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Abstract: In this paper, we explore several methods of representing subsets ofRn using their geometric and analytic properties. We
present a heuristic, expository approach to estimating thesize of various sets and their boundaries, with the goal of preserving important
features in the representations. The aim is to stimulate interest in and serve as an introduction to this topic as well as two other well
known methods: Jones’β numbers and varifolds from geometric measure theory. We provide various computations and exercises,
numerous illustrations, suggestions for further research, and an extensive list of current resources and references in these areas.
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1 Introduction

In this paper we explain and illuminate a few ideas for (1) representing sets and (2) learning from those representations.
Though some of the ideas and results we explain are likely written down elsewhere (though we are not aware of those
references), our purpose is not to claim priority to those pieces, but rather to stimulate thought and exploration. Our
primary intended audience is students of mathematics even though other, more mature mathematicians may find a few of
the ideas interesting. We believe that cubical covers can beused at an earlier point in the student career and that both the
β numbers idea introduced by Peter Jones and the idea of varifolds pioneered by Almgren and Allard and now actively
being developed by Menne, Buet, and collaborators are stillvery much underutilized by all (young and old!). To that end,
we have written this exploration, hoping that the questionsand ideas presented here, some rather elementary, will
stimulate others to explore the ideas for themselves.

We begin by briefly introducing cubical covers, Jones’β , and varifolds, after which we look more closely at questions
involving cubical covers. Then both of the other approachesare explained in a little bit of detail, mostly as an invitation
to more exploration, after which we close with problems for the reader and some unexplored questions.

2 Representing sets and their boundaries inRn

2.1 Cubical refinements: dyadic Cubes

In order to characterize various sets inRn, we explore the use of cubical covers whose cubes have side lengths which are
positive integer powers of12, dyadic cubes, or more precisely, (closed) dyadicn-cubes with sides parallel to the axes.
Thus the side length at thedth subdivision isl(C) = 1

2d , which can be made as small as desired.

Figure1 illustrates this by looking at a unit cube inR2 lying in the first quadrant with a vertex at the origin. We then
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Fig. 1: Dyadic Cubes.

Fig. 2: Cubical coverC E
d of a setE.

form a sequence of refinements by dividing each side length inhalf successively, and thus quadrupling the number of
cubes each time.

Definition 1. We shall say that the n-cube C (with side length denoted as l(C)) is dyadic if

C=
n

∏
j=1

[mj2−d,(mj +1)2−d], mj ∈ Z, d ∈ N∪{0}.

In this paper, we will assumeC to be a dyadicn-cube throughout. We will denote the union of the dyadicn-cubes with
edge length1

2d that intersect a setE ⊂ Rn by C E
d and define∂C E

d to be the boundary of this union (see Figure2). Two
simple questions we will explore for their illustrative purposes are:

(1) ”If we know L n(C E
d ), what can we say aboutL n(E)” and similarly,

(2) ”If we know H n−1(∂C E
d ), what can we say aboutH n−1(∂E)”

© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 4, 512-533 (2019) /www.ntmsci.com 514

Fig. 3: Jones’β Numbers. The green lines indicate the thinnest cylinder containingΓ in the cubeC. We see from this
relatively large width thatΓ is not very “flat” in this cube.

2.2 Jones’β numbers

Another approach to representing sets inRn, developed by Jones [23], and generalized by Okikiolu [33], Lerman [25],
and Schul [35], involves the question of under what conditions a bounded set E can be contained within a rectifiable
curveΓ , which Jones likened to the Traveling Salesman Problem taken over an infinite set. (See Definition3 below for
the definition of rectifiable.)

Jones showed that if the aspect ratios of the optimal containing cylinders in each dyadic cube go to zero fast enough, the
set E is contained in a rectifiable curve. Jones’ approach ends up providing one useful approach of defining a
representation for a set inRn similar to those discussed in the next section. We return to this topic in Section5.1. The
basic idea is illustrated in Figure3.

2.3 Working upstairs: varifolds

A third way of representing sets inRn usesvarifolds. Instead of representingE ⊂ Rn by working inRn, we work in the
Grassmann Bundle, Rn×G(n,m).

We parameterize the GrassmannianG(2,1) by taking the upper unit semicircle inR2 (including the point(1,0), but not
including (1,π), where both points are given in polar coordinates) and straightening it out into a vertical axis (as in
Figure4). The bundleR2×G(2,1) is then represented byR2× [0,π).
Figure5 illustrates how the tangents are built into this representation of subsets ofRn, giving us a sense of why this
representation might be useful. A circular curve inR2 becomes two half-spirals upstairs (in the Grassmann bundle
representation, as shown in the first image of Figure5). Other curves inR2 are similarly illuminated by their Grassmann
bundle representations. We return to this idea in Section5.2.
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Fig. 4: The vertical axis for the “upstairs.”

Fig. 5: Working Upstairs in the Grassmann bundle.

