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Abstract: Predator-prey model is useful and often used in the enviemah science field because they allow researchers both to
observe the dynamic of animal populations and make predistas to how they will develop over time. One of the most egot
applications of differential equations system is predptey problem. In this paper, we will discuss about shark asidlfotka-Volterra
modified predator prey model in differential equation. Tlduson, existence, uniqueness and boundedness of théasohf the
model are investigated. We also analyze about the steatdyastd stability criteria using Jacobian matrix methodalyn numerical
simulations are carried out to justify analytical results.
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1 Introduction

A predator is an animal that consumes another animal. Theiprthe animal which the predator consumes. Some
illustrations of predator and prey are tiger and deer, aieand fish and fox and rabbit. The words "predator” and
"prey” are almost always used to mean only animals that eiatals, but the same idea also applies to plants: squirrel
and berry, rabbit and lettuce, goat and leaf. Predator agylgpress simultaneously. The prey is part and parcel of the
predator’s environment and the predator die down if it da#gsget enough nutrition, so it sprouts whatever is necessary
in order to consume the prey: agility, larceny, disguisehite while approaching the prey), a proper sense of flavor,
sight, or hearing (to find the prey), immunity to the prey’sito toxic (to kill the prey) the right kind of mouth parts or
digestive system, etc. Like, the predator is portion of ttey|s circle and the prey dies down if it is eaten by the predat

So it sprouts whatever is obligate to get off being eaterlitggiisguise (to hide from the predator), a good sense of
flavor, sight or hearing (to detect the predator), tine,dqto spray when approached or bitten) etc.

Mathematical modeling of exploitation of biological resoes is still a very interesting field of research. Matheo#dti
modeling is frequently an evolving process. Regulated eratitical exploration can often conduct to better
understanding of bio economic models. The unfasten imbalam turn lead to the essential exchange. The eventual
model may or may not be free of any important imbalance bueporation of the eventual model can thus be expected
to publish significant and nontrivial features of the systéamthe last decades, self-interest has been rising redplnt

the scheming and perusing of mathematical models of papuolatteractions. The principle of exponential growth for
human population was first propounded by Malthus [15] an Bhgllergyman and political economist in the first edition
of his book entitled an essay on the principle of populatialished in 1798. Belgian mathematician Verhulst
introduced logistic equation as a model for human populagimwth in 1838. He mentions this as a logistic growth.Due
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to insufficient census data he was incapable to test theityabiél this model. A biologist Humberto D’Ancona did a
statistical study on the numbers of each species sold a thaén Italian ports in 1920. By his study of these fish species
from 1914-1923, he came over a dramatic conclusion. He sggthat this predator prey relevance between the sharks,
rays and fish were in their regular states outside of humamanotion, namely before and after the war. An American
mathematical biologist Lotka who discovered and improvetnmeany of the same conclusions and models as \olterra
and around the same time. Finally, Vito Volterra wrote dowsiraple pair of differential equation to describe this
system, which are known as predator-prey models.

Some of the prey-predator models were discussed by Wang@#k Varma [23] Colinvaux [7], Freedman [8], Narayan
[17]. A population model with time delay was proposed by Kigjal. Volterra formulated a distributed time delay model
for prey - predator ecological models. Kapur[10] discusserisolution in the closed form for that model. Perko [22]
described the differential equation and dynamical syst@eretta and Takeuchi [5] described the global stability of
single-species diffusion Volterra models with continudime delays. Also, in the last decades many researchers
described the Dynamical Behavior of Discrete Prey-Pradaystem with Scavenger [19], a stage-structured
predator-prey model with distributed maturation delay dratvesting [10]. In this paper, we will consider an
environmental model containing two related populatiompsey population, such as fish, and a predator populatiot, suc
as sharks. we modified the Lotka-\Volterra predator prey mbyedding natural death rate of predator prey then we
cheek the stability of the predator prey model using Jacotiatrix and the stability is shown by time series and phase
diagram.

2 The Mathematical M odel

In this segment we first present the Lotka- Volterra predptey model then we modified this model by adding natural
death of prey and predator.

2.1 Lotka- Volterra Model

As a simplest form, the interaction between a predator aay potka- Volterra model in terms of a couple of ordinary
differential equations [12] can be represented by

ax dy
gt = ax— bxy,a = —Ccx+dxy (1)
where
X(0) = %0,Y(0) = Yo ()
a,b,c,d > 0. (3)

Here, x(t)and y(t)represents the number of prey (fish) aedigmor (shark) ,a is the reproduction rate of prey, b is the
proportional to the number of prey that a predator can eattliel amount of energy that a prey supplies to the consuming
predator, c is the death rate of predator.

