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Abstract: In this paper we introduce an iterative scheme for approximating a common element in the set of solution of split monotone
variational inclusion, mixed equilibrium problem and common fixed point for finite families of demicontractive mappings. We prove
a strong convergence theorem for the sequence generated by the scheme. The results presented generalize and improve some recently
announced ones.
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1 Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let S : C→C be a map. A point x∈C is called a
fixed point of S if Sx = x, and the set of all fixed points of S is denoted by F(S) := {x ∈C : Sx = x}. The mapping S is said
to be quasi nonexpansive if F(S) 6= /0 and ||Sx−x∗|| ≤ ||x−x∗|| for all x ∈C and x∗ ∈ F(S). S is said be k-demicontractive
if for k ∈ (0,1),

||Sx− x∗||2 ≤ ||x− x∗||2 + k||Sx− x||2 ∀x ∈ C and x∗ ∈ F(S). (1)

We can easily see that (1) is equivalent to

〈Sx− x∗,x− x∗〉 ≤ ||x− x∗||2− 1− k
2
||Sx− x||2. (2)

Let F : C×C→ R be a bifunction and A : C→ H be a nonlinear mapping. The mixed equilibrium problem (MEP) is:
Find x ∈C such that

F(x,y)+ 〈Ax,y− x〉 ≥ 0, ∀y ∈C. (3)

Mixed equilibrium problem (MEP)(3) was first studied by Moudafi and Thera [17]. The set of solution of MEP(3) is
denoted by Sol(MEP(3)). If F = 0, then MEP(3) reduces to the classical variational inequality problem (VIP), which is to
find x ∈C such that

〈Ax,y− x〉 ≥ 0, ∀y ∈C. (4)

The (VIP) was introduced and studied by Hartmann and Stampacchia [11] . If A = 0, MEP(3) reduces to the equilibrium
problem (EP): find x ∈C such that

F(x,y)≥ 0, ∀y ∈C. (5)
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which was introduced and studied by Blum and Oettli [2]. The set of solutions of the equilibrium problem (5) is denoted
by Sol(EP(5)).

Numerous problems in optimization, economics and physics reduce to finding a solution of equilibrium problems. Some
methods have been proposed to solve equilibrium problems in Hilbert spaces, for example Blum and Oettli [2],
Combettes and Hirstoaga [8]; Tada and Takahashi [22,23]. Takahashi and Takahashi [21] obtained weak and strong
convergence theorems for finding a common element in the set of solutions of an equilibrium problem and a set of fixed
points of nonexpansive mappings in a Hilbert space.

It is known that if H is a Hilbert space, then for every point x ∈ H, there exists a unique nearest point in C denoted by
PCx such that

||x−PCx|| ≤ ||x− y||, ∀y ∈C.

The mapping PC is called the metric projection of H onto C. It is a common knowledge that PC is nonexpansive and
satisfies

〈x− y,PCx−PCy〉 ≥ ||PCx−PCy||2, ∀x,y ∈ H.

Further, for x ∈ H the following always hold

〈x−PCx,y−PCx〉 ≤ 0, ∀y ∈C,

which implies that
||x− y||2 ≥ ||x−PCx||2 + ||y−PCx||2, ∀x ∈ H, y ∈C. (6)

Definition 1. A mapping T : H→ H is said to be

(1) Monotone, if
〈T x−Ty,x− y〉 ≥ 0, ∀x y ∈ H;

(2) α-inverse strongly monotone, if there exists a constant α > 0 such that

〈T x−Ty,x− y〉 ≥ α||T x−Ty||2, ∀x y ∈ H;

(3) β -Lipschitz continuous, if there exists a constant β > 0 such that

||T x−Ty|| ≤ β ||x− y||, ∀x y ∈ H.

Remark. If T is α-inverse strongly monotone mapping, then T is monotone and 1
α

Lipschitz continuous.

Definition 2. A multi-valued mapping M : H → 2H is called monotone if for all x,y ∈ H, with u ∈ Mx and v ∈ My,
〈x− y,u− v〉 ≥ 0 hold.

Definition 3. A monotone mapping M : H→ 2H is maximal, if the graph G(M) of M is not properly contained in the graph
of any other monotone mapping define on H.

It is known that a monotone mapping M is maximal if and only if for (x,u) ∈ H×H,〈x− y,u− v〉 ≥ 0, for every (y,v) ∈
G(M) implies that u ∈Mx.
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Definition 4. Let M : H → 2H be a multi-valued maximal monotone mapping, then the resolvent mapping JM
λ

: H → H
associated with M and λ is defined by

JM
λ
(x) = (I +λM)−1x, x ∈ H, λ > 0. (7)

Remark. [12] The resolvent operator JM
λ

is single-valued, nonexpansive and firmly nonexpansive.

Let H1 and H2 be real Hilbert spaces. Let f : H1 → H1, g : H2 → H2 be inverse strongly monotone mappings and
M1 : H1→ 2H1 , M2 : H2→ 2H2 be maximal monotone mappings.

Let B : H1 → H2 be a bounded linear mapping. The split monotone variational inclusion problem(SpMVIP) is to find
x∗ ∈ H1 such that

0 ∈ f (x∗)+M1(x∗), (8)

and
y∗ = Bx∗ ∈ H2 solves 0 ∈ g(y∗)+M2(y∗). (9)

If we consider (8) separately, we have a monotone variational inclusion problem (MVIP) with its solution set
Sol(MVIP(8) and (9) is a monotone variational inclusion problem (MVIP) with its solution set Sol(MVIP(9).

The solution set of SpMVIP(8)-(9) is denoted by Sol(SpMVIP)= {x∗ ∈H1 : x∗ ∈ Sol(MVIP(8) and Bx∗ ∈ Sol(MVIP(9)}.