3 Simple questions

Let E ⊂ Rn andC be any dyadicn-cube as before. Define

C (E,d) = {C | C∩E 6= /0, l(C) = 1/2d}

and, as above,
C

E
d ≡

⋃

C∈C (E,d)

C.

Here are two questions:

(1) GivenE ⊂ Rn, when is there ad0 such that for alld ≥ d0, we have

L
n(C E

d )≤ M(n)L n(E) (1)

for some constantM(n) independent ofE?
(2) GivenE ⊂ Rn, and anyδ > 0, when does there exists ad0 such that for alld ≥ d0, we have

L
n(C E

d )≤ (1+ δ )L n(E)? (2)
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Fig. 6: Concentric Cubes.

Remark.Of course using the fact that Lebesgue measure is a Radon measure, we can very quickly get that ford large
enough (i.e. 2−d small enough), the measure of the cubical cover is as close tothe measure of the set as you want, as long as
the set is compact and has positive measure. But the focus of this paper is on what we can get in a much more transparent,
barehanded fashion, so we explore along different paths, getting answers that are, by some metrics, suboptimal.

Example 1.If E =Qn∩ [0,1]n, thenL n(E) = 0, butL n(C E
d ) = 1 ∀d ≥ 0.

Example 2.Let E be as in Example1. EnumerateE as q̂1, q̂2, q̂3, . . .. Now let Di = B(q̂i ,
ε
2i ) andEε ≡ {∪Di}∩ [0,1]n

with ε chosen small enough so thatL n(Eε)≤ 1
100. ThenL n(Eε )≤ 1

100, butL n(C Eε
d ) = 1 ∀d > 0.

3.1 A Union of balls

For a given setF ⊆ Rn, supposeE = ∪x∈F B̄(x, r), a union of closed balls of radiusr centered at each pointx in F . Then
we know thatE is regular (locally Ahlfors n-regular orlocally n-regular), and thus there exist 0< m< M < ∞ and an
r0 > 0 such that for allx∈ E and for all 0< r < r0, we have

mrn ≤ L
n(B̄(x, r)∩E)≤ Mrn.

This is all we need to establish a sufficient condition for Equation (1) above.

Remark.The upper bound constantM is immediate sinceE is a union ofn-balls, soM = αn, then-volume of the unit
n-ball, works. However, this is not the case fork-regular sets inRn, k < n, since we are now asking for a bound on the
k-dimensional measure of ann-dimensional set which could easily be infinite.

(1) SupposeE = ∪x∈F B̄(x, r), a union of closed balls of radiusr centered at each pointx in F.
(2) LetC = C (E,d) for somed such that 1

2d ≪ r, and letĈ = {3C |C∈ C }, where 3C is ann-cube concentric withC
with sides parallel to the axes andl(3C) = 3l(C), as shown in Figure6.

(3) This implies that for 3C∈ Ĉ

L n(3C∩E)
L n(3C)

> θ > 0, with θ ∈ R. (3)

(4) We then make the following observations:
(a) Note that there are 3n different tilings of the plane by 3C cubes whose vertices live on the1

2d lattice. (This can be
seen by realizing that there are 3n shifts you can perform on a 3C cube and both (1) keep the originally central
cubeC in the 3C cube and (2) keep the vertices of the 3C cube in the1

2d lattice.)
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(b) Denote the 3C cubes in these tilingsTi , i = 1, ...,3n.
(c) DefineĈi ≡ Ĉ ∩Ti .
(d) Note now that by Step (3), the number of 3C cubes inĈi cannot exceed

Ni ≡
L n(E)

θL n(3C)
.

(e) Denote the total number of cubes inC by N
C E

d
.

(f) The number of cubes inC , N
C E

d
, cannot exceed

3n

∑
i=1

Ni = 3n L n(E)
θL n(3C)

.

(g) Putting it all together, we get

L
n(C E

d ) = L
n(∪C∈C C) = N

C E
d
L

n(C)≤ 3n L n(E)
θL n(3C)

L
n(C) =

L n(E)
θ

. (4)

(5) This shows that ifE = ∪x∈F B̄(x, r), then

L
n(C E

d )≤ 1
θ

L
n(E).

We now have two conclusions:

(1) (Regularized sets) We notice that for any fixedr0 > 0, as long as we pickd0 big enough, thenr < r0 andd > d0

imply thatE = ∪x∈F B̄(x, r) satisfies

L
n(C E

d )≤ 1
θ (n)

L
n(E),

for aθ (n)> 0 that depends on n, but not onF .
(2) (Regular sets) Now suppose that

F ∈ Rm ≡ {W ⊂ Rn | mrn < L
n(W∩ B̄(x, r)), ∀ x∈W andr < r0}.

Then we immediately get the same result: for a big enoughd (depending only onr0),

L
n(C F

d )≤ 1
θ (m)

L
n(F),

whereθ (m) > 0 depends only on the regularity class thatF lives in and not on which subset in that class we cover
with the cubes.

