

Extension of some fixed point theorems type T-contraction in cone metric space

Taieb Hamaizia

Department of Mathematics, Faculty of Sciences, Larbi Ben M'hidi University, Oum Elbouaghi, Algeria

Received: 20 April 2019, Accepted: 4 December 2019 Published online: 26 December 2019.

Abstract: The aim of this paper is to prove fixed point theorem for an extended Kannan and Chatterjea type T-contraction mapping in a cone metric space. Our results generalize recent results existing in the literature of T-contraction mappings in cone metric space

Keywords: Fixed point theorem, cone metric space, T-contraction.

1 Introduction

In [10], Huang and Zhang introduced the concept of cone metric space as a generalization of metric space, in which they replace the set of real numbers with a real Banach space. After that, many others [1,2,4,5,6],[13] proved several fixed point theorems for contractive type mappings on a cone metric space.

In the other side, Morales and Rojas [8],[9] have extended the concept of T-contraction mappings to cone metric space by proving fixed point theorems for T-Kannan, T-Zamfirescu, T-weakly contraction mappings. The purpose of this paper is to prove fixed point theorem for an extended Kannan and Chatterjea type T-contraction mapping in a cone metric space. Our results extend and generalized fixed point theorems of [12].

2 Definitions and Preliminaries

First we define cone metric space and properties and other results that will be needed in the sequel

Definition 1. [11] Let E be a real Banach space. A subset P of E is called a cone if and only if

- (1) *P* is nonempty, closed and $P \neq \{0\}$;
- (2) $\alpha, \beta \in \mathbb{R}, \alpha, \beta \ge 0$ and $x, y \in P \Rightarrow \alpha x + \beta y \in P$
- (3) $x \in P$ and $-x \in P$ (*i.e*) $P \cap (-P) = \{0\}$.

For a given cone $P \subseteq E$, a partial ordering is defined as \leq on E with respect to P by $x \leq y$, if and only if $y - x \in P$. It is denoted as x < y to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in intP$, where intP denotes the interior of P.

The cone $P \subset E$ is called normal, if there is a number K > 0 such that for all $x, y \in E$, $0 \le x \le y$ implies

$$\|x\| \le K \|y\| \tag{1}$$

The least positive number K satisfying (1) is called the normal constant of P.

© 2019 BISKA Bilisim Technology

Definition 2. [10] Let X be a nonempty set. Suppose the mapping $d: X \times X \rightarrow E$ satisfies

- (d1) 0 < d(x, y) for all $x, y \in X$ and d(x, y) = 0 if and only if x = y;
- (d2) d(x,y) = d(y,x) for all $x, y \in X$;
- (d3) $d(x,y) \le d(x,z) + d(y,z)$ for all $x, y, z \in X$.

Then d is called a cone metric on X, and (X,d) is called a cone metric space.

Example 1. Let $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x, y \ge 0\}$, $X = \mathbb{R}$ and $d : X \times X \to E$ defined by $d(x, y) = |x - y|(1, \frac{1}{2})$. Then (X, d) is a cone metric space

Lemma 1. Let (X,d) be a cone metric space, P be a normal cone with normal constant K. Let $\{x_n\}$ be a sequence in X. If $\{x_n\}$ converges to x and $\{x_n\}$ converges to y, then x = y. That is the limit of $\{x_n\}$ is unique.

Proof. For any $c \in E$ with $0 \ll c$, there is N such that for all n > N, $d(x_n, x) \ll \frac{c}{2}$ and $d(x_n, y) \ll \frac{c}{2}$. We have

$$d(x,y) \le d(x_n,x) + d(x_n,y) \le c.$$

Hence $||d(x, y)|| \le K ||c||$. Since *c* is arbitrary d(x, y) = 0; therefore x = y.

Definition 3. [3] Let (X,d) be a cone metric space. Let $\{x_n\}$ be a sequence in X and $x \in X$. If for every $c \in E$ with $0 \ll c$ there is N such that for all n > N, $d(x_n, x) \ll c$, then $\{x_n\}$ is said to be convergent and $\{x_n\}$ converges to x, and x is the limit of $\{x_n\}$.

Definition 4. [10] Let (X,d) be a cone metric space and let $\{x_n\}$ be a sequence in X. Then the sequence $\{x_n\}$ obeys the following.