Censor et al. [5] introduced the following split variational inequality problem (SpVIP): Let f : H1→ H1, g : H2→ H2 be
nonlinear singled-valued mappings and let B : H1→ H2 be a bounded linear operator with its adjoint operator B∗. Let C
and Q be nonempty, closed and convex subsets of H1 and H2 respectively. The SpVIP is then formulated as follows: Find
a point x∗ ∈C such that

〈 f x∗,x− x∗〉 ≥ 0, ∀x ∈C, (10)

and such that
y∗ = Bx∗ ∈ Q and solves 0 ∈ 〈g(y∗),y− y∗〉 ≥ 0, ∀y ∈ Q. (11)

The solution set of SpVIP(10)-(11) is denoted by Sol(SpVIP(10)-(11))= {x∗ ∈ C : x∗ ∈ Sol(VIP(10)) and Bx∗ ∈
Sol(VIP(11))}. SpVIP(10)-(11) is a special case of SpMVIP(8)-(9).

From SpVIP(10)-(11), if C = H1, Q = H2; and letting x = x∗− f (x∗) ∈ H1 and y = Bx∗− g(Bx∗) ∈ H2 then the result
reduces to split null point problem (SpNPP)which was introduce by Censor et al. [5]. It is to find x∗ ∈ H1 such that
f (x∗) = 0 and g(Bx∗) = 0.

Moudafi [18] introduced and studied the iterative method for solving SpMVIP(8)-(9) and noted that SpMVIP(8)-(9)
include as special cases SpVIP(10)-(11), split null point problem, the split fixed point problem and split feasibility
problem see [3,4,6,7,8,18]. These have been studied by several authors and applied to modelling of intensity-modulated
radiation therapy treatment planning. Also for modelling of inverse problems arising from phase retrieval and many real
life problems; for example in sensor networks in computerized tomography and data compression.

If f ≡ 0 and g≡ 0 the SpMVIP(8)-(9) reduces to the following split null point problem (SpNPP): find x∗ ∈ H1 such that

0 ∈M1(x∗) (12)
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and
y∗ = Bx∗ ∈ H2 solves 0 ∈M2(y∗). (13)

Byrne et al [3], introduced the following iterative scheme and obtained weak and strong convergence theorems for solving
SpVIP(12)-(13); for a given x0 ∈ H1 the sequence {xn} was generated by

xn+1 = JM1
λ

(
xn + γB∗(JM2

λ
− I)Bxn

)
, f or λ > 0.

Motivated by the work of Byrne et al [3]. Kazmi and Rizvi [13] under some appropriate conditions, introduced and
studied the following iterative scheme for approximation of solution of SpVIP(12)-(13) and fixed point of a nonexpansive
mapping in the framework of real Hilbert space.un = JM1

λ

(
xn + γB∗(JM2

λ
− I)Bxn

)
,

xn+1 = αnh(xn)+(1−αn)Sun.
(14)

Recently Shehu and Ogbuisi [20] introduced and studied the following iterative scheme for approximating a common
solution of a fixed point problem for strictly pseudocontractive mappings and SpMVIP(8)-(9) without f and g being
necessarily zero and obtained a strong convergence result under some appropriate conditions imposed on the sequences
{αn} and {βn}, 

wn = (1−αn)xn

yn = JM1
λ

(I−λ f1)(wn + γB∗(JM2
λ

(I−λ f2)− I)Bwn

xn+1 = (1−βn)yn +βnSyn, ∀n≥ 0.

(15)

Very recently Kazmi et al. [12] studied a hybrid-extragradient iterative method and approximated a common element of
the set of solutions of split monotone variational inclusion, mixed equilibrium problem and fixed-point problem for a
nonexpansive mapping. They studied under certain appropriate conditions imposed on {rn},λ and {αn}, the convergence
of the sequence define by the following scheme;

x0 = x ∈ H1,

yn = JM1
λ

(I−λ f )xn,

ln = JM2
λ

(I−λg)Byn,

zn = PC[yn + γB∗(ln−Byn)],

wn = Trn(I− rnA)zn,

un = αnxn +(1−αnSnTrn(zn− rnAwn),

Cn =
{

z ∈ H1 : ||un− z||2 ≤ ||xn− z||2
}
,

Qn =
{

z ∈ H1 : 〈xn− z,x− xn〉 ≥ 0
}
,

xn+1 = PCn∩Qnx, n≥ 1.

(16)

Motivated by the above mention results, we introduce an iterative scheme for approximating a common element in the
set of solution of SpMVIP(8)-(9), (MEP(3)) and fixed point problem for demicontractive mappings. Furthermore a
strong convergence theorem is established. Our result extends, generalized and improve the work of Kazmi [12] and
many results announced recently.
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2 Preliminaries

We present some important results needed in the sequel.

2.1 Asumption

The bifunction F : C×C→ R is required to satisfies the following conditions:

(A) F(x,x) = 0, ∀x∈C;

(B) F is monotone, i.e.,F(x,y)+F(y,x)≤ 0 ∀x,y ∈C;

(C) limsupt→o F(x+ t(z− x),y)≤ F(x,y), ∀x,y,z ∈C;

(D) The function y 7→ F(x,y) is convex and lower semi-continuous.

2.2 Asumption

For the bifunction F : C×C→ R the inequality

F(x,y)+F(y,z)+F(z,x)≤ 0, ∀x,y,z ∈C,holds. (17)

Lemma 1. [8] Let C be a nonempty closed convex subset of H1. Assume that F : C×C→ R satisfies (A1-A4). For r > 0
and for all x ∈ H1, define a mapping Tr : H1→C as follows:

Tr(x) = {z ∈C : F(z,y)+
1
r
〈y− z,z− x〉 ≥ 0, ∀y ∈C}, (18)

then the following hold:

(i) For each x ∈ H1, Tr(x) 6= /0;
(ii) Tr is single-valued;

(iii) Tr is firmly nonexpansive;
(iv) Fix(Tr) =Sol(EP(5));
(v) Sol(EP(5))is closed and convex.