2.2 Assumptions

The following basic assumption are important to modify thevee model * Fish only die by natural causes and eaten by
sharks.
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* Shark only die by natural causes and when fish die.

* The interaction between shark and fish the growth rate ofdetrease and the growth rate of shark increase. Based
on the assumptions, the proposed model is

dx o dy
gt = & bxy—né, o8 = —cy+dxy— dy? (4)
where
X(0) = x0,¥(0) = Yo (5)
a,b,c,d,r,d>0 (6)
ris the natural death rate of prey and (7
disis the natural death rate of predator (8)

2.3 Solution of the Model

We recall that When both the prey and predator are presenttidel equations are

dx o dy
gt = X bxy—n¢, o5 = —cy+dxy— dy? 9)
Dividing these equation

Q/ _ y(—c+dx—dy)

dx  x(a—by—rx) (10)
(a—by—rx)dy _ (—c+dx—dy)dx (1)
X y
(a—byydy (rx)dy (—c+dxjdx (dy)dx (12)
y y X X
Integrating on both sides, we get
alny— by— rxlny = dx— cInx— dylnx+ Ink (13)
Iny? — by — Iny™ = dx— Inx¢ — Inx® + Ink (14)
yAXEXOY
YA
Py k (16)

where is a constant of integration and equation (16) is theiea of the model (1).
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3 Mathematical Analysisof the Model

In this segment we observe the boundedness of the Model, tinthe different equilibrium point and cheek the stability
at different equilibrium Point.

3.1 Boundedness of the System

Proposition 1. All the solutions of the system (1) are uniformly bounded.

Proof. Define a positive definite function was

W=x+y (17)
From (1)
d(x+y) rx
<(1-— 1
G <=2 (18)
For arbitrarily chosem this implies to
dw rx n
- < 4 f
dt+n_ax(1 a+a) (19)
The above equation has a solution i
w < ax(l——+ﬂ),t—>oo (20)
a a
implying that the solution is bounded for x n
o<w<ax(l——+— 21
sw<ax(l-—+-) (21)
Therefore, all the solutions of the system (1) are uniforbdynded in the region
Y= {(x,y)eRﬁ w<ax(l- % + %) + Z} forall{ > 0,t — co. (22)

3.2 Existence of Equilibrium Points

In this segment, we first obtain the existence of the fixedfgaihthe ordinary differential equations (1). The systein (1
shows the following four equilibrium points

xEg = (0,0)this point is the trivial equilibrium point and always exist (23)

*Ep = (0,*%)

this point is the axial fixed equilibrium point and always#gj also in the absence of prey the predator populatioedser
to the carrying capacity.

(24)

2= (5,0) (25)

this point is the axial fixed point always exists, also in theence of predator the prey population grows to the carrying

capacity.
ad+bc ad—cr
3= (ba+ar baror/

this point is the is the positive equilibrium point existglire xy plane

(26)
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3.3 Stability Analysis

In this segment, we observe their stability by considerhte Eigen values for the variation matrix of (1) at every
equilibrium point.

3.3.1 Linear stability analysis

The Jacobian matrix of the model (1) at state variable isrgbse

—by—2rx+a —bx

J -
(ey) dy dx— 28y —c

(27)

The linearized stability technique for analyzing the looahavior of the non-linear system (1) is given in the follogi
theorem.

Theorem 1. Let F(A) = AA%2 4+ BA +C. Then the following statement are true.

(i) If each root of the equation is negative sign, then the stamgboint of the system is locally asymptotically stable

and standing point is also called a sink.

(ii) If at-least one of the roots of the equation is positive sian the standing point of the system is saddle.

(iii) If each root of the equation is positive sign, then the thenstianding point of the system is locally unstable point
and standing point is also called a source.

(iv) The standing point of the system is called hyperbolic if that of the equation has absolute value equal being
positive. If there exists a root of the equation with absekdlue being negative, then the standing point is called
Non hyperbolic

Theorem 2. The system (1) have four equilibrium points

(1) Eo = (0,0)which is a saddle point. (28)

(2)E1 = (0, —%)which is a locally unstable point. (29)

3 Ex = (?, 0)which is a saddle point. (30)
ad+bc ad—cr

(4)E3 = (bd+ 51 bd T o )which is locally asymptotically stable. (31)

Proof. (i) The Jacobian matrix of (1) at the equilibrium pokg = (0,0) is given as follows

ao
J(Ep) = 32
(Eo) [0 c] (32)
The Eigen values are
/\1: 7&,)\2: —C (33)