- (1) $\{x_n\}$ converges to x, if for every $c \in E$ with $\theta \ll c$ there exists a positive integer N such that $d(x_n, x) \ll c$, for all $n \ge N$. We denote this by $\lim_{n \to \infty} x_n = x$.
- (2) $\{x_n\}$ is said to be Cauchy if for every $c \in E$ with $\theta \ll c$ there exists a positive integer N such that $d(x_n, x_m) \ll c$, for all $n, m \ge N$.

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

Definition 5. [7] *Let* (X,d) *be a cone metric space, P be a normal cone with normal constant K and. Let* $T : X \to X$. *Then:*

- (1) *T* is said to be continuous if $\lim_{n \to \infty} x_n = x$, implies that $\lim_{n \to \infty} Tx_n = Tx$ for every $\{x_n\}$ in *X*;
- (2) *T* is said to be sequentially convergent, if we have, for every sequence $\{y_n\}$, if $T\{y_n\}$ is convergent, then $\{y_n\}$ also is convergent.

Corollary 1. [14] *Let* $a, b, c, u \in E$, the real Banach space.

- (1) If $a \leq b$ and $b \ll c$, then $a \ll c$.
- (2) If $a \ll b$ and $b \ll c$, then $a \ll c$.
- (3) If $0 \le u \ll c$ for each $c \in intP$, then u = 0.

3 Mains results

In this section we shall prove some fixed point theorems of T-contractive mappings. The following theorems is extends and improves Theorem1 and Theorem 2 from [12]

Theorem 1. Let T and S be two continuous self mappings of a complete cone metric space (X,d). Assume that T is a injective mapping and P is a normal cone with normal constant. If the mappings T and S satisfy

$$d(TSx, TSy) \le \alpha(d(Tx, TSx) + d(Ty, TSy)) + \gamma d(Tx, Ty)$$

for all $x, y \in X$, where $\alpha > 0$ $\gamma \ge 0$, $2\alpha + \gamma < 1$ then *S* has a unique fixed point in *X*.

Proof. Let $x_0 \in X$ be arbitrary. Define a sequence $\{x_n\}$ in X such that $x_{n+1} = Sx_n$ for each $n = 0, 1, 2, \dots \infty$. We have

$$d(Tx_{n+1}, Tx_n) \le \alpha(d(Tx_n, Tx_{n+1}) + d(Tx_{n-1}, Tx_n)) + \gamma d(Tx_{n-1}, Tx_n) \le \alpha d(Tx_n, Tx_{n+1}) + (\alpha + \gamma) d(Tx_{n-1}, Tx_n)$$

then,

$$d(Tx_{n+1},Tx_n) \leq \left(\frac{\alpha+\gamma}{1-\alpha}\right)d(Tx_{n-1},Tx_n)$$

Proceeding further,

$$d(Tx_{n+1},Tx_n) \leq \left(\frac{\alpha+\gamma}{1-\alpha}\right)^n d(Tx_0,Tx_1)$$

Next, to claim that $\{Tx_n\}$ is a Cauchy sequence. Consider $m, n \in \mathbb{N}$ such that m > n,

$$d(Tx_n, Tx_m) \le d(Tx_n, Tx_{n+1}) + d(Tx_{n+1}, Tx_{n+2}) + \dots + d(Tx_{m-1}, Tx_m)$$

$$\le \left[\left(\frac{\alpha + \gamma}{1 - \alpha}\right)^n + \left(\frac{\alpha + \gamma}{1 - \alpha}\right)^{n+1} + \dots + \left(\frac{\alpha + \gamma}{1 - \alpha}\right)^{m-1} \right] d(Tx_0, Tx_1)$$
(2)

we take $\frac{\alpha + \gamma}{1 - \alpha} = k$, The inequality (2) implies that for all $m, n \in \mathbb{N}, n > m$

$$d(Tx_n, Tx_m) \leq \frac{k^n}{1-k}d(Tx_0, Tx_1),$$

From the inequality (1), we get

$$|d(Tx_n, Tx_m)|| \le \frac{k^n}{1-k} ||d(Tx_0, Tx_1)||,$$

Further, since $k \in (0, 1), k^n \to 0$ as $n \to \infty$. Therefore $||d(Tx_m, Tx_n)|| \to 0$ as $m, n \to \infty$. Thus $\{Tx_n\}$ is a Cauchy sequence in *X*. As *X* is a complete cone metric space, there exists $z \in X$ such that $\lim_{n \to \infty} Tx_n = z$. Since *T* is subsequentially convergent, $\{x_n\}$ has a convergent subsequence $\{x_m\}$ such that $\lim_{n \to \infty} x_m = u$. As *T* is continuous,