Remark. From Lemma 1 (i)-(ii) we have

rF(Try)+ 〈Trx− x,y−Trx〉 ≥ 0, ∀y ∈C, x ∈ H1. (19)

Again, Lemma 1 (iii) implies
||Trx−Try|| ≤ ||x− y|| ∀x, y ∈ H1. (20)

Furthermore, inequality (19) implies

||Trx− y||2 ≤ ||x− y||2−||Trx− x||2 +2rF(Trx,y), ∀y ∈C, x ∈ H1. (21)
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Lemma 2.[9,10] Let H be a Hilbert space and T : H→ H a nonexpansive mapping then for all x,y ∈ H,

〈(x−T x)− (y−Ty),Ty−T x〉 ≤ 1
2
||(T x− x)− (Ty− y)||2 (22)

and consequently if y ∈ Fix(T ) then

〈x−T x,Ty−T x〉 ≤ 1
2
||T x− x||2. (23)

It is well known that a real Hilbert space H1 satisfies the following identities

(1) ||x+ y||2 ≤ ||x||2 +2〈y,x+ y〉, ∀x,y ∈ H.

(2) ||αx+(1−α)y||2 = α||x||2 +(1−α)||y||2−α(1−α)||x− y||2. ∀x,y ∈ H and α ∈ (0,1).

Lemma 3.[16] (Demiclosedness principle) Let C be a nonempty,closed and convex subset of a Hilbert space H. Let
T : C→C be k-strictly pseudocontractive mapping. Then (I−T ) is demiclosed at 0, i.e., if xn ⇀ x∈C and (xn−T xn)→ 0,
then x = T x.

Lemma 4. [19,24] Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnδn, n≥ 0,

where {γn} is a sequence in (0,1) and {δn} is a sequence in R such that

(1) ∑
∞
n=0 γn = ∞,

(2) limsupn→∞ δn ≤ 0.

Then limn→∞ an = 0.

Lemma 5. [14] Let M : H → 2H be a maximal monotone mapping and f : H → H be a Lipschitz continuous mapping,
then G = M+ f : H→ 2H is a maximal monotone mapping.

A mapping T : H → H is said be averaged if and only if it can be written as average of the identity mapping and a
nonexpansive mapping. i.e

T := (1−β )I +βS,

where β ∈ (0,1) and S : H→ H is a nonexpansive mapping and I is the identity mapping on H. Every averaged mapping
is noneexpansive and every firmly nonexpansive mapping is averaged. Also since the resolvent of maximal monotone
operators are nonexpansive, then they are averaged and therefore nonexpansive see [1,4,16,18].

3 Main results

Theorem 1. Let H1 and H2 be real Hilbert spaces and B : H1→ H2 be a bounded linear operator with it’s adjoint
operator B∗. Let F : C×C→ R be a bifunction satisfying assumption 2.1((A1),(A2),(A3) and (A4)) and assumption 2.2;
let M1 : H1→ 2H1 , M2 : H2→ 2H2 be the multi-valued maximal monotone mappings; let A : C→ H1, f : H1→ H1 and
g : H2→ H2 be respectively σ ,θ1,θ2-inverse strongly monotone mappings and let Si : C→C for i = 1,2, ...,N be finite
family of ki-demicontractive mappings such that Ω = Sol(SpMV IP)∩Sol((MEP)∩ (∩N

i=1F(Si) 6= /0, k = min1≤i≤N{ki}.
Let the iterative sequences {xn}, {yn}, {ln}, {zn}, {tn} and {un} be generated by the following algorithm:

© 2019 BISKA Bilisim Technology

http://www.ntmsci.com/jacm


122 Bashir Ali and M. S. Lawan: Split monotone variational inclusion, mixed equilibrium problem...



x0 = x ∈C,

yn = JM1
λ

(I−λ f )xn,

ln = JM2
λ

(I−λg)Byn,

zn = PC[yn + γB∗(ln−Byn)],

wn = Trn(I− rnA)zn,

un = (1−αn)xn +αnS[n]Trn(zn− rnAwn),

xn+1 = (1−βn)un +βnS[n]un, n≥ 1,

(24)

for i = 1,2, ...,N where [n] = n(mod N), {rn} ⊂ [a,b] for some a,b ∈ (0,σ), λ ⊂ [a
′
,b
′
] for some a

′
,b
′ ∈ (0,θ), where

θ := min{θ1,θ2)} and γ ∈
(
0, 1
||B∗||2

)
. Let {αn} and {βn} be real sequences in (0,1) satisfying the following conditions;

(1) limn→∞ an = 0, ∑
∞
n=1 an = ∞,

(2) 0 < liminfβn ≤ limsupβn < 1− k.

Then the sequences {xn},{yn} and {zn} converges strongly to p ∈Ω .

Proof.The proof is divided into four steps.
Step I. We first show that the sequences {xn}, {yn}, {ln}, {zn}, {tn} and {un} are bounded. Let x̄ ∈ Ω then x̄ ∈
Sol(SpMVIP) therefore x̄ = JM1

λ
(I−λ f )x̄ and Bx̄ = JM2

λ
(I−λg)Bx̄, we have

||yn− x̄||2 = ||JM1
λ

(xn−λ f xn)− JM1
λ

(x̄−λ f x̄)||2

≤ ||(xn− x̄)−λ ( f xn− f x̄)||2

= ||xn− x̄||2 +λ
2|| f xn− f x̄||2−2λ 〈xn− x̄, f xn− f x̄〉

≤ ||xn− x̄||2−λ (2θ1−λ )|| f xn− f x̄||2 (25)

≤ ||xn− x̄||2. (26)

||ln−Bx̄||2 = ||JM2
λ

(I−λg)Byn− JM2
λ

(I−λg)Bx̄||2

≤ ||Byn−Bx̄||2−λ (2θ2−λ )||gByn−gBx̄||2 (27)