3.2 Minkowski content

Definition 2. (Minkowski content).Let W⊂ Rn, and let Wr ≡ {x | d(x,W) < r}. The(n− 1)-dimensional Minkowski
Content is defined asM n−1(W)≡ limr→0

L n(Wr )
2r , when the limit exists (see Figure7).

Definition 3. ((H m,m)-rectifiable set). A set W⊂ Rn is called(H m,m)-rectifiable if H m(W)< ∞ andH m-almost all
of W is contained in the union of the images of countably many Lipschitz functions fromRm toRn. We will userectifiable
and(H m,m)-rectifiable interchangeably when the dimension of the sets are clear from the context.

Definition 4. [m-rectifiable] We will say that E⊂ Rn is m-rectifiable if there is a Lipschitz function mapping a bounded
subset ofRm onto E.

© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 4, 512-533 (2019) /www.ntmsci.com 518

Fig. 7: Minkowski Content.

Theorem 1.M n−1(W) = H n−1(W) when W is a closed,(n-1)-rectifiable set.

See Theorem 3.2.39 in [21] for a proof.

Remark.Notice thatm-rectifiable is more restrictive that(H m,m)-rectifiable. In fact, Theorem1 is false for(H m,m)-
rectifiable sets. See the notes at the end of section 3.2.39 in[21] for details.

Now, letW be (n-1)-rectifiable, setrd ≡√
n
(

1
2d

)

, and chooserδ small enough so that

L
n(Wrd)≤ M

n−1(W)2rd + δ ,

for all d ∈N∪{0} such thatrd ≤ rδ . (Note: Because the diameter of ann-cube with edge length1
2d is rd =

√
n
(

1
2d

)

, no

point ofC W
d can be farther thanrd away fromW. ThusCW

d ∈Wrd .)

Assume thatL n(E) 6= 0 and∂E is (n-1)-rectifiable. LettingW ≡ ∂E, we have

L
n(C E

d )−L
n(E)≤ L

n(Wrd)≤ M
n−1(∂E)2rd + δ ≤ M

n−1(∂E)2rδ + δ

so that

L
n(C E

d )≤ (1+ δ̂)L n(E), whereδ̂ =
M n−1(∂E)2rδ + δ

L n(E)
. (5)

Since we controlrδ andδ , we can makêδ as small as we like, and we have a sufficient condition to establish Equation
(2) above.

The result: let δ̂ be as in Equation (5) andE ⊂ Rn such thatL n(E) 6= 0. Suppose that∂E (which is automatically
closed) is (n-1)-rectifiable andH n−1(∂E)< ∞, then, for everyδ > 0 there exists ad0 such that for alld ≥ d0,

L
n(C E

d )≤ (1+ δ̂)L n(E).

Problem 1. Suppose thatE ⊂ Rn is bounded. Show that for anyr > 0, Er , the set of points that are at most a distance
r from E, has a(H n−1,n−1)-rectifiable boundary. Show this by showing that∂Er is contained in a finite number of
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graphs of Lipschitz functions fromRn−1 to R. Hint: cutEr into small chunksFi with common diameterD ≪ r and prove
that(Fi)r is the union of a finite number of Lipschitz graphs.

Problem 2.Can you show that in fact the boundary ofEr , ∂Er , is actually (n-1)-rectifiable? See if you can use the results
of the previous problem to help you.

Remark.We can cover a unionE of open balls of radiusr, whose centers are bounded, with a coverC E
d satisfying

Equation (2). In this case,∂C E
d certainly meets the requirements for the result just shown.

3.3 Smooth boundary, positive reach

In this section, we show that if∂E is smooth(at leastC1,1), thenE has positivereachallowing us to get an even cleaner
bound, depending in a precise way on the curvature of∂E.

We will assume thatE is closed. DefineEr = {x ∈ Rn | dist(x,E) ≤ r}, cls(x) ≡ {y ∈ E | d(x,E) = |x− y|} and
unique(E) = {x | cls(x) is a single point}.

Definition 5. [Reach] Thereach of E, reach(E), is defined

reach(E)≡ sup{r | Er ⊂ unique(E)}

Remark.Sets of positive reach were introduced by Federer in 1959 [20] in a paper that also introduced the famous coarea
formula.

Remark.If E ⊂ Rn is (n-1)-dimensional andE is closed, thenE = ∂E.

Another equivalent definition involves rolling balls around the boundary ofE. The closed ballB̄(x, r) touchesE if
∂ B̄(x, r)∩∂E 6= /0 and

B̄(x, r)∩E ⊂ ∂ B̄(x, r)∩∂E

Definition 6. Thereach of E, reach(E), is defined

reach(E)≡ sup{r | every ball of radius r touching E touches at a single point}.

