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Abstract: The aim of this paper is to prove fixed point theorem for an extended Kannan and Chatterjea type T-contraction mapping in
a cone metric space. Our results generalize recent results existing in the literature of T-contraction mappings in cone metric space
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1 Introduction

In [10], Huang and Zhang introduced the concept of cone metric space as a generalization of metric space, in which they
replace the set of real numbers with a real Banach space. After that, many others [1,2,4,5,6],[13] proved several fixed
point theorems for contractive type mappings on a cone metric space.

In the other side, Morales and Rojas [8],[9] have extended the concept of T-contraction mappings to cone metric space
by proving fixed point theorems for T-Kannan, T-Zamfirescu, T-weakly contraction mappings. The purpose of this paper
is to prove fixed point theorem for an extended Kannan and Chatterjea type T-contraction mapping in a cone metric
space. Our results extend and generalized fixed point theorems of [12].

2 Definitions and Preliminaries

First we define cone metric space and properties and other results that will be needed in the sequel

Definition 1. [11] Let E be a real Banach space. A subset P of E is called a cone if and only if

(1) P is nonempty, closed and P # {0};

) a,peR, o, >0andx,yce P= ox+BycP

(3) xe Pand —x € P (i.e) PN (—P) = {0}.

For a given cone P C E, a partial ordering is defined as < on E with respect to P by x <y, ifand only ify —x € P. It is

denoted as x < y to indicate that x <y but x # y, while x < y will stand for y — x € intP, where intP denotes the interior
of P.

The cone P C E is called normal, if there is a number K > 0 such that for all x,y € E, 0 <x <y implies
[x[ < K[l (1)

The least positive number K satisfying (1) is called the normal constant of P.
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Definition 2. [10] Let X be a nonempty set. Suppose the mapping d : X x X — E satisfies

dl) 0<d(x,y) forall x,y € X and d(x,y) =0 if and only if x = y;
(d2) d(x,y) =d(y,x) forall x,y € X;
(d3) d(x,y) <d(x,z) +d(y,2) forall x,y,z € X.

Then d is called a cone metric on X, and (X ,d) is called a cone metric space.

Example 1. Let E =R?, P = {(x,y) €E :x,y >0}, X =R and d : X x X — E defined by d(x,y) = \x—y|(1,%). Then
(X,d) is a cone metric space

Lemma 1. Let (X,d) be a cone metric space, P be a normal cone with normal constant K. Let {x,} be a sequence in X.
If {x,} converges to x and {x,} converges to y, then x = y. That is the limit of {x,} is unique.

Proof. For any ¢ € E with 0 < ¢, there is N such that for all n > N, d(x,,x) < § and d(x,,y) < 5. We have
d(x,y) < d(xn,x) +d(xn,y) < c.
Hence ||d(x,y)|| < K||c||. Since c is arbitrary d(x,y) = 0; therefore x = y.

Definition 3. [3] Ler (X,d) be a cone metric space. Let {x,} be a sequence in X and x € X. If for every ¢ € E with 0 < ¢
there is N such that for all n > N, d(x,,x) < c, then {x,} is said to be convergent and {x,} converges to x, and x is the

limit of {x, }.

Definition 4. [10] Ler (X,d) be a cone metric space and let {x,} be a sequence in X. Then the sequence {x,} obeys the
following.

(1) {xn} converges to x, if for every ¢ € E with 6 < c there exists a positive integer N such that d(x,,x) < ¢, for all
n > N.We denote this by lim x,, = x.
n—soo

(2) {xn} is said to be Cauchy if for every ¢ € E with 0 < c there exists a positive integer N such that d(x,,xn) < ¢, for
all nym > N.

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

Definition 5. [7] Let (X,d) be a cone metric space, P be a normal cone with normal constant K and. Let T : X — X.
Then:
(1) T is said to be continuous if lim x,, = x, implies that lim Tx,, = Tx for every {x,} in X;
n—o0 n—yo0
(2) T is said to be sequentially convergent, if we have, for every sequence {y}, if T{yn} is convergent, then {y,} also is
convergent.

Corollary 1. [14] Let a,b,c,u € E, the real Banach space.

() Ifa<band b < c, then a < c.
) Ifakband b < ¢, then a < c.
3) If0 <u < cforeachc € intP, then u=0.

3 Mains results

In this section we shall prove some fixed point theorems of T-contractive mappings. The following theorems is extends
and improves Theorem1 and Theorem 2 from [12]
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Theorem 1. Let T and S be two continuous self mappings of a complete cone metric space (X,d). Assume that T is a
injective mapping and P is a normal cone with normal constant. If the mappings T and S satisfy

d(TSx,TSy) < o(d(Tx,TSx)+d(Ty,TSy))+yd(Tx,Ty)

for all x,y € X, where ¢ >0y >0, 2+ 7 < 1 then S has a unique fixed point in X.