≤ ||Byn−Bx̄||2. (28)

||zn− x̄||2 = ||PC[yn + γB∗(ln−Byn)]− x̄||2

≤ ||yn + γB∗(ln−Byn)]− x̄||2

= ||yn− x̄||2 + ||γB∗(ln−Byn)||2

+2γ〈yn− x̄,B∗(ln−Byn)〉
≤ ||yn− x̄||2 + γ

2||B∗||2||ln−Byn||2

+2γ〈B(yn− x̄), ln−Byn〉
= ||yn− x̄||2− γ(1− γ||B∗||2)||ln−Byn||2 (29)

≤ ||yn− x̄||2 ≤ ||xn− x̄||2. (30)
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||wn− x̄||2 = ||Trn(zn− rnAzn)−Trn(x̄− rnAx̄)||2

≤ ||(zn− x̄− rn(Azn−Ax̄||2

= ||zn− x̄||2−2rn〈zn− x̄,Azn−Ax̄〉
+r2

n||Azn−Ax̄||2

≤ ||zn− x̄||2− rn(2σ − rn)||Azn−Ax̄||2

≤ ||zn− x̄||2 ≤ ||xn− x̄||2.

Using (21) with tn = Trn(zn− rnAwn) and the fact that x̄ ∈Ω , we have the following estimates.

||tn− x̄||2 = ||Trn(zn− rnAwn)− x̄||2

≤ ||zn− rnAwn− x̄||2−||tn− (zn− rnAwn)||2

+2rnF(tn, x̄)

= ||zn− x̄||2−||tn− zn||2

+2rn〈Awn, x̄− tn〉+2rnF(tn, x̄)

= ||zn− x̄||2−||tn− zn||2

+2rn[〈Awn−Ax̄, x̄−wn〉+ 〈Ax̄, x̄−wn〉
−〈Awn, tn−wn〉]+2rnF(tn, x̄). (31)

Applying (19),(3) and monotonicity of A in (31), we have

||tn− x̄||2 ≤ ||zn− x̄||2−||tn− zn||2 +2rn〈Awn,wn− tn〉
+2rn[F(x̄,wn)+F(tn, x̄)]

≤ ||zn− x̄||2−||zn−wn||2−||wn− tn||2

−2〈zn−wn,wn− tn〉+2rn〈Awn,wn− tn〉
+2rn[F(x̄,wn)+F(tn, x̄)]

= ||zn− x̄||2−||zn−wn||2−||wn− tn||2

−2〈wn− (zn− rnAzn), tn−wn〉
+2rn〈Azn−Awn, tn−wn〉
+2rn[F(x̄,wn)+F(tn, x̄)]

= ||zn− x̄||2−||zn−wn||2−||wn− tn||2

+2rn〈Azn−Awn, tn−wn〉
+2rn[F(x̄,wn)+F(wn, tn)+F(tn, x̄)]. (32)

Using Assumption 2.2 and the fact that A is 1
σ

-Lipschitz continous in (32) we obtain

||tn− x̄|| ≤ ||zn− x̄||2−||zn−wn||2−||wn− tn||2

+2rn
1
σ
||zn−wn||||tn−wn|| (33)

≤ ||zn− x̄||2−||zn−wn||2−||wn− tn||2

+||wn− tn||2 +
( rn

σ

)2||zn−wn||2

≤ ||xn− x̄||2−
(
1−
( rn

σ

)2)||zn−wn||2, (34)
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since rn ∈ [a,b], we have
||tn− x̄|| ≤ ||zn− x̄||2 ≤ ||yn− x̄||2 ≤ ||xn− x̄||2. (35)

For n large enough we have

||un− x̄||2 = ||(1−αn)xn +αnS[n]tn− x̄||2

= ||(1−αn)(xn− x̄)+αn(S[n]tn− x̄)||2

= (1−αn)
2||xn− x̄||2 +α

2
n ||S[n]tn− x̄||2

+2αn(1−αn)〈xn− x̄,S[n]tn− x̄〉
≤ (1−αn)

2||xn− x̄||2 +α
2
n
[
||tn− x̄||2

+k||tn−S[n]tn||2
]
+2αn(1−αn)

[
||xn− x̄||2

−1− k
2
||tn−S[n]tn||2

]
(36)

= (1−2αn +α
2
n )||xn− x̄||2

+α
2
n
[
||xn− x̄||2 + k||tn−S[n]tn||2

]
+2αn||xn− x̄||2−2α

2
n ||xn− x̄||2

+αn(1−αn)(1− k)||tn−S[n]tn||2

= ||xn− x̄||2

+
[
α

2
n k−αn(1−αn)(1− k)

]
||tn−S[n]tn||2

= ||xn− x̄||2 +αn
[
k+αn−1

]
||tn−S[n]tn||2

≤ ||xn− x̄||2, (37)

||xn+1− x̄||2 = ||(1−βn)un +βnS[n]un− x̄||2

= ||(1−βn)(un− x̄)+βn(S[n]un− x̄)||2

= (1−βn)
2||un− x̄||2 +β

2
n ||S[n]un− x̄||2

+2βn(1−βn)〈un− x̄,S[n]un− x̄〉
≤ (1−βn)

2||un− x̄||2 +β
2
n
[
||un− x̄||2

+k||un−S[n]un||2
]
+2βn(1−βn)

[
||un− x̄||2

−1− k
2
||un−S[n]un||

]
= (1−2βn +β

2
n )||un− x̄||2 +β

2
n ||un− x̄||2

+kβ
2
n ||un−S[n]un||2

]
+2βn||un− x̄||2

−2β
2
n ||un− x̄||2

−βn(1−βn)(1− k)||un−S[n]un||2

= ||un− x̄||2

+
[
β

2
n k−βn(1−βn)(1− k)

]
||un−S[n]un||2

= ||un− x̄||2 +βn[k+βn−1]||un−S[n]un||2 (38)

≤ ||un− x̄||2 ≤ ||xn− x̄||2. (39)
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Step II. We show that limn→∞ ||xn+1 − xn||2 = limn→∞ ||zn − xn||2 = limn→∞ ||un − xn||2 = limn→∞ ||xn − yn||2 =

limn→∞ ||xn− tn||2 = limn→∞ ||Sn
i tn− tn||2 = 0.