Here we see that the Eigen values are opposite sign. So tilinggm point Eg is called saddle point
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(ii) The Jacobian matrix of (1) at the equilibrium polet = (0, — ) is given as follows

bc
5+a0
IE)=| g . (34)
]
The Eigen values are
A= 357“’0, Ap=c (35)
Here we see that the Eigen values are positive sign. So thikbeigun point
E; is called locally unstable point. (36)
(iii) The Jacobian matrix of (1) at the equilibrium poit = (2,0) is given as follows
[—a —ba
J(Ep) = da. (37)
0 ©€-c
The Eigen values are
h=-ar=200 (39
Here we see that the Eigen values are opposite sign. So tii#ggm point
E, is called saddle point. (39)
(iv) The Jacobian matrix of (1) at the equilibrium polg = (ggjgf, gg;g;) is given as follows is given as follows
_ b(ad—cr)  2r(ad+bc) +a __b(ad+bc)
J(Eg)=| IO g ST d(@5bg 93 (ad-cr) (40)
bd+3r bd+or bd+or

After solving this Jacobian matrix, the Eigen values are

B add +adr +ber—cdr —i,/q B add +adr +ber—cdr +i,/q

A= = 41
! 2(bd + dr) 2 2(bd+ or) (41)
Where
q=vWW+WP (42)
where
WW = (4a°bd®6 — a®d?5° + a’dd%r + a’r?5° — dab’ed?)
and

WP = (2abcddr + 2abodr? — 2acdd?r? + 2acd?r? + 4b’c’dr + b*c’r? + c?6%r?) .

The pointEs is stable because all of the real part is negative. The inaagipart expose that it will be periodic.

4 Numerical Simulations

In this segment, we take on the numerical simulations of teg-predator model (1) for the case of different parameter
values response. In the result, we plot diagrams for the gmelypredator system, the trivial and axial equilibrium p®in
of the model (1) and which is shown by the time series and ptiaggam. The plots have been generated using ode45
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and which are shown in the Figures 1-10.
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Fig. 1. Plot of shark and fish over time of the systen (1) whrare,6,b=4,c=3,d=5r=2,0 =8.
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Fig. 2: Phase Plane of shark versus fish of the systen (1) whaet&,b=4,c=3,d=5,r=2,0 = 8.

We observe that thifitrgum point is locally unstable because both of

the Eigen values are positive(see Figure 1 and Figure 2)asdixed point is a sink. The imaginary number imply that
it will be periodic (see Figure 1 and figure 10). Both of theu¥gshows that the prey population living with predator at
the critical point. From Figure 3 and Figure 4, we observe tifia critical point is saddle point because the Eigen values
are opposite sign and from Figure 5 and Figure 6 observehkatritical point become(1,0) which is on the y-axis and

identical to the stable point for the prey population in fa@d-free world. So here the predator dies out again. AlemmF

Figure 7 and Figure 8, we observe that we get an ellipse althesibove critical point. So, in the above cyclic pattern
both the prey and predator population increase and decrlsse we observe that the equilibrium point is stable beeau

both of the real part is negative and the imaginary numbehyjitfat it will be periodic (see Figure 9 and Figure 10).
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Fig. 3: Plot of shark and fish over time of the system(1)whrare,2b=4,c=3,d=5r=6,0 =4.
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Fig. 4: Phase Plane of shark versus fish of the system(1)whaet€, b=4,c=3,d=5r=6,0 =4.
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Fig. 5: Plot of shark and fish over time of the system(1)whrare,1,b=1c=1d=1r=10=1

5 Conclusion

In this paper, we consider a dynamical behavior of predatey model then we establish a modiefied Lotka-Volterra
predator prey model then we can polish the equations by gadare variables and getting a better content of the ecology.
we cheek boundedness of the system and present the exisfezgdlibrium points. We have shown that this model has
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Fig. 6: Phase Plane of shark versus fish of the system(1)whaetd,b=1c=1d=1r=10=1
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Fig. 7: Plot of shark and fish over time of the system(1)whrare,2b=1c=1,d=1,r=0,0 =0.

shark
5

small fish

Fig. 8: Phase Plane of shark versus fish of the system(1)whaet€ b=1,c=1d=1r=0,6 =0.

four equilibrium points of which two are saddle point, oneisally unstable point and one is locally asymptoticalbide
point (see Theorem 2). We also analyze the stability of toppsed predator prey model. Finally, it is graphically show
that the analytic result using different parameter values.
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Fig. 9: Plot of shark and fish over time of the system(1)whrare,2b=1c=1d=1r=10=1
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Fig. 10: Phase Plane of shark versus fish of the system(1)whaer@ b=1,c=1,d=1r=1,0=1
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