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Abstract: In this paper, we derive some fixed point theorems for generalized Kannan type mappings in b-metric spaces. We also
introduce a Picard-Ishikawa iteration scheme in a convex b-metric space and prove a strong convergence result for the same. Moreover,
we define a generalized Jungck-Kannan type mapping T with respect to S and prove the existence of a unique common fixed point with
a convergence result. The results are supported by suitable examples.
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1 Introduction

In 1922, Banach proved the famous “Banach Contraction Principle” for metric spaces which initiated the study of fixed
point theory in different directions. Several research workers have been engaged for developing interesting results in this
field by taking different types of mappings as well as different generalized spaces (for instance, refer to [7] – [11], [16],
[17], [18], [20] – [23], [26], [27], [32] and the references therein).

With the existence of the unique fixed point, Banach also showed the convergence of the sequence of Picard’s iterates to
the fixed point. Since then a number of authors proved the convergence of different iteration schemes to the unique fixed
point. Some of the prominent authors in this regard are Mann [19] in 1953, Ishikawa [15] in 1974, Jungck [16] in 1976,
Agarwal et al. [2] in 2007, etc. Many authors have also proved the convergence of combination of the known iteration
schemes (for example, [25], [30], etc.).

To generalize Banach fixed point theorem, in 1989, Bakhtin [3] introduced b-metric spaces. But in 1993, Czerwik [6]
formally defined the notion of b-metric spaces as follows.

Definition 1. [6] Let X be a non empty set and s ≥ 1 be a given real number. A function d : X ×X −→ [0,∞) is called
b-metric if it satisfies the following properties.

(1) d(x,y) = 0 if and only if x = y;
(2) d(x,y) = d(y,x); and
(3) d(x,z)≤ s[d(x,y)+d(y,z)], for all x,y,z ∈ X.

The pair (X ,d) is called a b-metric space with coefficient s.
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There are several examples of b-metric in various existing literatures (refer to [5], [29] and the references therein). A
b-metric need not be always continuous. An example is given in [24].

In 1970, the concept of convex structure in a metric space was introduced by Takahashi [31] as follows (one may also
refer to [1]).

Definition 2. [31] Let (X ,d) be a metric space. A mapping W : X2× [0,1]−→ X satisfying

d (z,W (x,y, t))≤ td(z,x)+(1− t)d(z,y)

for all x,y,z ∈ X and t ∈ [0,1] is called a convex structure on X. A b-metric space (X ,d) on which a convex structure
W is defined is called a convex b-metric space, denoted by (X ,W ,d). A subset K of X is called convex if W (x,y,λ ) ∈ K
whenever x,y ∈ K and λ ∈ [0,1].

The above notions of convex structure and convex metric space extends naturally to b-metric spaces by the condition

sd (z,W (x,y, t))≤ td(z,x)+(1− t)d(z,y). (1)

In [13], we have obtained the following fixed point result for a generalized Kannan type mapping and a continuous
b-metric d.

Theorem 1. [13] Let (X ,d) be a complete b-metric space with coefficient s ≥ 1 and let f : X −→ X be a mapping such
that there exists p < 1

2s+1 satisfying

φ (d( f x, f y))≤ p
(

φ (d(x,y))+φ (d(x, f x))+φ (d(y, f y))
)

for all x,y ∈ X. Then f has an unique fixed point z ∈ X, and for any x ∈ X the sequence of iterates { f nx} converges to z
and for q = 2p

1−p < 1,
d( f n+1x, f nx)≤ qnd(x, f x), n = 0,1,2, . . .

In this result, φ is a subadditive altering distance function.

Definition 3. [13] A function φ : [0,∞)−→ [0,∞) is said to be a subadditive altering distance function if

(i) φ is an altering distance function [11], (i.e., φ is continuous, strictly increasing and φ(t) = 0 if and only if t = 0)
(ii) φ(x+ y)≤ φ(x)+φ(y) ∀ x,y ∈ [0,∞)

For example, the functions φ1(x) = kx for some k ≥ 1, φ2(x) = n
√

x, n ∈ N, φ3(x) = log(1+ x), x≥ 0 and φ4(x) = tan−1 x
are such subadditive altering distance functions as mentioned in [13].

Here we note, if φ is sub-additive, then for k < 1

φ (d(x,y))≤ kφ (d(a,b)) =⇒ d(x,y)≤ kd(a,b) (refer to [13]).