Put a little more informally, reach(E) is the supremum of radiir of the balls such that each ball of that radius rolling
around E touches E at only one point (see Figure8). As mentioned above, if∂E is C1,1, then it has positive reach (see
Remark 4.20 in [20]). That is, if for allx∈ ∂E, there is a neighborhood ofx, Ux ⊂ Rn, such that after a suitable change of
coordinates, there is aC1,1 function f : Rn−1 →R such that∂E∩Ux is the graph off . (Recall that a function isC1,1 if its
derivative is Lipschitz continuous.) This implies, among other things, that the (symmetric) second fundamental form of
∂E existsH n−1-almost everywhere on∂E. The fact that∂E is C1,1 implies that atH n−1-almost every point of∂E, the
n−1 principal curvaturesκi of our set exist and|κi| ≤ 1

reach(∂E) for 1≤ i ≤ n−1.

We will use this fact to determine a bound for the(n− 1)-dimensional change in area as the boundary of our set is
expanded outwards or contracted inwards byε (see Figure9, Diagram 1). Let us first look at this inR2 by examining the
following ratios of lengths of expanded or contracted arcs for sectors of a ball inR2 as shown in Diagram 2 in Figure9
below.

H 1(lε )
H 1(l)

=
(r + ε)θ

rθ
= 1+

ε
r
= 1+ εκ

H 1(l−ε)

H 1(l)
=

(r − ε)θ
rθ

= 1− ε
r
= 1− εκ ,
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Fig. 8: Positive and Non-positive reach.

Fig. 9: Moving out and sweeping in.

whereκ is the principal curvature of the circle (the boundary of the2-ball), which we can think of as defining the reach
of a setE ⊂ R2 with C1,1-smooth boundary.

The Jacobian for the normal map pushing in or out byε, which by the area formula is the factor by which the area
changes, is given by∏n−1

i=1 (1± εκi) (see Figure9, Diagram 1). If we definêκ ≡ max{|κ1|, |κ2|, . . . , |κn−1|}, then we have
the following ratios:

Max Fractional Increase ofH n−1 boundary “area” Moving Out:

n−1

∏
i=1

(1+ εκi)≤ (1+ εκ̂)n−1.

Max Fractional Decrease ofH n−1 boundary “area” Sweeping In:

n−1

∏
i=1

(1− εκi)≥ (1− εκ̂)n−1.
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Remark.Notice thatκ̂ = 1
reach(∂E) .

For a ball, we readily find the value of the ratio

L n(B(0, r + ε))
L n(B(0, r))

=

(

r + ε
r

)n

= (1+ εκ)n (settingδ = εκ) = (1+ δ )n, (6)

whereκ = 1
r is the curvature of the ball along any geodesic. Now we calculate the bound we are interested in forE,

assuming∂E is C1,1. DefineEε ⊂ Rn ≡ {x | d(x,E)< ε}. We first compute a bound for

L n(Eε )

L n(E)
=

L n(E)+L n(Eε \E)
L n(E)

= 1+
L n(Eε \E)

L n(E)
. (7)

Sinceκi is a function ofx∈ ∂E definedH n−1-almost everywhere, we may set up the integral below over∂E and do the
actual computation over∂E \K, whereK ≡ {the set of measure 0 whereκi is not defined}. Computing bounds for the
numerator and denominator separately in the second term in (7), we find, by way of the Area Formula [31],

L
n(Eε \E) =

∫ ε

0

∫

∂E

n−1

∏
i=1

(1+ rκi)dH
n−1dr

≤
∫ ε

0

∫

∂E
(1+ rκ̂)n−1dH

n−1dr

= H
n−1(∂E)

(1+ rκ̂)n

nκ̂

∣

∣

∣

∣

ε

0

= H
n−1(∂E)

(

(1+ εκ̂)n

nκ̂
− 1

nκ̂

)

(8)

and

L
n(E)≥

∫ r0

0

∫

∂E

n−1

∏
i=1

(1− rκi)dH
n−1dr

≥
∫ r0

0

∫

∂E
(1− rκ̂)n−1dH

n−1dr

= H
n−1(∂E)

−(1− rκ̂)n

nκ̂

∣

∣

∣

∣

r0

0

=
H n−1(∂E)

nκ̂
, whenr0 =

1
κ̂
. (9)

From7, 8, and9, we have

L n(Eε )

L n(E)
≤ 1+

H n−1(∂E)
(

(1+εκ̂)n
nκ̂ − 1

nκ̂

)

H n−1(∂E)
nκ̂

= (1+ εκ̂)n (settingδ = εκ̂)
= (1+ δ )n. (10)

From this we get that
L

n(Eε)≤ (1+ εκ̂)n
L

n(E)

so that
L

n(C E
d(ε))≤ (1+ εκ̂)n

L
n(E)
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Fig. 10: Cubes on the boundary.

whered(ε) = log2(
√

n
ε ) is found by solving

√
n 1

2d = ε. Thus, when∂E is smooth enough to have positive reach, we find
a nice bound of the type in Equation (2), with a precisely known dependence on curvature.

4 A boundary conjecture

What can we say about boundaries? Can we bound

H n−1(∂C E
d )

H n−1(∂E)
?

Conjecture 1.If E ⊂ Rn is compact and∂E is C1,1,

limsup
d→∞

H n−1(∂C E
d )

H n−1(∂E)
≤ n.