Proof. Let xo € X be arbitrary. Define a sequence {x,} in X such that x,,.| = Sx, for eachn =0,1,2,...00. We have

d(Txps1,Txn) < a(d(Txy, Txp1) +d(Txy—1,Txn)) + vd(Txp—1,Txp)
< ad(Txp, Txpi1)+ (a+7)d(Tx,—1,Txy)

then,

o+
d<Txn+1 , Txn) < (1(;)6/

) d(Txp—1,Tx,)
Proceeding further,

aty

n
d(Txp41,Tx,) < <l ) d(Txo,Tx1)

Next, to claim that {T'x, } is a Cauchy sequence. Consider m,n € N such that m > n,

d(Tx, Txp) <d(Txy, Txps1) +d(Txpi1, Txps2) + ooood(Txpy—1, Txyy)

7 | m—1
a+y\" [o+y\"" a+y
— — — d(Txy, T 2
< (l—a) +<1_a> et Ty (Tx0,Tx1) @
we take ¥ =k, The inequality (2) implies that for all m,n € N,n > m

k"
d(Tx,, Txpy) < l—kd(Txo,T)cl)7

From the inequality(1), we get

n

(T, Tox) | < T

Further, since k € (0,1),k" — 0 as n — oo. Therefore ||d(T Xy, Tx,)|| — 0 as m,n — o. Thus {T'x, } is a Cauchy sequence in
X. As X is a complete cone metric space, there exists z € X such that lim Tx, = z. Since T is subsequentially convergent,
n—soo

[d(Txo, Tx1)|l

{x,} has a convergent subsequence {x,, } such that lim x,, = u. As T is continuous,
n—oo

lim Tx,, =Tu 3)

n—oo

By the uniqueness of the limit, z = Tu. Since S is continuous, lim Sx,, = Su. Again as T is continuous, lim 7'Sx,, = T Su.
n—soo n—soo
Therefore

lim Tx,,.1 = TSu “4)
n—soo

Now consider,

d(TSu,Tu) < d(TSu,Txy)+d(Txy,Tu)
< ad(Tu, TSu) + ad(Txm—1,Txm) + vd(Tu, Txm—1) +d(T Xy, Tu)
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then
d(TSu,Tu) < Ld(Tx Txm)+ Ld(T Txm—1)+ ;d(Tx Tu)
u, =1« m—1, m l—a u, m—1 l—a ms
a 1
< o d(Tx 1, Txn) + ﬁ (AT, Tt) - d (T, 1)) + 1= (T, T,
So o+ +1
d(TSu,Tu) < ;’d(Txm,l,Txm) ¥ 1}’ —d(T5,,Tu) 5)

Let 0 < ¢ be arbitrary. By (3) d(Tu,Tx,) < Z&ﬁi; and By (4) d(Txn—1,Txm) < ;E;Z; Then, (5) becomes
d(TSu,Tu) < c, for each ¢ € intP

Now, Using Corollary(1) (iii), itfollows that d(7u,TSu) = 0 which implies that Tu = T Su. As T is injective, u = Su.
Thus u is the fixed point of S.

To Prove Uniqueness: If w is another fixed point of S, then w = Sw.

d(Tu,Tw) =d(TSu,TSw) < a(d(Tu,TSu) +d(Tw, TSw)) + yd(Tu,Tw)
< yd(Tu,Tw)

a contradiction. Hence d(Tu,Tw) = 0 which implies Tu = Tw. As T is injective, u = w. Therefore the fixed point of S is
unique. This completes the proof of the Theorem

Corollary 2. Let T and S be two continuous self mappings of a complete cone metric space (X,d). Assume that T be
injective and P be a normal cone with normal constant. If the mappings T and S satisfy

d(Sx,Sy) < a(d(x,5x) +d(y,Sy))
forall x,y € X, for some o € (0, %) then S has a unique fixed point in X.
Proof. The proof of this Corollary follows by taking ¥ = 0 and T = I, the identity mapping in Theorem (1)

Corollary 3. Let T and S be two continuous self mappings of a complete cone metric space (X,d). Assume that T be
injective and P be a normal cone with normal constant. If the mappings T and S satisfy

d(TSx, TSy) < £ (d(Tx,TSx).d(Ty, TSy).d(Tx,Ty))3
forall x,y € X, for some § € (0,1), then S has a unique fixed point in X.