For a self map f on a convex b-metric space (X ,W ,d) and for x0 ∈ X , we now define Picard-Ishikawa type iteration
scheme as:

xn+1 = f yn,

yn = W (xn, f zn,αn) ,

zn = W (xn, f xn,βn)

 (2)
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where {αn} and {βn} are real sequences in (0,1).

The above iteration scheme may be put in the following form

xn+1 = µ( f ,xn),

where µ( f ,xn) = f
(
W
(
xn, f (W (xn, f xn,βn)) ,αn

))
.

2 Main results

Consider a subadditive altering distance function φ and let the b-metric d be continuous in the topology generated by it.

Theorem 2. Let f : X −→ X be a self map on a complete b-metric space (X ,d) with coefficient s ≥ 1 such that there
exists p < 1

2s+1 satisfying

φ (sd( f x, f y))≤ p
(

φ (d(x,y))+φ (d(x, f x))+φ (d(y, f y))
)

(3)

for all x,y ∈ X. Then f has a unique common fixed point z ∈ X. Moreover, for any x0 ∈ X the sequence {xn} generated by
the iteration (2), xn+1 = µ( f ,xn), n≥ 0 converges strongly to the unique common fixed point.

Proof. The existence of a unique fixed point and the strong convergence of the Picard’s iteration to the fixed point has
been shown in [13]. We shall now show that the sequence {xn} of iterates given by (2) strongly converges to the unique
fixed point of f . To see this, let w be the fixed point of f and note that

φ
(
sd(xn+1,w)

)
= φ

(
sd( f yn,w)

)
≤ p
(

φ
(
d(yn,w)

)
+φ
(
d(yn, f yn)

)
+φ
(
0
))

= pφ
(
d(yn,w)

)
+ spφ

(
d(yn,w)

)
+ spφ

(
d( f yn,w)

)
.

Since xn+1 = f yn, we get

φ
(
sd(xn+1,w)

)
≤ p(1+ s)

1− sp
φ
(
d(yn,w)

)
,

or,
d(xn+1,w)≤ kd(yn,w),

where k = p(1+s)
1−sp < 1. Now, d(yn,w) = d

(
W (xn, f zn,αn),w

)
≤ (1−αn)d(xn,w)+αnd( f zn,w).

By the same argument as in the above, we get

d( f zn,w)≤ kd(zn,w).

Again, d(zn,w) = d
(
W (xn, f xn,βn),w

)
≤ (1−βn)d(xn,w)+βnd( f xn,w). Similarly, we get

d( f xn,w)≤ kd(xn,w).

Summing up, we get

d(xn+1,w)≤ kd(yn,w)≤ k
(
(1−αn)d(xn,w)+αnd( f zn,w)

)
≤ k(1−αn)d(xn,w)+ k2

αnd(zn,w)

≤ k(1−αn)d(xn,w)+ k2
αn

(
(1−βn)d(xn,w)+ kβnd(xn,w)

)
≤ kd(xn,w).
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Continuing inductively, we get
d(xn+1,w)≤ knd(x0,w)

and hence
lim
n→∞

d(xn,w) = 0.

This completes the proof.

Remark. For x0 ∈ X , the Mann iteration is given by

xn+1 = W (xn, f xn,αn)

where {αn} is a sequence in [0,1]. Now,

d
(
xn+1,w

)
= d
(
W (xn, f xn,αn) ,w

)
≤ (1−αn)d(xn,w)+αnd( f xn,w).

But

φ
(
d( f xn,w)

)
≤ p
(

φ
(
d(xn,w)

)
+φ
(
d(xn, f xn)

)
+φ
(
d(w, f w)

))
5 pφ

(
d(xn,w)

)
+ spφ

(
d(xn,w)

)
+ spφ

(
d( f xn,w)

)
,

that is,
φ
(
d( f xn,w)

)
≤ kφ

(
d(xn,w)

)
,

where k = p(1+s)
1−sp < 1, and hence

d( f xn,w)≤ kd(xn,w).

Thus,
d
(
xn+1,w

)
≤ (1−αn)d(xn,w)+ kαnd(xn,w)≤ k′d(xn,w),

for some k′ < 1. The strong convergence of the Mann iteration then follows as in the above proof.

