising problem. Figure 1 shows the results obtained by the different models for a synthetic
image of size 100×100 pixels which is contaminated by a speckle noise of variance σ2 = 0.02. We show that the results
obtained by PDE (see Figures 1(d), 1(e) and 1(f)) are better than the result obtained by the classical filter (see Figures
1(b) and 1(c)). We see from Figures 1(b) and 1(b) that the image is still noisy. From Figure 1(c), we can see that the
Laplace model admits a strong smoothing rate and the image is blurred. The result in Figure 1(f) is very close to the
original one and we can see that our method gives a good result compared with the other models. The main difference
between the noisy image and restored ones is compared quantitatively in Table 1 by using the SNR and SSIM indicators.

Figure 1(a) Figure 1(b) Figure 1(c) Figure 1(d) Figure 1(e) Figure 1(f)
PSNR (dB) 21.18 27.46 29.05 31.22 32.53 35.37
SNR (dB) 17.03 23.19 24.78 25.02 28.25 31.14
SSIM 0.31 0.79 0.81 0.88 0.91 0.95

Table 1: The main difference between the noisy image and restored ones which is compared quantitatively by using the
SNR and SSIM indicators.

In order to test the effectiveness and the impact of the topological gradient in the restoration process, we zoom the result in
Figure 1, we see that the image is blurred (see Figure 2) which is due to the strong level of smoothing of Laplace operator
and the edges are not preserved. However, from the TV model we can see few oscillations in the homogenizes parts of the
image. From our method we can see that the edges are well identified.

In Figure 3, we make a numerical comparison with the three models. We show the reconstruction error between the
restored image and the original one. We can see that the distribution of the error is mainly concentrated near the main
edges of the image.

In Figure 4, we display the noisy images which are used as initial condition in (7) and obtained by adding a speckle noise
with different values of variance σ2 ∈ {0.04,0.09,0.3,0.6,0.9} to the original image. In the second row of Figure 4, we
give the main edges of the image. We show that the length of contours is different from image to another. In the first test
the edges are very tiny however when the noise level increases, the length increases. Third row of Figure 4 shows the
restored image using our method which is visually excellent. The quality of restored images are compared quantitatively
in Figure 5 by the SSIM, PSNR and SNR indicators. In this figure, we display images which represent the main edges of
images and the results show the efficiency of the proposed approach as an edges detection method which indicate that the
performance of our approach is good, even for a high level of noise.

Figure 5 shows the evolution of SNR, PSNR and SSIM of the restored images as functions of the variance σ2. We can see
that when we increase the variance σ2 of noise, the SNR and PSNR are monotonically decreasing, but, the SSIM values
are still higher than 0.9.
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 1: From left to right and top to bottom: (a) The noisy image (PSNR= 21.18dB, SSIM= 0.31), (b) Frost filter (PSNR=
27.46dB, SSIM= 0.79), (c) Kuan filter PSNR= 29.05dB, SSIM= 0.81), (d) Laplace model (PSNR= 31.22dB, SSIM=
0.88), (e) TV model (PSNR= 32.53dB, SSIM= 0.91), (f) our approach (PSNR= 35.37dB, SSIM= 0.95) and (g) the
original image.

c© 2019 BISKA Bilisim Technology

www.ntmsci.com


434 H. Houichet, M. Moakher and B. Rjaibi: Topological gradient for noise removal and edge detection

Fig. 2: From left to right: Zoom of the Laplace model, TV model and our approach.

Fig. 3: From left to righ: Zoom of the reconstruction error between the restored image by the Laplace model, TV model
and our approach compared with the reference image, respectively.

Figures 6-9 show the efficiency of the proposed method in real image denoising (SAR, medical, microscopic, etc). From
these experiments, we can see that the proposed model gives a satisfactory restoration in smooth parts of the images and
convincing identification of edges.

5 Conclusion

We have studied a new method based on the topological sensitivity approach to remove speckle noise in ultrasound images.
We have calculated the topological gradient for a perforated domain by ellipses, cracks and balls, respectively. The edges
are well preserved and the image is smoothed elsewhere during the restoration process. The obtained numerical results
encourage further analysis of the proposed technique. For instance, we can consider a similar approach for a higher-order
PDE in Ultrasound Computed Tomography [5,27,28].
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Fig. 4: From left to right and top to bottom: The noisy images of different level of noise (σ2 = 0.04, 0.09, 0.3, 0.6 and
0.9), the edges detected by the topological gradient and the restored images.
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Fig. 5: Evolution of the SNR, PSNR and SSIM of the restored image by our approach as a function of level of noise σ2.

(a) (b) (c)

Fig. 6: (a) Noisy image (SNR= 11.61dB, PSNR= 22.24dB, SSIM= 0.67), (b) Contour and (c) Restored image (SNR=
19.50dB, PSNR= 30.50dB, SSIM= 0.899) σ2 = 0.08.

(a) (b) (c)

Fig. 7: (a) Noisy image (SNR= 11.88dB, PSNR= 19.76dB, SSIM= 0.72), (b) Contour and (c) Restored image (SNR=
18.74dB, PSNR= 26.97dB, SSIM= 0.88) σ2 = 0.08.