Proof. The arithmetic mean-geometric mean inequality implies that
d(TSx,TSy) < % (d(Tx,TSx)+d(Ty,TSy)+d(Tx,Ty))

then, The proof of this Corollary follows by taking & = ¥ = 3 in Theorem (1)

Theorem 2. Let T and S be two continuous self mappings of a complete cone metric space (X,d). Assume that T is a

injective mapping and P is a normal cone with normal constant. If the mappings T and S satisfy
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d(TSx,TSy) < a(d(Ty,TSx)+d(Tx,TSy))+vd(Tx,Ty)

for all x,y € X, where o« >0 v >0, 2+ 7 < 1 then S has a unique fixed point in X.

Proof. Let xp € X be arbitrary. Define a sequence {x;,} in X such that x| = Sx, for eachn =0,1,2,...c0. Consider

d(Txpt1,Txy) < a(d(Txp—1,Txps1) +d(Txy, Txy)) + y¥d(Txn—1,Txn)
< ad<Txn—1 ) Txn+1) + Yd(Txn—laTxn)
<o (d(Txp—1,Txy) +d(Txy, Txpi1)) + vd(Txy—1,Txy)

then,

aty

d(Txn+1>Txn) < (1 ) d(Txn—lyTxn)

Proceeding further,

aty

n
d(Txp+1,Txy) < <l ) d(Txp,Txy)

Next, to claim that {T'x, } is a Cauchy sequence. Consider m,n € N such that m > n,
d(Txp, Txm) < d(Txp,Txps1) +d(Txpr1, Txng2) + ooocd(Txm—1, TX)
a+ n o+ n+1 o+ m—1
arry  (ety b (2T d(Txo,Tx1) (6)
11—« 11—« 11—«

k, The inequality (6) implies that for all m,n € N,n > m

<

oty _

we take T—a

k"
d(Tx,, Txpy) < ]—kd(Txo,Txl),

From (1), it follows that

k}’l
1—k
Since k € (0,1),k" — 0 as n — oo. Therefore ||d(Tx,Tx,)|| — 0 as m,n — . Consequently {7x,} is a Cauchy
sequence in X. As X is a complete cone metric space, there exists z € X such that lim Tx,, = z.
n—soo

Hd(TxnaTxm)” < d(TXQ,Txl),

Since T is subsequentially convergent, {x,} has a convergent subsequence {x,} such that limx, = u. As T is
n—soo
continuous,
lim Tx,, =Tu (7)

n—oo
By the uniqueness of the limit, z = Tu. Since S is continuous, lim Sx,, = Su. Again as T is continuous, lim 7'Sx,, = T Su.
n—soo n—soo
Therefore
lim Tx,,+1 = TSu 8)
n—soo

Now consider,

d(TSu,Tu) < d(TSu,Txy)+d(Txy,Tu)
< o(d(Txm—1,TSu) +d(Tu, Txp)) + vd(Tu, Txp—1) + d(Txpm, Tu)

© 2019 BISKA Bilisim Technology


www.ntmsci.com

51 BISKA T. Hamaizia: Extension of some fixed point theorems type T-contraction in cone metric space

then
d(TSu,Tu) < o(d(Txpu—1,Tu) +d(Tu, TSu) +d(Tu, Txy)) + vd(Tu, Txp—1) +d(Txm, Tut)
1
< Y (T, Tt) +d(Tut, Trn) + S5 2 (T, Tx).

-« -«

Therefore,
2 1
d(TSu,Tu) < %’d(Txm,l,Tu) n %d(m,nm). )

and By (8) d(Txp—1,Txp) < ;E;Z)) Then, (9) becomes

. (1=
Let 0 < ¢ be arbitrary. By (7) d(Tu,Tx,) < ﬁ
d(TSu,Tu) < c, for each ¢ € intP
Now, Using Corollary(1) (iii), it follows that d(Tu,TSu) = 0 which implies that Tu = TSu. As T is injective, u = Su.
Thus u is the fixed point of S. To Prove Uniqueness: If w is another fixed point of S, then w = Sw.
d(Tu,Tw) = d(TSu,TSw) < o(d(Tw,TSu) +d(Tu,TSw)) + yd(Tu,Tw)
< (a+7v)d(Tu,Tw)

a contradiction. Hence d(Tu, Tw) = 0 which implies Tu = Tw. As T is injective, u = w is the unique fixed point of S.

Corollary 4. Let T and S be two continuous self mappings of a complete cone metric space (X,d). Assume that T be
injective and P be a normal cone with normal constant. If the mappings T and S satisfy

d(Sx,Sy) < a(d(x,Sy) +d(y,5x))
forall x,y € X, for some o € (O, %) then S has a unique fixed point in X.

Proof. The proof of this Corollary follows by taking Y = 0 and T = I, the identity mapping in Theorem (2)

4 Conclusion

In this paper, we study a fixed point theorems for self-mapping satisfying T-contractive condition in cone metric spaces
which generalized and extend the result of [12].
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