Remark. For x0 ∈ X , the Ishikawa iteration is given by

xn+1 = W (xn, f yn,αn)

yn = W (xn, f xn,βn)

where {αn} and {βn} are sequences in [0,1]. As in the previous remark, we get

φ
(
d( f yn,w)

)
≤ kφ

(
d(yn,w)

)
,

and hence
d( f yn,w)≤ kd(yn,w).

Similarly,
d( f xn,w)≤ kd(xn,w).
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Hence

d
(
xn+1,w

)
≤ (1−αn)d

(
xn,w

)
+αnd

(
f yn,w

)
≤ (1−αn)d

(
xn,w

)
+ kαnd

(
yn,w

)
≤ (1−αn)d

(
xn,w

)
+ kαn

(
(1−βn)d

(
xn,w

)
+βnd

(
f xn,w

))
≤
(

1−αn + kαn(1−βn)+ k2
αnβn

)
d
(
xn,w

)
≤ k′d

(
xn,w

)
for some k′ < 1. The strong convergence of the sequence {xn} follows as in the previous results.

We note here that the Jungck-Mann, Jungck-Ishikawa and the modified Jungck-Ishikawa iterations also converges
strongly to the unique fixed point of f satisfying (3).

In the following, we extend the result of Theorem 2 for a generalized Jungck-Kannan type contraction mappings and
prove an existence result for a common fixed point.

Theorem 3. Let f ,g : X −→ X be commuting self maps on a complete b-metric space (X ,d) with coefficient s≥ 1 such
that there exists p < 1

2s+1 satisfying

φ (sd( f x, f y))≤ p
(

φ (d(gx,gy))+φ (d(gx, f x))+φ (d(gy, f y))
)

(4)

for all x,y ∈ X with f (X)⊆ g(X). Then f and g have a unique common fixed point w ∈ X. Moreover, for any x0 ∈ X the
sequence {gxn} generated by the Jungck-Picard iteration, gxn+1 = f xn, n≥ 0 converges strongly to the unique common
fixed point.

Proof.For an arbitrary element x ∈ X , let f x = gu for some u ∈ X . Then

φ (sd(gu, f u)) = φ (sd( f x, f u))≤ p
(

φ (d(gx,gu))+φ (d(gx, f x))+φ (d(gu, f u))
)

that is,

φ (sd(gu, f u))≤ qφ (d(gx, f x)) where q =
2p

1− p
< 1.

Thus
d(gu, f u)≤ qd(gx, f x). (5)

Now, for an arbitrary point x0 ∈X consider the sequence {gxn}where gxn+1 = f xn, n= 0,1,2, . . . . Then {gxn} is a Cauchy
sequence in X , and so, there exists w ∈ X such that

lim
n→∞

gxn+1 = lim
n→∞

f xn = w .

Now,

φ (sd( f w,gw))≤ φ
(
sd( f w, f xn)+ s2d( f xn,gxn)+ s2d(gxn,gw)

)
from which, using (3) we get

(1− sp)φ (sd( f w,gw))≤ (sp+ s2)
(

φ (d(gw,gxn))+φ (d( f xn,gxn))
)

≤ (sp+ s2)
(

φ (d(gw,gxn))+φ (qnd(gx0, f x0))
)
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Since it is satisfied for all n ∈ N and 1− sp 6= 0, so

φ (sd( f w,gw))−→ 0, as n→ ∞ ,

showing that d( f w,gw) = 0. To show the uniqueness of the coincidence point w, let w′ ∈ X be another coincidence point
of f and g. Then from (3),

φ
(
d(w,w′)

)
= φ

(
d( f w, f w′)

)
≤ φ

(
sd( f w, f w′)

)
≤ p

{
φ
(
d(gw,gw′)

)
+φ (d(gw, f w))+φ

(
d(gw′, f w′)

)}
≤ pφ

(
d(w,w′)

)
.

As φ is strictly increasing and p < 1
2s+1 , this holds if and only if d(w,w′) = 0.