Proof. [Brief Sketch of Proof forn= 2]

(1) Since∂E is C1,1, we can zoom in far enough at any pointx∈ ∂E so that it looks flat.
(2) LetC be a cube in the coverC (E,d) that intersects the boundary nearx and has faces in the boundary∂C E

d . Define
F = ∂C∩∂C E

d .
(3) (Case 1) Assume that the tangent atx, Tx∂E, is not parallel to either edge direction of the cubical cover (see Figure11).

(1) LetΠ be the projection onto the horizontal axis and notice thatH 1(F)
Π(F) ≤ 2+ ε for any epsilon.

(2) This is stable to perturbations which is important sincethe actual piece of the boundary∂E we are dealing with
is not a straight line.

(4) (Case 2) Suppose that the tangent atx, Tx∂E, is parallel to one of the two faces of the cubical cover, and letUx be a
neighborhood ofx∈ ∂E.
(1) Zooming in far enough, we see that the cubical boundary can only oscillate up and down so that the maximum

ratio for any horizontal tangent is (locally) 2.
(2) But we can create a sequence of examples that attain ratios as close to 2 as we like by finding a careful sequence

of perturbations that attains a ratio locally of 2− ε for anyε (see Figure10).

(3) That is, we can create perturbations that, on an unbounded set ofd’s, {di}∞
i=1, yield a ratio

H 1(C E
di
∩Ux)

∂E > 2− ε,
and we can sendε → 0.

(5) Use the compactness of∂E to put this all together into a complete proof.

Problem 3. Suppose we excludeC’s that contain less than some fractionθ of E (as defined in Conjecture1) from the
cover to get the reduced cover̂C E

d . In this case, what is the optimal boundB(θ ) for the ratio of boundary measures

limsup
d→∞

H n−1(∂ Ĉ E
d )

H n−1(∂E)
≤ B(θ )?
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Fig. 11: The case in whichθ , the angle betweenTx∂E and thex-axis, is neither 0 norπ/2.

5 Other representations

5.1 The Jones’β approach

As mentioned above, another approach to representing sets in Rn, developed by Jones [23], and generalized by Okikiolu
[33], Lerman [25], and Schul [35], involves the question of under what conditions a bounded set E can be contained
within a rectifiable curveΓ , which Jones likened to the Traveling Salesman Problem taken over an infinite set. While
Jones worked inC in his original paper, the work of Okikiolu, Lerman, and Schul extended the results toRn ∀n∈ N as
well as infinite dimensional space.

Recall that a compact, connected setΓ ⊂ R2 is rectifiable if it is contained in the image of a countable set of Lipschitz
maps fromR into R2, except perhaps for a set ofH 1 measure zero. We have the result that ifΓ is compact and
connected, thenl(Γ ) = H 1(Γ )< ∞ implies it is rectifiable (see pages 34 and 35 of [19]).

Let WC denote the width of the thinnest cylinder containing the setE in the dyadicn-cubeC (see Figure12), and define
theβ number ofE in C to be

βE(C)≡
WC

l(C)
.

Jones’ main result is this theorem:

Theorem 2. [23] Let E be a bounded set andΓ be a connected set both inR2. DefineβΓ (C) ≡ WC
l(C) , where WC is the

width of the thinnest cylinder in the2-cube C containingΓ . Then, summing over all possible C,

β 2(Γ )≡ ∑
C

(βΓ (3C))2l(C)< η l(Γ )< ∞, whereη ∈ R.

Conversely, ifβ 2(E)< ∞ there is a connected setΓ , with E⊂ Γ , such that

l(Γ )≤ (1+ δ )diam(E)+αδ β 2(E),

where δ > 0 and αδ = α(δ ) ∈ R.

© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 4, 512-533 (2019) /www.ntmsci.com 524

Fig. 12: Jones’β Numbers andWC. Each of the two green lines in a cubeC is an equal distance away from the red line
and is chosen so that the green lines define the thinnest cylinder containingE∩C. Then the red lines are varied over all
possible lines inC to find that red line whose corresponding cylinder is the thinnest of all containing cylinders. In this
sense, the minimizing red lines are the best fit toE in eachC.

Jones’ main result, generalized toRn, is that a bounded setE ⊂ Rn is contained in a rectifiable curveΓ if and only if

β 2(E)≡ ∑
C

(βE(3C))2l(C)< ∞,

where the sum is taken over all dyadic cubes.

Note that eachβ number ofE is calculated over the dyadic cube 3C, as defined in Section3.1. Intuitively, we see that in
order forE to lie within a rectifiable curveΓ , E must look flat as we zoom in on points ofE sinceΓ has tangents at
H 1-almost every pointx ∈ Γ . Since bothWC andl(C) are in units of length,βE(C) is a scale-invariant measure of the
flatness ofE in C. In higher dimensions, the analogous cylinders’ widths andcube edge lengths are also divided to get a
scale-invariantβE(C).