Appendix A

Lemma A.1. Let H be the solution of (21), then, the following estimates are satisfied:

|H(x)| ≤ c
|x|

, ‖H(
x
ρ
)‖0,Ω e

ρ
≤ O(ρ

√
− logρ),

|∇H(x)| ≤ c
|x|2

and ‖∇H(
x
ρ
)‖0,Ω e

ρ
= O(ρ).
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(a) (b) (c)

Fig. 8: (a) Noisy image (SNR= 6.54dB, PSNR= 17.8dB, SSIM= 0.63), (b) Contour and (c) Restored image (SNR=
16.01dB, PSNR= 28.46dB, SSIM= 0.87) σ2 = 0.3.

(a) (b) (c) (d)

Fig. 9: (a) Original image, (b) Noisy image (SNR= 10.9dB, PSNR= 13.85dB, SSIM= 0.067), (c) Contour and (d)
Restored image (SNR= 26.21dB, PSNR= 29.66dB, SSIM= 0.90) σ2 = 0.1.

Lemma A.2. Let vρ and v0 the solution of (19) with ρ > 0 and ρ = 0 and eρ the solution of (31), then

‖vρ − v0‖0,Ω e
ρ
= O(ρ2

√
− log(ρ)), |vρ − v0|1,Ω e

ρ
= O(ρ), (A.1)

‖uρ −u0‖0,Ω e
ρ
= O(ρ2

√
− log(ρ)), |uρ −u0|1,Ω e

ρ
= O(ρ). (A.2)

Proof. We prove here only the first tow estimations (A.1), For the proof of the variation of the second estimations (A.2),
we use the same step. we recall that in previous section, we approximate vρ as vρ = v0 +ρH( x

ρ
)+ eρ , where eρ solves


−div(λ∇eρ)+D2

uΦ(u0)eρ =−D2
uΦ(u0)ρH( x

ρ
), in Ω e

ρ ,

∇eρ ·n =−∇H( x
ρ
) ·n, on Γ ,

∇eρ ·n = ∇v0(0) ·n−∇v0 ·n, on ∂Eρ .

We approximate again eρ as eρ = rρ + sρ , where rρ and sρ are the solutions of the following problems, respectively
∆rρ = 0, in Ω e

ρ ,

∇rρ ·n = 0, on Γ ,

∇rρ ·n = ∇v0(0) ·n−∇v0 ·n, on ∂Eρ ,
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and 
−div(λ∇sρ)+D2

uΦ(uζρ
)sρ =−D2

uΦ(uζρ
)
(

ρH
(

x
ρ

)
+ rρ

)
, in Ω e

ρ ,

∇sρ ·n =−∇H ·n, on Γ ,

∇sρ ·n = 0, on ∂Eρ .

Standard computations as [1] leads

‖rρ‖H1(Ω e
ρ )/R ≤ cρ

2, ‖sρ‖1,Ωρ
≤ O(ρ2

√
− log(ρ)).

Applying the Cauchy-Schwartz inequality and using the above estimations, we obtain

‖eρ‖1,Ω e
ρ
= O(ρ2

√
− log(ρ)). (A.3)

Using Lemma A.1 and the inequality (A.3), we have

‖vρ − v0‖0,Ω e
ρ
= ‖ρH(

x
ρ
)+ eρ‖0,Ω e

ρ
,

which implies the announced result.

Lemma A.3. Let Ei for i ∈ J1 . . .7K given by (16), (17), (26), (27) and (32)-(34), then

Ei(ρ) = o(ρ2), i ∈ J1 . . .7K.

Proof. For E1(ρ), E2(ρ), E6(ρ) and E7(ρ), using the Hölder inequality, the regularity of Φ , applying Lemma A.2, making
the change of variables x = ρy and using Taylor’s expansion, yields

Ei(ρ) = o(ρ2), for i ∈ {1,2,6,7}.

Similarly for E3(ρ), applying the adjoint equation (19) with ρ = 0, making the change of variables x = ρy and using
Taylor’s expansion, we obtain

E3(ρ) = o(ρ2).

Since for E4(ρ), using the change of variables x = ρy, a trace theorem on B \E (where B is a ball contains E), and the
fact that in the space H1(Ω)/R the seminorm is equivalent of the norm, (‖X‖H1(Ω)/R ≤ c|X |H1(Ω)), a change of variable
again, the elliptic regularity and applying estimations (A.1), we get

E4(ρ) = o(ρ2).

In a similar fashion as is done for E4, we obtain
E5(ρ) = o(ρ2).
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[8] J. Céa, S. Garreau, Ph. Guillaume, and M. Masmoudi. The shape and topological optimizations connection. Comput. Methods

Appl. Mech. Engrg., 188(4):713–726, 2000.
[9] G. Chen and J. Zhou. Boundary Element Methods with Applications to Nonlinear Problems, volume 7 of Atlantis Studies in

Mathematics for Engineering and Science. Springer Science & Business Media, Amsterdam–Paris, 2010.
[10] H.-D. Cheng, J. Shan, W. Ju, Y. Guo, and L. Zhang. Automated breast cancer detection and classification using ultrasound images:

A survey. Pattern recognition, 43(1):299–317, 2010.
[11] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory, volume 93 of Applied Mathematical Sciences.

Springer Science & Business Media, New York, 2012.
[12] G. Dong, Z. Guo, and B. Wu. A convex adaptive total variation model based on the gray level indicator for multiplicative noise

removal. Abstract and Applied Analysis, 2013(Article ID 912373), 2013.
[13] A. Drogoul and G. Aubert. The topological gradient method for semi-linear problems and application to edge detection and noise

removal. Inverse Problem and Imaging, 10(1):51–86, 2016.
[14] A. Drogoul. Topological gradient method applied to the detection of edges and fine structures in imaging. PhD thesis, Université
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