Now, let v = gw = f w. Then
gv = g f w = f gw = f v,

showing that v is a coincidence point of f and g, and by the uniqueness of the coincidence point, we get that v = w, which
shows that w is a common fixed point of f and g. The uniqueness follows from (3).
Finally,

φ
(
d(gxn+1,z)

)
= φ

(
d( f xn,w)

)
≤ p
(

φ
(
d(gxn,w)

)
+φ
(
d(gxn, f xn)

)
+φ(0)

)
≤ p
(

φ
(
d(gxn,w)

)
+ sφ

(
d(gxn,w)

)
+ sφ

(
d(w,gxn+1)

))
,

or,

φ
(
d(gxn+1,w)

)
≤ p(s+1)

1− sp
φ
(
d(gxn,w)

)
.

Continuing inductively, we get
φ
(
d(gxn+1,w)

)
≤ kn

φ
(
d(gx0,w)

)
,

where k = p(s+1)
1−sp < 1 and hence

lim
n→∞

φ
(
d(gxn,w)

)
= 0,

and consequently
lim
n→∞

d(gxn,w) = 0.

This proves the result.

Example 1. Consider X = [0,1] and d(x,y) = |x− y|2 for all x,y ∈ X . Then (X ,d) is a complete b-metric space. Let
f ,g : X −→ X be given by gx = x

2 , f x = x
4 for all x ∈ X . We note here that f (X)⊆ g(X) and f gx = g f x for all x ∈ X . For

φ(t) = log(1+ t), condition (4) reduces to(
1+d( f x, f y)

)k
≤
(

1+d(gx,gy)
)(

1+d(gx, f x)
)(

1+d(gy, f y)
)

=⇒
(

1+
|x− y|2

16

)k
≤
(

1+
|x− y|2

4

)(
1+
∣∣∣ x
2
− x

4

∣∣∣2)(1+
∣∣∣ y
2
− y

4

∣∣∣2)
=⇒

(
1+
|x− y|2

16

)k
≤
(

1+
|x− y|2

4

)(
1+

x2

16

)(
1+

y2

16

)
for some k > 3. It can be easily checked that the relation holds true for all x,y ∈ X . Thus f and g are commuting maps
satisfying (4) with f (X)⊆ g(X) and 0 is their common fixed point, which is unique.

We note here that if we take d(x,y) = |x− y| instead, condition (4) is not satisfied for the same f and g.
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Now we define Jungck-Ishikawa type iteration scheme with respect to f and g. For the convex b-metric space (X ,d,W )

and x0 ∈ X , we take

gxn+1 = f yn,

gyn = W (gxn, f zn,αn) ,

gzn = W (gxn, f xn,βn)

 (6)

where {αn} and {βn} are real sequences in (0,1). The above iteration scheme may be put in the following form

gxn+1 = µ(g, f ,xn),

where µ(g, f ,xn) = f
(
W
(
gxn, f (W (gxn, f xn,βn)) ,αn

))
.

Theorem 4. Let f ,g : X −→ X be commuting self maps on a complete convex b-metric space (X ,d,W ) with coefficient
s ≥ 1 satisfying (3) for some p < 1

2s+1 with f (X) ⊆ g(X). Then the sequence {gxn} of iterates given by (6) strongly
converges to the unique common fixed point of f and g.

Proof. The existence of the unique common fixed point is shown in Theorem 3. To show that the sequence {gxn} given by
the iteration scheme (6) strongly converges to the unique common fixed point, let w ∈ X be the common fixed point of f
and g. Now,

φ
(
d(gxn+1,w)

)
= φ

(
d( f yn,w)

)
≤ pφ

(
d(gyn,w)

)
+ spφ

(
d(gyn,w)

)
+ spφ

(
d( f yn,w)

)
.

Since gxn+1 = f yn, we get

φ
(
d(gxn+1,w)

)
≤ p(1+ s)

1− sp
φ
(
d(gyn,w)

)
,

or,
d(gxn+1,w)≤ kd(gyn,w),

where k = p(1+s)
1−sp < 1. Now,

d(gyn,w) = d
(
W (gxn, f zn,αn),w

)
≤ (1−αn)d(gxn,w)+αnd( f zn,w).

By the same argument as in the above, we get

d( f zn,w)≤ kd(gzn,w).

Again,
d(gzn,w) = d

(
W (gxn, f xn,βn),w

)
≤ (1−βn)d(gxn,w)+βnd( f xn,w).

Similarly, we get
d( f xn,w)≤ kd(gxn,w).