From (38) we have

βn((1− k)−βn)||un−S[n]un||2 ≤ ||xn− x̄||2−||xn+1− x̄||2, (40)

thus, as n→ ∞

||S[n]un−un|| → 0. (41)

Since {||xn− x̄||} is Cauchy for any k ∈ N we have,
||xn+k− xn||= ||xn+k− x̄||− ||xn− x̄|| → 0 as n→ ∞,
and in particular,

lim
n→∞
||xn+1− xn||= 0. (42)

From (63) and (41) we have

||xn+1−un|| = ||(1−βn)un +βnS[n]un−un||
= βn||S[n]un−un|| → 0 as n→ ∞. (43)

Since
||un− xn|| ≤ ||un− xn+1||+ ||xn+1− xn||,

then using (42) and (43) we have
lim
n→∞
||un− xn||= 0. (44)

Substituting (34) in (36) and simplifying we get

||zn−wn||2 ≤
[

α
2
n

(
1−
( rn

σ

)2
)]−1(

||xn− x̄||2−||un− x̄||2
)

=

[
α

2
n

(
1−
( rn

σ

)2
)]−1(

||xn− x̄||

−||un− x̄||
)(
||xn− x̄||+ ||un− x̄||

)
≤
[

α
2
n

(
1−
( rn

σ

)2
)]−1

||xn−un||
(
||xn− x̄||

+||un− x̄||
)
.

But {xn} and {un} are bounded and taking the limit as n→ ∞ in the above inequality we have

lim
n→∞
||zn−wn||= 0. (45)

Using the same argument as in (33), we have

||tn− x̄|| ≤ ||zn− x̄||2−||zn−wn||2−||wn− tn||2

+2rn
1
σ
||zn−wn||||tn−wn||

≤ ||zn− x̄||2−||zn−wn||2−||wn− tn||2

+||zn−wn||2 +
( rn

σ

)2||tn−wn||2

≤ ||xn− x̄||2−
(

1−
( rn

σ

)2
)
||tn− vn||2. (46)
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Substituting (46) in (36) and simplifying we get

||un− x̄||2 ≤ ||xn− x̄||2−α
2
n

(
1−
( rn

σ

)2
)
||tn− vn||2.

||tn−wn||2 ≤
[

α
2
n

(
1−
( rn

σ

)2
)]−1(

||xn− x̄||2−||un− x̄||2
)

=

[
α

2
n

(
1−
( rn

σ

)2
)]−1(

||xn− x̄||

−||un− x̄||
)(
||xn− x̄||+ ||un− x̄||

)
≤
[

α
2
n

(
1−
( rn

σ

)2
)]−1

||xn−un||
(
||xn− x̄||

+||un− x̄||
)
.

Again, {xn} and {un} are bounded and taking the limit as n→ ∞ in the above inequality we have

lim
n→∞
||tn−wn||= 0. (47)

Substituting (35) in (36)and then substituting (25) in the result, simplifying we get

||un− x̄||2 ≤ ||xn− x̄||2−α
2
n λ (2θ1−λ )|| f xn− f x̄||2,

which gives

|| f xn− f x̄||2 ≤
[
α

2
n λ (2θ1−λ )

]−1(||xn− x̄||2−||un− x̄||2
)

=
[
α

2
n λ (2θ1−λ )

]−1(||xn− x̄||
−||un− x̄||

)(
||xn− x̄||+ ||un− x̄||

)
≤
[
α

2
n λ (2θ1−λ )

]−1||xn−un||
(
||xn− x̄||

+||un− x̄||
)
.

But {xn} and {un} are bounded and taking the limit as n→ ∞ in the above inequality we have

lim
n→∞
|| f xn− f x̄||= 0. (48)

Substituting (35) in (36) and then substituting (29) in the result, simplifying we get

||un− x̄||2 ≤ ||xn− x̄||2−α
2
n γ(1− γ||B∗||2)||ln−Byn||2,

which gives

||ln−Byn||2 ≤
[
α

2
n γ(1− γ||B∗||2)

]−1(||xn− x̄||2−||un− x̄||2
)

=
[
α

2
n γ(1− γ||B∗||2)

]−1(||xn− x̄||
−||un− x̄||

)(
||xn− x̄||+ ||un− x̄||

)
≤
[
α

2
n γ(1− γ||B∗||2)

]−1||xn−un||
(
||xn− x̄||

+||un− x̄||
)
.

© 2019 BISKA Bilisim Technology



NTMSCI 4, No. 4, 116-135 (2019) / http://www.ntmsci.com/jacm 127

But {xn} and {un} are bounded and taking the limit as n→ ∞ in the above inequality we have

lim
n→∞
||ln−Byn||= 0. (49)

Furthermore, it follows from (27) that

||ln−Bx̄||2 ≤ ||Byn−Bx̄||2−λ (2θ2−λ )||gByn−gBx̄||2,

which gives

||gByn−gBx̄||2 ≤
[
λ (2θ2−λ )

]−1
(||Byn−Bx̄||2−||ln−Bx̄||2

=
[
λ (2θ2−λ )

]−1
(||Byn−Bx̄||2

−||ln−Bx̄||2)(||Byn−Bx̄||2 + ||ln−Bx̄||2)
≤
[
λ (2θ2−λ )

]−1||Byn− ln||2(||Byn−Bx̄||2

+||ln−Bx̄||2).