The notion of local linear approximation has been explored by many researchers. See for example the work of Lerman
and collaborators [15,5,40,6]. While distances other than the sup norm have been considered when determining
closeness to the approximating line, see [25], there is room for more exploration there. In the section below, Problems
and Questions, we suggest an idea involving the multiscale flat norm from geometric measure theory.

5.2 A varifold approach

As mentioned above, a third way of representing sets inRn usesvarifolds. Instead of representingE ⊂ Rn by working
in Rn, we work in theGrassmann Bundle, Rn ×G(n,m). Advantages include, for example, the automatic encoding of
tangent information directly into the representation. By building into the representation this tangent information,we make
set comparisons where we care about tangent structure easy and natural.

Definition 7. [Grassmannian] The m-dimensional Grassmannian inRn,

G(n,m) = G(Rn,m),

is the set of all m-dimensional planes through the origin.
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For example,G(2,1) is the space of all lines through the origin inR2, andG(3,2) is the space of all planes through the
origin inR3. The Grassmann bundleRn×G(n,m) can be thought of as a space whereG(n,m) is attached to each point in
Rn.

Definition 8. [Varifold] A varifold is a Radon measureµ on the Grassmann bundleRn×G(n,m).

Supposeπ : (x,g) ∈ Rn × G(n,m) → x. One of the most common appearances of varifolds are those that arise from
rectifiable setsE. In this case the measureµE onRn×G(n,m) is the pushforward ofm-Hausdorff measure onE by the
tangent mapT : x→ (x,TxE).

Let E ⊂Rn be an (H m,m)-rectifiable set (see Definition3). We know the approximatem-dimensional tangent spaceTxE
existsH m-almost everywhere sinceE is (H m,m)-rectifiable, which in turn implies that, except for anH m-measure 0
set,E is contained in the union of the images of countably many Lipschitz functions fromRm to Rn.

The measure ofA ⊂ Rn ×G(n,m) is given by µ(A) = H m(T−1{A}). Let S≡ {(x,TxE) |x ∈ E}, the section of the
Grassmann bundle defining the varifold.S, intersected with each fiber{x}×G(n,m), is the single point(x,TxE), and so
we could just as well use the projectionπ in which case we would haveµE(A) = H m(π(A∩S)).

Definition 9. A rectifiable varifoldis a radon measureµE defined on an (H m,m)-rectifiable set E⊂ Rn. Recalling S≡
{(x,TxE) |x∈ E}, let A⊂ Rn×G(n,m) and define

µE(A) = H
m(π(A∩S)).

We will call E = π(S) the “downstairs” representation ofS for any S⊂ Rn ×G(n,m), and we will callS= T(E) ⊂
Rn×G(n,m) the “upstairs” representation of any rectifiable setE, whereT is the tangent map over the rectifiable setE.

Fig. 13: Working upstairs.

Figure13, repeated from above, illustrates how the tangents are built into this representation of subsets ofRn, giving us a
sense of why this representation might be useful. Suppose wehave three line segments almost touching each other, i.e.
appearing to touch as subsets ofR2. The upstairs view puts each segment at a different height corresponding to the angle
of the segment. So, these segments are not close in any sense in R2×G(n,m). Or consider a straight line segment and a
very fine sawtooth curve that may look practically indistinguishable, but will appear drastically different upstairs.

We can use varifold representations in combination with a cubical cover to get a quantized version of a curve that has
tangent information as well as position information. If, for example, we cover a setS⊂ R2×G(2,1) with cubes of edge
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length 1
2d and use this cover as a representation forS, we know the position and angle to within

√
3

2d+1 . In other words, we
can approximate our curveS⊂ R2×G(2,1) by the union of the centers of the cubes (with edge length1

2d ) intersectingS.
This simple idea seems to merit further exploration.

6 Problems and questions

Problem 4.Find a smooth∂E, with E ⊂ Rn, such that

H
n−1(∂C

E
d )/H n−1(∂E) = 0 ∀d.

Hint: Look at unboundedE ⊂ R2 such thatL 2(Ec)< ∞.

Problem 5.Suppose thatE is open andH n−1(∂E)< ∞. Show that if thereachof ∂E is positive, then

liminf
d→∞

H n−1(∂C E
d )

H n−1(∂E)
≥ 1.

Hint: First show that∂E has unique inward and outward pointing normals. (Takes a bitof work!) Next, examine the map
F : ∂E → Rn, whereF(x) = x+η(x)N(x), N(x) is the normal to∂E at x, andη(x) is a positive real-valued function
chosen so thatlocally F(∂E) = ∂C E

d . Use the Binet-Cauchy Formula to find the Jacobian, and then apply the Area
Formula. To do this calculation, notice that at any pointx0 ∈ ∂E we can choose coordinates so thatTx0∂E is horizontal
(i.e. N(x0) = en). Calculate usingF : Tx0∂E = Rn−1 → Rn whereF(x) = x+η(x)N(x). (See Chapter 3 of [18] for the
Binet-Cauchy formula and the Area Formula.)

Problem 6.SupposeE has dimensionn−1, positive reach, and is locally regular (inRn).
(a) Find bounds forH n(C E

d )/ 1
2d .