Summing up, we get

d(gxn+1,w)≤ kd(gyn,w)≤ k
(
(1−αn)d(gxn,w)+αnd( f zn,w)

)
≤ k(1−αn)d(gxn,w)+ k2

αnd(gzn,w)

≤ k(1−αn)d(gxn,w)+ k2
αn

(
(1−βn)d(gxn,w)+ kβnd(gxn,w)

)
≤ kd(gxn,w).

Proceeding as in the proof of Theorem 3, we get the desired result.
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Corollary 1. Let f ,g : X −→ X be commuting self maps on a complete b-metric space (X ,d) with coefficient s≥ 1 such
that

d( f x, f y)≤ p
{

d(gx,gy)+d(gx, f x)+d(gy, f y)
}

∀ x,y ∈ X

where p < 1
2s+1 with f (X)⊆ g(X). Then f and g has a unique common fixed point z ∈ X.

Proof.The result follows from Theorem 3 on taking φ(x) = x, x ∈ X .

Corollary 2. Let f ,g : X −→ X be commuting self maps on a complete b-metric space (X ,d) with coefficient s≥ 1 such
that for some positive integer k

φ

(
d( f kx, f ky)

)
≤ p
{

φ (d(gx,gy))+φ

(
d(gx, f kx)

)
+φ

(
d(gy, f ky)

)}
for some p < 1

2s+1 and for all x,y ∈ X. Then there exists a unique common fixed point of f and g.

Proof.We note that if f and g commutes, that is, f gx = g f x for all x ∈ X , then g f kx = f kgx for all x ∈ X , which shows
g and f k commutes for some k ∈ N. Applying Theorem 2 to the self mapping T = f k, we get that g and T has a unique
common fixed point, say w, so that f kw = gw = w.
Since f k+1w = f w,

g f w = f k( f w) = f k+1w = f w ,

and so f w is a common fixed point of g and T . By the uniqueness of the common fixed point of g and T , we get f w = w
and hence w is a common fixed point of f and g. The uniqueness follows from the fact that if w is a fixed point of f , so is
it for T .

Stability

Harder & Hicks [14] have defined and proved a T -stability result for iteration converging to the fixed point in a metric
space. The same notion can be extended naturally to b-metric spaces.

Definition 4. [14] Let f : X −→ X and w be a fixed point of f , that is, f w = w. For any x0 ∈ X, let the sequence {xn}
generated by the iterative scheme (2) converges to w. Let {x′n} be an arbitrary sequence, and set εn = d

(
x′n+1,µ( f ,x′n)

)
,

n = 0,1,2, . . . . Then the iterative scheme µ( f ,xn) is called f -stable if and only if limn→∞ εn = 0 implies limn→∞ x′n = w.

We require the following result to deduce the stability result.

Lemma 1. [4] If δ is a real number such that 0 ≤ δ < 1, and {εn}∞
n=0 is a sequence of positive numbers such that

limn→∞ εn = 0, then for any sequence of positive numbers {un} satisfying

un+1 ≤ δun + εn, n = 0,1,2, . . . ,

we have limn→∞ un = 0.

Theorem 5. Let f : X −→ X be a mapping on a complete b-metric space (X ,d) with coefficient s ≥ 1 satisfying (3).
For x0 ∈ X, let {xn} be the sequence generated by the iterative scheme xn+1 = µ( f ,xn), n≥ 0 as defined in (2). Then the
iteration scheme is f -stable.

Proof.The existence of the fixed point and the convergence of the iterative sequence defined by (2) is known from Theorem
2. Let {x′n} be an arbitrary sequence in X and define εn = d

(
x′n+1,µ( f ,x′n)

)
, n≥ 0, where µ( f ,x′n) = f y′n. Then we have

d(x′n+1,w)≤ sd(x′n+1, f y′n)+ sd( f y′n,w) = sεn + sd( f y′n,w).
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Now,

φ
(
d( f y′n,w)

)
≤ p
(

φ
(
d(y′n,w)

)
+φ
(
d(y′n, f y′n)

)
+φ(0)

)
≤ pφ

(
d(y′n,w)

)
+ sp

(
φ
(
d(y′n,w)

)
+φ
(
d( f y′n,w)

))
that is,

φ
(
d( f y′n,w)

)
≤ kφ

(
d(y′n,w)

)
,

where k = p(s+1)
1−sp < 1, and therefore

d( f y′n,w)≤ kd(y′n,w).