But {xn} and {un} are bounded and taking the limit as n→ ∞ in the above inequality we have

lim
n→∞
||gByn−gBx̄||= 0. (50)

By the firmly nonexpansivity of JM1
λ

and the arguments in (26), we have

||yn− x̄||2 = ||JM1
λ

(I−λ f )xn− JM1
λ

(I−λ f )x̄||2

≤ 〈(I−λ f )xn− (I−λ f )x̄,yn− x̄〉

=
1
2
[
||(I−λ f )xn− x̄||2 + ||(I−λ f )x̄− yn||2

−||(I−λ f )xn− yn||2−||(I−λ f )x̄− x̄||2

=
1
2
[
||(I−λ f )xn− (I−λ f )x̄||2

+||yn− x̄||2−||xn− yn||2

+2λ 〈xn− yn, f xn− f x̄〉−λ
2|| f xn− f x̄||2

]
≤ 1

2
[
||xn− x̄||2 + ||yn− x̄||2−||xn− yn||2

+2λ 〈xn− yn, f xn− f x̄〉−λ
2|| f xn− f x̄||2

]
≤ 1

2
[
||xn− x̄||2 + ||yn− x̄||2−||xn− yn||2

+2λ ||xn− yn|||| f xn− f x̄||
]
,

which gives

||yn− x̄||2 ≤ ||xn− x̄||2−||xn− yn||2

+2λ ||xn− yn|||| f xn− f x̄|| (51)

Substituting (35) in (36) and then substituting (51) in the result, simplifying we get

||un− x̄||2 ≤ ||xn− x̄||2−α
2
n ||xn− yn||2 +2λα

2
n ||xn− yn|||| f xn− f x̄||,
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which gives

||xn− yn||2 ≤
(
α

2
n
)−1[||xn− x̄||2−||un− x̄||2

+2λα
2
n ||xn− yn|||| f xn− f x̄||

=
(
α

2
n
)−1[(||xn− x̄||− ||un− x̄||

)(
||xn− x̄||

+||un− x̄||+2λα
2
n ||xn− yn|||| f xn− f x̄||

≤
(
α

2
n
)−1[(||xn−un||

(
||xn− x̄||+ ||un− x̄||

)
+2λα

2
n ||xn− yn|||| f xn− f x̄||. (52)

But {xn} and {un} are bounded and taking the limit as n→ ∞ in the above inequality we have

lim
n→∞
||xn− yn||= 0. (53)

Using the firmly nonexpansivity of PC, we have

||zn− x̄||2 = ||PC[yn + γB∗(ln−Byn)]− x̄||2

≤ 〈yn + γB∗(ln−Byn)− x̄,zn− x̄〉

=
1
2

[
||(yn− x̄)+ γB∗(ln−Byn)||2 + ||zn− x̄||2

−||yn + γB∗(ln−Byn)− x̄− zn + x̄||2
]

=
1
2

[
||yn− x̄||2 + ||zn− x̄||2 + ||γB∗(ln−Byn)||2

+2γ〈Byn−Bx̄, ln−Byn〉

−||yn− zn + γB∗(ln−Byn)||2
]

≤ 1
2

[
||yn− x̄||2 + ||zn− x̄||2

+2γ||Byn−Bx̄|| ||ln−Byn||

−||yn− zn||2−2γ〈yn− zn,B∗(ln−Byn)〉
]
,

which gives

||zn− x̄||2 ≤ ||yn− x̄||2−||yn− zn||2 +2γ||Byn−Bx̄|| ||ln−Byn||
−2γ||yn− zn|| ||B∗|| ||ln−Byn||

≤ ||yn− x̄||2−||yn− zn||2 +2γ||ln−Byn||
(
||Byn−Bx̄||

−||B∗|| ||yn− zn||
)
. (54)

Substituting (35) in (36) and then substituting (54) in the result, simplifying we get

||un− x̄||2 ≤ ||xn− x̄||2−α
2
n ||yn− zn||2

+2γα
2
n

[
||ln−Byn||

(
||Byn−Bx̄||

−||B∗|| ||yn− zn||
)]
,

© 2019 BISKA Bilisim Technology



NTMSCI 4, No. 4, 116-135 (2019) / http://www.ntmsci.com/jacm 129

which gives

||yn− zn||2 ≤
(
α

2
n
)−1
[
||xn− x̄||2−||un− x̄||2

+2γα
2
n ||ln−Byn||

(
||Byn−Bx̄||

−||B∗|| ||yn− zn||
)]

=
(
α

2
n
)−1
[(
||xn− x̄||− ||un− x̄||

)(
||xn− x̄||

+||un− x̄||
)
+2γα

2
n ||ln−Byn||

(
||Byn−Bx̄||

−||B∗|| ||yn− zn||
)]

≤
(
α

2
n
)−1
[
||xn−un||

(
||xn− x̄||+ ||un− x̄||

)
+2γα

2
n ||ln−Byn||

(
||Byn−Bx̄||

−||B∗|| ||yn− zn||
)]
.

But {xn}, {yn},{zn} and {un} are bounded and taking the limit as n→ ∞ in the above inequality we have,

lim
n→∞
||yn− zn||= 0. (55)

From (53) and (55), we have
lim
n→∞
||xn− zn||= 0. (56)

Also, from (45) and (56), we have
lim
n→∞
||wn− xn||= 0. (57)

From (47) and (57), we have
lim
n→∞
||tn− xn||= 0. (58)

Since {xn} is bounded, un → x∗ for some x∗ ∈ H. By Lemma 3 and (44) x∗ ∈ F(S[n]) ∀n ∈ N. From this we get x∗ ∈
(∩N

i=1F(Si). Consequently {xn}, {yn}, {ln}, {zn}, {wn} and {tn} converge weakly to x∗.
Step III: We show that {xn} converges strongly to x̄,

||xn+1− x∗||2 = ||(1−βn)un +βnS[n]PCun− x∗||2

≤ ||un− x̄||2

= ||(1−αn)(xn− x∗)+αn(S[n]PCtn− x∗)||2

≤ (1−αn)
2||xn− x∗||2 +α

2
n
[
||tn− x∗||2

+k||tn−S[n]PCtn||2
]