(b) How does this ratio relate toH n−1(E)?

Hint: Use the ideas in Section3.3to calculate a bound on the volume of the tube with thickness 2
√

n
2d centered onE.

Question 1.Can we use the “upstairs” version of cubical covers to find better representations for sets and their boundaries?
(Of course, “better” depends on your objective!)

For the following question, we need the notion of themultiscale flat norm[32]. The basic idea of this distance, which
works in spaces of oriented curves and surfaces of any dimension (known as currents), is that we can decompose the
curve or surfaceT into (T − ∂S)+ ∂S, but we measure the cost of the decomposition by adding the volumes of T − ∂S
andS (not ∂S!). By volume, we mean them-dimensional volume, orm-volume of anm-dimensional object, so ifT is
m-dimensional, we would add them-volume ofT − ∂Sand the (m+1)-volume ofS (scaled by the parameterλ ). We get
that

Fλ (T) = min
S

Mm(T − ∂S)+λMm+1(S).

It turns out thatT−∂Sis the best approximation toT that has curvature bounded byλ [2]. We exploit this in the following
ideas and questions.

Remark.Currents can be thought of as generalized oriented curves orsurfaces of any dimensionk. More precisely, they
are members of the dual space to the space ofk-forms. For the purposes of this section, thinking of them as(perhaps
unions of pieces of) orientedk-dimensional surfacesW, so thatW and−W are simply oppositely oriented and cancel if
we add them, will be enough to understand what is going on. Fora nice introduction to the ideas, see for example the first
few chapters of [31].
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Question 2.Choosek∈ {1,2,3}. In what follows we focus on setsΓ which are one-dimensional, the interior of a cubeC
will be denotedCo, and we will work at some scaled, i.e. the edge length of the cube will be1

2d .

Consider the piece ofΓ in Co, Γ ∩Co. Inside the cubeC with edge length1
2d , we will use the flat norm to

(1) find an approximation ofΓ ∩Co with curvature bounded byλ = 2d+k and
(2) find the distance of that approximation fromΓ ∩Co.

This decomposition is then obtained by minimizing

M1((Γ ∩Co)− ∂S)+2d+kM2(S) = H
1((Γ ∩Co)− ∂S)+2d+k

L
2(S).

The minimalSwill be denotedSd (see Figure14).

Fig. 14: Multiscale flat norm decomposition inspiring the definitionof βF
Γ .

Suppose that we defineβF
Γ (C) by

βF
Γ (C)l(C) = 2d+k

L
2(Sd)

so that
βF

Γ (C) = 22d+k
L

2(Sd).

What can we say about the properties (e.g. rectifiability) ofΓ given the finiteness of∑C

(

βF
Γ (3C)

)2
l(C)?

Question 3.Can we get an advantage by using the flat norm decomposition asa preconditioner before we find cubical
cover approximations? For example, define

F
Γ
d ≡ C

Γd
d andΓd ≡ Γ − ∂Sd,

whereSd = argmin
S

(

H
1(Γ − ∂S)+2d+k

L
2(S)

)

.

Since the flat norm minimizers have bounded mean curvature, is this enough to force the cubical covers to give us better
quantitative information onΓ ? How about in the case in whichΓ = ∂E, E ⊂ R2?
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7 Further exploration

There are a number of places to begin in exploring these ideasfurther. Some of these works require significant dedication
to master, and it is always recommended that you have someonewho has mastered a path into pieces of these areas that
you can ask questions of when you first wade in. Nonetheless, if you remember that the language can always be translated
into pictures, and you make the effort to do that, headway towards mastery can always be made. Here is an annotated list
with comments:

(1) (Primary Varifold References) Almgren’s little book [4] and Allard’s founding contribution [1] are the primary
sources for varifolds. Leon Simon’s book on geometric measure theory [36] (available for free online) has a couple
of excellent chapters, one of which is an exposition of Allard’s paper.

(2) (Recent Varifold Work) Both Buet and collaborators [8,9,7,10,11] and Charon and collaborators [12,13,14] have
been digging into varifolds with an eye to applications. While these papers are a good start, there is still a great deal
of opportunity for the use and further development of varifolds. On the theoretical front, there is the work of Menne
and collaborators [29,30]. We want to call special attention to the recent introduction to the idea of a varifold that
appeared in the December 2017 AMS Notices [30].

(3) (Geometric Measure Theory I) The area underlying the ideas here are those from geometric measure theory. The
fundamental treatise in the subject is still Federer’s 1969Geometric Measure Theory[21] even though most people
start by reading Morgan’s beautiful introduction to the subject,Geometric Measure Theory: A Beginner’s Guide[31]
and Evans’Measure Theory and Fine Properties of Functions[18]. Also recommended are Leon Simon’s lecture
notes [36], Francesco Maggi’s book that updates the classic Italian approach [27], and Krantz and Parks’Geometric
Integration Theory[24].