$$\lim_{n \to \infty} T x_m = T u \tag{3}$$

448

By the uniqueness of the limit, z = Tu. Since S is continuous, $\lim_{n \to \infty} Sx_m = Su$. Again as T is continuous, $\lim_{n \to \infty} TSx_m = TSu$. Therefore

$$\lim_{n \to \infty} T x_{m+1} = T S u \tag{4}$$

Now consider,

$$d(TSu, Tu) \le d(TSu, Tx_m) + d(Tx_m, Tu)$$

$$\le \alpha d(Tu, TSu) + \alpha d(Tx_{m-1}, Tx_m) + \gamma d(Tu, Tx_{m-1}) + d(Tx_m, Tu)$$

© 2019 BISKA Bilisim Technology

then

$$d(TSu, Tu) \leq \frac{\alpha}{1-\alpha} d(Tx_{m-1}, Tx_m) + \frac{\gamma}{1-\alpha} d(Tu, Tx_{m-1}) + \frac{1}{1-\alpha} d(Tx_m, Tu) \\ \leq \frac{\alpha}{1-\alpha} d(Tx_{m-1}, Tx_m) + \frac{\gamma}{1-\alpha} (d(Tu, Tx_m) + d(Tx_m, Tx_{m-1})) + \frac{1}{1-\alpha} d(Tx_m, Tu).$$

So

$$d(TSu, Tu) \le \frac{\alpha + \gamma}{1 - \alpha} d(Tx_{m-1}, Tx_m) + \frac{\gamma + 1}{1 - \alpha} d(Tx_m, Tu)$$
(5)

Let $0 \ll c$ be arbitrary. By (3) $d(Tu, Tx_m) \ll \frac{c(1-\alpha)}{2(1+\gamma)}$ and By (4) $d(Tx_{m-1}, Tx_m) \ll \frac{c(1-\alpha)}{2(\gamma+\alpha)}$. Then, (5) becomes

 $d(TSu, Tu) \ll c$, for each $c \in intP$

Now, Using Corollary(1) (*iii*), it follows that d(Tu, TSu) = 0 which implies that Tu = TSu. As T is injective, u = Su. Thus u is the fixed point of S.

To Prove Uniqueness: If w is another fixed point of S, then w = Sw.

$$d(Tu, Tw) = d(TSu, TSw) \le \alpha(d(Tu, TSu) + d(Tw, TSw)) + \gamma d(Tu, Tw)$$
$$\le \gamma d(Tu, Tw)$$

a contradiction. Hence d(Tu, Tw) = 0 which implies Tu = Tw. As *T* is injective, u = w. Therefore the fixed point of *S* is unique. This completes the proof of the Theorem

Corollary 2. Let T and S be two continuous self mappings of a complete cone metric space (X,d). Assume that T be injective and P be a normal cone with normal constant. If the mappings T and S satisfy

$$d(Sx, Sy) \le \alpha \left(d(x, Sx) + d(y, Sy) \right)$$

for all $x, y \in X$, for some $\alpha \in (0, \frac{1}{2})$, then S has a unique fixed point in X.

Proof. The proof of this Corollary follows by taking $\gamma = 0$ and T = I, the identity mapping in Theorem (1)

Corollary 3. Let T and S be two continuous self mappings of a complete cone metric space (X,d). Assume that T be injective and P be a normal cone with normal constant. If the mappings T and S satisfy

$$d(TSx, TSy) \leq \zeta \left(d(Tx, TSx) \cdot d(Ty, TSy) \cdot d(Tx, Ty) \right)^{\frac{1}{3}}$$

for all $x, y \in X$, for some $\zeta \in (0, 1)$, then S has a unique fixed point in X.

Proof. The arithmetic mean-geometric mean inequality implies that

$$d(TSx, TSy) \le \frac{\zeta}{3} \left(d(Tx, TSx) + d(Ty, TSy) + d(Tx, Ty) \right)$$

then, The proof of this Corollary follows by taking $\alpha = \gamma = \frac{\zeta}{3}$ in Theorem (1)

Theorem 2. Let T and S be two continuous self mappings of a complete cone metric space (X,d). Assume that T is a injective mapping and P is a normal cone with normal constant. If the mappings T and S satisfy

BISKA 450

$$d(TSx, TSy) \le \alpha(d(Ty, TSx) + d(Tx, TSy)) + \gamma d(Tx, Ty)$$

for all $x, y \in X$, where $\alpha > 0$ $\gamma \ge 0$, $2\alpha + \gamma < 1$ then *S* has a unique fixed point in *X*.