+2αn(1−αn)

[
||xn− x∗||2

−1− k
2
||tn−S[n]PCtn||

]
≤ (1−αn)||xn− x∗||2 +αn

[
αn||tn− x∗||2

+αnk||tn−S[n]PCtn||2

+2(1−αn)
(
||xn− x∗||2

−1− k
2
||tn−S[n]PCtn||

)]
,
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Hence, by Lemma 4, we have xn→ x∗ as n→ ∞.
Step IV: Now we show that x∗ ∈ Sol(SpMVIP). From (63) we have

1
λ

(
(xn− yn)−λ f (xn)

)
∈M1yn. (59)

Taking the limit as n→ ∞ in (59) and using the fact that f is 1
θ1

-Lipschitz continuous mapping, then by Lemma 5 we
conclude M1(x∗)+ f (x∗) is maximal monotone, therefore we have

0 ∈M1(x∗)+ f (x∗),

which implies that x̄ ∈ Sol(SpMVIP(8).
Since ||yn− xn|| → 0 as n→ ∞ we have that Byn converges weakly to Bx∗ and by (49), using the fact JM2

λ
(I− λg) is

nonexpansive and Lemma 3, we have
0 ∈M2(Bx∗)+g(Bx∗),

which implies that Bx∗ ∈ Sol(SpMVIP(9).
Next, we show x∗ ∈MEP(3). From (63) we obtain

F(wn,y)+ 〈Azn,y−wn〉+
1
rn
〈y−wn,wn− zn〉 ≥ 0, ∀y ∈C.

Using the fact that F is a monotone operator, we have

〈Azn,y−wn〉+
1
rn
〈y−wn,wn− zn〉 ≥ F(y,wn), ∀y ∈C.

Let yt = ty+(1− t)x∗ ∈C. for t ∈ (0,1] using the inequality above, we have

〈yt −wn,Ayt〉 ≥ 〈yt −wn,Ayt〉−〈yt −wn,Azn〉

−〈yt − tn,
tn− zn

rn
〉+F(yt , tn)

= 〈yt −wn,Ayt −Awn〉+ 〈yt −wn,Awn−Azn〉

−〈yt −wn,
wn− zn

rn
〉+F(yt ,wn).

Since ||wn−zn||→ 0 as n→ ∞ and A is Lipschitz continuous, then ||Awn−Azn||→ 0 as n→ ∞. Again, since A is monotone
and F is convex and lower semicontinuous, wn−zn

rn
→ 0 as n→ ∞ and wn converges weakly to x∗, we obtain as n→ ∞

〈yt − x∗,Ayt〉 ≥ F(yt ,x∗). (60)

Again, we have

0 = F(yt ,yt)

≤ tF(yt ,y)+(1− t)F(yt ,x∗)

≤ tF(yt ,y)+(1− t)〈yt − x∗,Ayt〉
= tF(yt ,y)+(1− t)t〈y− x∗,Ayt〉,

(61)

therefore

0 ≤ F(yt ,y)+(1− t)〈y− x∗,Ayt〉.
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For each y ∈C and setting t→ 0+ we have

F(x∗,y)+(1− t)〈y− x∗,Ax∗〉 ≥ 0.

This implies that x∗ ∈MEP(3). Hence x∗ ∈Ω .

This completes the proof.

Corollary 1.Let H1 and H2 be real Hilbert spaces and B : H1→ H2 be a bounded linear operator with it’s adjoint
operator B∗. Let F : C×C→ R be a bifunction satisfying assumption 2.1((A1),(A3) and (A4)) and assumption 2.2; let
M1 : H1→ 2H1 , M2 : H2→ 2H2 be the multi-valued maximal monotone mappings; let A : C→ H1, f : H1→ H1 and
g : H2→ H2 be respectively σ ,θ1,θ2-inverse strongly monotone mappings and let Si : C→C for i = 1,2, ...,N be a finite
family of nonexpansive mappings such that Ω = Sol(SpMV IP) ∩ Sol((MEP) ∩ (∩N

i=1F(Si) 6= /0. Let the iterative
sequences {xn}, {yn}, {ln}, {zn}, {tn} and {un} be generated by the following iterative algorithm:

x0 = x ∈C,

yn = JM1
λ

(I−λ f )xn,

ln = JM2
λ

(I−λg)Byn,

zn = PC[yn + γB∗(ln−Byn)],

wn = Trn(I− rnA)zn,

un = (1−αn)xn +αnS[n]Trn(zn− rnAwn),

xn+1 = (1−βn)un +βnS[n]un, n≥ 1.

for i = 1,2, ...,N where [n] = n(mod N) and {rn} ⊂ [a,b] for some a,b ∈ (0,σ), λ ⊂ [a
′
,b
′
] for some a

′
,b
′ ∈ (0,θ), where

θ := min{θ1,θ2)} and and γ ∈
(
0, 1
||B∗||2

)
. {αn} and {βn} are real sequences in (0,1) satisfying the following conditions

(1) 0 < liminfβn ≤ limsupβn < 1− k,
(2) limn→∞ an = 0, ∑

∞
n=1 an = ∞,

Then the sequences {xn},{yn} and {zn} converges strongly to p ∈Ω .