(4) (Geometric Measure Theory II) The book by Mattila [28] approaches the subject from the harmonic-analysis-flavored
thread of geometric measure theory. Some use this as a first course in geometric measure theory, albeit one that does
not touch on minimal surfaces, which is the focus of the othertexts above. De Lellis’ expositionRectifiable Sets,
Densities, and Tangent Measures[17] or Priess’ 1987 paperGeometry of Measures inRn: Distribution, Rectifiability,
and Densities[34] is also very highly recommended.

(5) (Jones’β ) In addition to the papers cited in the text [23,33,25,35], there are related works by David and Semmes
that we recommended. See for example [16]. There is also the applied work by Gilad Lerman and his collaborators
that is often inspired by Jones’β and his own development of Jones’ ideas in [25]. See also [15,40,39,5]. See also
the work by Maggioni and collaborators [26,3].

(6) (Multiscale Flat Norm) The flat norm was introduced by Whitney in 1957 [38] and used to create a topology on
currents that permitted Federer and Fleming, in their landmark paper in 1960 [22], to obtain the existence of
minimizers. In 2007, Morgan and Vixie realized that a variational functional introduced in image analysis was
actually computing a multiscale generalization of the flat norm [32]. The ideas are beginning to be explored in these
papers [37].

A Measures: a brief reminder

In this section we remind the reader of a handful of concepts used in the text.

(1) (Measure) One way to think of a measure is as a generalization of the familiar notions of length, area, and volume
in a way that allows us to define how we assign “size” to a given subset of a setX, the most common being that of
n-dimensional Lebesgue measureL n. Formally, letX be a nonempty set and 2X be the collection of all subsets ofX.
A measureis defined [18] to be a mappingµ : 2X → [0,∞] such that
(a) µ( /0) = 0 and
(b) if

A⊂ ∪∞
i=1Ai ,
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then

µ(A)≤
∞

∑
i=1

µ(Ai).

Note that in most texts, this definition is known as anouter measure, but we use this definition with the advantage
that we can still “measure” non-measurable sets.

(2) (µ-measurable) A subsetS⊂ X is calledµ-measurable if and only if it satisfies the Carathéodory condition for each
setA⊂ X:

µ(A) = µ(A∩S)+ µ(A\S).

(3) (Radon Measure) Let us define the Borel sets inRn to be those sets that are derived from the set of all open sets in
Rn through the operations of countable union, countable intersection, and set difference. Then a measureµ onRn is
a Radonmeasure if [18]
(a) every Borel set isµ-measurable; i.e.µ is aBorel measure.

(b) for eachA⊂ Rn there exists a Borel setB such thatA⊂ B andµ(A) = µ(B); i.e. µ is Borel regular.

(c) for each compact setK ∈ Rn, µ(K)< ∞; i.e. µ is locally finite.

(4) (Hausdorff Measure) With this outer (radon) measure, wecan measurek-dimensional subsets ofRn (k ≤ n). While
it is true thatL n = H n for n∈ N (see section 2.2 of [18]), Hausdorff measureH k is also defined fork∈ [0,∞) so
that even sets as wild as fractals aremeasurablein a meaningful way (see Figure15). To compute thek-dimensional
Hausdorff measure ofA⊂ Rn:
(a) CoverA with a collection of setsE = {Ei}∞

i=1, where diam(Ei)≤ d ∀i.
(b) Compute thek-dimensional measure of that cover:

V
k

E (A) = ∑
i

α(k)

(

diam(Ei)

2

)k

,

whereα(k) is thek-volume of the unitk-ball.
(c) DefineH k

d (A) = infE V k
E
(A), where the infimum is taken over all covers whose elements have maximal diameter

d.
(d) Finally, we defineH k(A) = limd↓0H k

d (A).

Fig. 15: The Hausdorff Measure is derived from a cover of arbitrary sets.

© 2019 BISKA Bilisim Technology



NTMSCI 7, No. 4, 512-533 (2019) /www.ntmsci.com 530

(5) (Approximate Tangent Plane) We present here an approximate tangentk-plane based on integration. (The
one-dimensional version is of course an approximate tangent line.) We start with the fact that we can integrate
functions defined onRn overk-dimensional sets usingk-dimensional measuresµ (typically H k). We zoom in on
the pointp through dilation of the setF:

Fρ(p) = {x∈Rn | x=
y− p

ρ
+ p for somey∈ F}.

We will say that the setF has an approximate tangentk-planeL at p if the dilation ofFρ(p) converges weakly toL;
i.e. if

∫

Fρ
φdµ →

∫

L
φdµ asρ → 0

for all continuously differentiable, compactly supportedφ : Rn → R. In the next two figures, we note that the solid
green lines are the level sets ofφ while the dashed green line indicates the boundary of the support of φ . Note also
that theρ ’s of 0.4, 0.1, and 0.02 are approximate.

Fig. 16: The case of 1-planes (lines) whereL is the weak limit of the dilations ofF .

Fig. 17: The case of 1-planes (lines) whereL is not the weak limit of the dilations ofF .
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