Proof. Let $x_0 \in X$ be arbitrary. Define a sequence $\{x_n\}$ in X such that $x_{n+1} = Sx_n$ for each $n = 0, 1, 2, ... \infty$. Consider

$$d(Tx_{n+1}, Tx_n) \le \alpha(d(Tx_{n-1}, Tx_{n+1}) + d(Tx_n, Tx_n)) + \gamma d(Tx_{n-1}, Tx_n)$$

$$\le \alpha d(Tx_{n-1}, Tx_{n+1}) + \gamma d(Tx_{n-1}, Tx_n)$$

$$\le \alpha (d(Tx_{n-1}, Tx_n) + d(Tx_n, Tx_{n+1})) + \gamma d(Tx_{n-1}, Tx_n)$$

then,

$$d(Tx_{n+1},Tx_n) \leq \left(\frac{\alpha+\gamma}{1-\alpha}\right)d(Tx_{n-1},Tx_n)$$

Proceeding further,

$$d(Tx_{n+1}, Tx_n) \le \left(\frac{\alpha + \gamma}{1 - \alpha}\right)^n d(Tx_0, Tx_1)$$

Next, to claim that $\{Tx_n\}$ is a Cauchy sequence. Consider $m, n \in \mathbb{N}$ such that m > n,

$$d(Tx_n, Tx_m) \le d(Tx_n, Tx_{n+1}) + d(Tx_{n+1}, Tx_{n+2}) + \dots + d(Tx_{m-1}, Tx_m)$$

$$\le \left[\left(\frac{\alpha + \gamma}{1 - \alpha} \right)^n + \left(\frac{\alpha + \gamma}{1 - \alpha} \right)^{n+1} + \dots + \left(\frac{\alpha + \gamma}{1 - \alpha} \right)^{m-1} \right] d(Tx_0, Tx_1)$$
(6)

we take $\frac{\alpha+\gamma}{1-\alpha} = k$, The inequality (6) implies that for all $m, n \in \mathbb{N}, n > m$

$$d(Tx_n, Tx_m) \leq \frac{k^n}{1-k}d(Tx_0, Tx_1),$$

From (1), it follows that

$$||d(Tx_n, Tx_m)|| \le \frac{k^n}{1-k}d(Tx_0, Tx_1),$$

Since $k \in (0,1), k^n \to 0$ as $n \to \infty$. Therefore $||d(Tx_m, Tx_n)|| \to 0$ as $m, n \to \infty$. Consequently $\{Tx_n\}$ is a Cauchy sequence in X. As X is a complete cone metric space, there exists $z \in X$ such that $\lim_{n \to \infty} Tx_n = z$.

Since T is subsequentially convergent, $\{x_n\}$ has a convergent subsequence $\{x_m\}$ such that $\lim_{n\to\infty} x_m = u$. As T is continuous,

$$\lim_{m \to \infty} T x_m = T u \tag{7}$$

By the uniqueness of the limit, z = Tu. Since S is continuous, $\lim_{n \to \infty} Sx_m = Su$. Again as T is continuous, $\lim_{n \to \infty} TSx_m = TSu$. Therefore

$$\lim_{n \to \infty} T x_{m+1} = T S u \tag{8}$$

Now consider,

$$d(TSu,Tu) \le d(TSu,Tx_m) + d(Tx_m,Tu)$$

$$\le \alpha(d(Tx_{m-1},TSu) + d(Tu,Tx_m)) + \gamma d(Tu,Tx_{m-1}) + d(Tx_m,Tu)$$

© 2019 BISKA Bilisim Technology

then

$$d(TSu, Tu) \le \alpha(d(Tx_{m-1}, Tu) + d(Tu, TSu) + d(Tu, Tx_m)) + \gamma d(Tu, Tx_{m-1}) + d(Tx_m, Tu) \\ \le \frac{\alpha + \gamma}{1 - \alpha} (d(Tx_{m-1}, Tx_m) + d(Tu, Tx_m) + \frac{\alpha + 1}{1 - \alpha} d(Tu, Tx_m).$$