3.1 Application

In this section we present some application of Theorem 1

3.1.1 Split variational inequality problem, mixed equilibrium problem and common fixed point for finite families of
demicontractive mappings

Theorem 2.Let H1 and H2 be real Hilbert spaces and B : H1→ H2 be a bounded linear operator with it’s adjoint operator
B∗. Let F : C×C→ R be a bifunction satisfying assumption 2.1((A1),(A3) and (A4)) and assumption 2.2; let A : C→ H1,
f : H1→ H1 and g : H2→ H2 be respectively σ ,θ1,θ2-inverse strongly monotone mappings and let Si : C→C for i =
1,2, ...,N be a finite family of ki-demicontractive mappings such that Ω = Sol(SpV IP)∩Sol((MEP)∩ (∩N

i=1F(Si) 6= /0.,
k =min1≤i≤N{ki}. Let the iterative sequences {xn}, {yn}, {ln}, {zn}, {tn} and {un} be generated by the following iterative
algorithm:
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

x0 = x ∈C,

yn = PC(I−λ f )xn,

ln = PC(I−λg)Byn,

zn = PC[yn + γB∗(ln−Byn)],

wn = Trn(I− rnA)zn,

un = (1−αn)xn +αnS[n]Trn(zn− rnAwn),

xn+1 = (1−βn)un +βnS[n]un, n≥ 1.

(62)

for i = 1,2, ...,N where [n] = n(mod N) and {rn} ⊂ [a,b] for some a,b ∈ (0,σ), λ ⊂ [a
′
,b
′
] for some a

′
,b
′ ∈ (0,θ), where

θ := min{θ1,θ2)} and and γ ∈
(
0, 1
||B∗||2

)
. {αn} and {βn} are real sequences in (0,1) satisfying the following conditions

(1) limn→∞ an = 0, ∑
∞
n=1 an = ∞,

(2) 0 < liminfβn ≤ limsupβn < 1− k,

Then the sequences {xn},{yn} and {zn} converges strongly to p ∈Ω .

Proof.By setting M1 = ∂ IC and M2 = ∂ IQ in Theorem 1.

3.1.2 Split null point problem, mixed equilibrium problem and common fixed point for finite families of demicontractive
mappings

Theorem 3.Let H1 and H2 be real Hilbert spaces and B : H1→ H2 be a bounded linear operator with it’s adjoint
operator B∗. Let F : C×C→ R be a bifunction satisfying assumption 2.1((A1),(A3) and (A4)) and assumption 2.2; let
M1 : H1→ 2H1 , M2 : H2→ 2H2 be the multi-valued maximal monotone mappings; let A : C→ H1, f : H1→ H1 and
g : H2→ H2 be respectively σ ,θ1,θ2-inverse strongly monotone mappings and let Si : C→C for i = 1,2, ...,N be a finite
family of ki-demicontractive mappings such that Ω = Sol(SpNPP)∩ Sol((MEP)∩ (∩N

i=1F(Si) 6= /0, k = min1≤i≤N{ki}.
Let the iterative sequences {xn}, {yn}, {ln}, {zn}, {tn} and {un} be generated by the following iterative algorithm:

x0 = x ∈C,

yn = JM1
λ

xn,

ln = JM2
λ

Byn,

zn = PC[yn + γB∗(ln−Byn)],

wn = Trn(I− rnA)zn,

un = (1−αn)xn +αnS[n]Trn(zn− rnAwn),

xn+1 = (1−βn)un +βnS[n]un, n≥ 1.

(63)

for i = 1,2, ...,N where [n] = n(mod N) and {rn} ⊂ [a,b] for some a,b ∈ (0,σ), λ ⊂ [a
′
,b
′
] for some a

′
,b
′ ∈ (0,θ), where

θ := min{θ1,θ2)} and and γ ∈
(
0, 1
||B∗||2

)
. {αn} and {βn} are real sequences in (0,1) satisfying the following conditions

(1) limn→∞ an = 0, ∑
∞
n=1 an = ∞,

(2) 0 < liminfβn ≤ limsupβn < 1− k,

Then the sequences {xn},{yn} and {zn} converges strongly to p ∈Ω .

Proof.By setting f = 0 and g = 0 in Theorem 1.

4 Numerical Example

We give the following numerical example to justify Theorem 1
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Example 1. Let H1 = H2 =R with an inner product defined by 〈x,y〉= xy, ∀x,y ∈R, and induced norm |.|. Let C = [0,1]
and Q = (−∞,0]; Let F : C×C→ R be a bifunction defined by F(x,y) = x(y− x), ∀x,y ∈ C; Let M1,M2 : R→ R be
defined by M1(x) = 2x and M2(x) = 4x ∀x ∈ R Let the mapping A : C→ R,B : R→ R and S : C→ C be defined by
A(x) = 2x, B(x) = −2x and S(x) = x

2 ∀x ∈ R and let f : R→ R and g : R→ R be defined by f (x) = 0 ∀x ∈ R and
g(y) = 0 ∀y ∈ R. Clearly F is a bifunction satisfying Assumption 2.1 and Assumption 2.2 M1 and M2 are maximal
monotone; A is 1

2−inverse strongly monotone, S is k-demicontractive mapping and B is a bounded linear operator with its
adjoint B∗ such that ||B|| = ||B∗|| = 2. The iterative sequences {xn}, {yn}, {ln}, {zn}, {tn} and {un} generated by 63 are
reduced to the following iterative scheme.



yn =
1
3 xn;

ln = −2
5 yn;

zn =


0, if x < 0,

1, if x > 1,

[yn +0.4(ln−2yn)] otherwise;

wn = zn;

un =
(
1− 1

n+1

)
xn +

1
2

( 1
n+1

)(
zn−2

)
wn;

xn+1 =
(
1− n

2n+1

)
un +

1
2

( n
2n+1

)
un.

where αn =
1

n+1 , βn =
n

2n+1 and rn = 1. Then {xn} converges strongly to 0 ∈Ω = {0}

Next, using Matlab software we have the following figures which shows that the sequence {xn} converges to strongly to
0.

Fig. 1
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Fig. 2

4.1 Conclusion

In our work, we removed Cn and Qn in the scheme of Kazmi et al. [12] and still obtain strong convergence theorem.
Corollary 3.2, generalized the result of Kazmi et al. [12]. Hence our result improved, extends and generalized the result
of Kazmi et al. [12] and many others.
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