Hence,
d(x′n+1,w)≤ sεn + kd(y′n,w),

where y′n = W (x′n, f z′n,αn) and z′n = W (x′n, f x′n,βn).

Continuing as in the proof of Theorem 2, we get

d(x′n+1,w)≤ sεn + kd(x′n,w), n = 0,1,2, . . .

The result then follows from Lemma 1.

In [28], Razani & Bagherboum defined and proved ( f ,g)-stability result of the Jungck Picard iteration converging to the
common fixed point in a b-metric space.

Definition 5. [28] Let (Y,d,W ) be a convex b-metric space and X be a subset of Y , and let f ,g : X −→ X be self
mappings such that f (X)⊆ g(X). For any x0 ∈ X, let the sequence {gxn} generated by the iterative scheme (2) converges
to w. Let {gx′n} be an arbitrary sequence, and set εn = d

(
x′n+1,µ( f ,x′n)

)
, n= 0,1,2, . . . . Then the iterative scheme µ( f ,xn)

is called ( f ,g)-stable if and only if limn→∞ εn = 0 implies limn→∞ gx′n = w.

Theorem 6. Let f ,g : X −→ X be self maps on a complete b-metric space (X ,d) with coefficient s ≥ 1 satisfying (4).
For x0 ∈ X, let {gxn} be the sequence generated by the iterative scheme gxn+1 = µ( f ,g,xn), n≥ 0 as defined in (2). Then
the iteration is ( f ,g)-stable.

Proof.The existence of the unique common fixed point and the convergence of the iterative sequence defined by (2) is
known from Theorem 2. Let {gx′n} be an arbitrary sequence in X and define εn = d

(
gx′n+1,µ( f ,g,x′n)

)
, n ≥ 0, where

µ( f ,g,x′n) = f y′n. Then we have

d(gx′n+1,w)≤ sd(gx′n+1, f y′n)+ sd( f y′n,w) = sεn + sd( f y′n,w).

Now,

φ
(
d( f y′n,w)

)
≤ p
(

φ
(
d(gy′n,w)

)
+φ
(
d(gy′n, f y′n)

)
+φ(0)

)
≤ pφ

(
d(gy′n,w)

)
+ sp

(
φ
(
d(gy′n,w)

)
+φ
(
d( f y′n,w)

))
that is,

φ
(
d( f y′n,w)

)
≤ kφ

(
d(gy′n,w)

)
,

where k = p(s+1)
1−sp < 1, and therefore

d( f y′n,w)≤ kd(gy′n,w).

Hence,
d(gx′n+1,w)≤ sεn + kd(gy′n,w),
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where gy′n = W (gx′n, f z′n,αn) and zn = W (gx′n, f x′n,βn).

Continuing as in the proof of Theorem 2, we get

d(gx′n+1,w)≤ sεn + kd(gx′n,w), n = 0,1,2, . . .

The result then follows from Lemma 1.

The following is an analogous result for the existence of a unique common fixed point and the convergence of the iteration
for a contractive condition similar to (4).

Theorem 7. Let f ,g : X −→ X be commuting self maps on a complete b-metric space (X ,d) with coefficient s≥ 1 such
that there exists p < 1

2s satisfying

φ (sd( f x, f y))≤ p
(

φ (d(gx, f x))+φ (d(gy, f y))
)

(7)

for all x,y ∈ X with f (X)⊆ g(X). Then f and g have a unique common fixed point w ∈ X. Moreover, for any x0 ∈ X the
sequence {gxn} generated by the Jungck-Picard iteration, gxn+1 = f xn, n≥ 0 converges strongly to the unique common
fixed point.

Proof.The proof is analogous to that of Theorem 3.

Remark. Analogous results for Theorem 4 (and the corresponding corollaries) and Theorem 6 holds true for commuting
self maps f and g satisfying (7) with f (X)⊆ g(X).

Conclusion

Throughout this paper, we have derived some fixed point theorems for generalized Kannan type mappings in b-metric
spaces and also introduced a Picard-Ishikawa iteration scheme in a convex b-metric space, proving a strong convergence
result. Moreover, we defined a generalized Jungck-Kannan type mapping T with respect to S and proved the existence of
a unique common fixed point with a convergence result. The rate of convergence of the introduced iteration scheme may
be compared to other existing iteration schemes in the literature as a further research.
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