Therefore,

$$d(TSu, Tu) \le \frac{\alpha + \gamma}{1 - \alpha} d(Tx_{m-1}, Tu) + \frac{2\alpha + \gamma + 1}{1 - \alpha} d(Tu, Tx_m).$$
(9)

Let $0 \ll c$ be arbitrary. By (7) $d(Tu, Tx_m) \ll \frac{c(1-\alpha)}{2(2\alpha+\gamma+1)}$ and By (8) $d(Tx_{m-1}, Tx_m) \ll \frac{c(1-\alpha)}{2(\gamma+\alpha)}$. Then, (9) becomes

 $d(TSu, Tu) \ll c$, for each $c \in intP$

Now, Using Corollary(1) (iii), it follows that d(Tu, TSu) = 0 which implies that Tu = TSu. As *T* is injective, u = Su. Thus *u* is the fixed point of *S*. To Prove Uniqueness: If *w* is another fixed point of *S*, then w = Sw.

$$d(Tu,Tw) = d(TSu,TSw) \le \alpha(d(Tw,TSu) + d(Tu,TSw)) + \gamma d(Tu,Tw)$$
$$\le (2\alpha + \gamma) d(Tu,Tw)$$

a contradiction. Hence d(Tu, Tw) = 0 which implies Tu = Tw. As T is injective, u = w is the unique fixed point of S.

Corollary 4. Let T and S be two continuous self mappings of a complete cone metric space (X,d). Assume that T be injective and P be a normal cone with normal constant. If the mappings T and S satisfy

$$d(Sx, Sy) \le \alpha \left(d(x, Sy) + d(y, Sx) \right)$$

for all $x, y \in X$, for some $\alpha \in (0, \frac{1}{2})$, then S has a unique fixed point in X.

Proof. The proof of this Corollary follows by taking $\gamma = 0$ and T = I, the identity mapping in Theorem (2)

4 Conclusion

In this paper, we study a fixed point theorems for self-mapping satisfying T-contractive condition in cone metric spaces which generalized and extend the result of [12].

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

- [1] Abdeljawad, T, Karapinar, E: A gap in the paper 'A note on cone metric fixed point theory and its equivalence' [Nonlinear Analysis 72(5), (2010), 2259-2261]. Gazi Univ. J. Sci. 24(2), 233-234 (2011)
- [2] Alnafei, SH, Radenovi´c, S, Shahzad, N: Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces. Appl. Math. Lett. 24, 2162-2166 (2011)
- [3] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
- [4] Kadelburg, Z, Radenovic, S, Rakočevic, S: A note on the equivalence of some metric and cone metric fixed point results. Appl. Math. Lett. 24, 370-374 (2011)
- [5] Khamsi, MA: Remarks on cone metric spaces and fixed point theorems of contractive mappings. Fixed Point Theory Appl. 2010, Article ID 315398 (2010)
- [6] Kumar, A, Rathee, S, Kumar, N: The point of coincidence and common fixed point for three mappings in cone metric spaces. J. Appl. Math. 2013, Article ID 146794 (2013)
- [7] J.R. Morales, E. Rojas, Cone metric spaces and fixed point theorems of T-contractive mappings, Revista Notas de Matematica, 4, No. 2, (2008), 66-78.
- [8] Morales J.R. and Rojas E., Cone metric spaces and fixed point theorems for T -Kannan contractive mappings, arxiv:0907.3949v1.[math.FA].
- [9] Morales J.R. and Rojas E., T -Zamfirescu and T -weak contraction mappings on cone metric spaces, arxiv:0909.1255v1.[math.FA].
- [10] Huang, G, Zhang, X: Cone metric spaces and fixed point theorems of contractive maps. J. Math. Anal. Appl. 332,1467-1475 (2007)
- [11] Huang L.G. and Zhang X., Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl., 332(2007), 1468-1476.
- [12] A. Malčeski, S. Malčeski, K. Anevska and R. Malčeski, New Extension of Kannan and Chatterjea Fixed Point Theorems on Complete Metric Spaces, British Journal of Mathematics & Computer Science 17(1): 1-10, 2016.
- [13] Radenovič, S: A pair of nonself mappings in cone metric space. Kragujev. J. Math. 36(2), 189-198 (2012)
- [14] Rezapour Sh., A review on topological properties of cone metric spaces, Analysis, Topology and Applications(ATA'08), Vrnjacka Banja, Serbia, May-June 2008.