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1 Introduction

A fractional derivative is just an operator which generalizes the ordinary derivative, such that if the fractional derivative
is represented by the operator symbol Dα then, when α = n, it coincides with the usual differential operator Dn [16]. Its
origin dates back to 1695 when L’Hopital raised by a letter to Leibniz the question of how the expression

Dnu(t) =
dn

dtn u(t),

should be understood if n was a real number [16]. Since then, the fractional derivative has become popular and useful
due to its ability to describe some natural phenomena in numerous fields of engineering such as theory of viscoelasticity
[3-5], study of the anomalous diffusion phenomenon [19-21], circuit theory [22-24], image processing [25, 26] and
optimal control theory [12-15], among other applications. Various definition of fractional derivatives have been
introduced [27-33]. In fact, the Grunwald-Letnikov fractional derivative, defined as a limit of a fractional order backward
difference, is one of the first introduced fractional operators. Other definition which also plays a major role in Fractional
Calculus is the Riemann-Liouville fractional derivative. The Caputo fractional derivative has also been defined via a
modified Riemann-Liouville fractional derivative. This approach is useful for the formulation and solution of applied
problems [29]. In 2015, Caputo and Fabrizio introduced a new fractional approach [31], which was born due to the
necessity to describe a class of non-local systems which cannot be well described by classical local theories or by
fractional models with singular kernel [31].

In recent years, many researchers have obtained integral inequalities using fractional integral operators [2, 5, 6, 10]. For
example, in [5] appear fractional integral inequalities using Riemann-Liouville fractional integral:
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10 G.A. M. Nchama: New fractional integral inequalities via Caputo-Fabrizio operator and an open problem...

Theorem 1. Let f ,g and h be positive and continuous functions on [0,∞), such that

(
g(τ)−g(ρ)

)( f (ρ)
h(ρ)

− f (τ)
h(τ)

)
≥ 0; τ,ρ ∈ [0, t], t > 0,

then we have
Jα
(

f (t)
)

Jα
(
h(t)

) ≥ Jα
(
g f (t)

)
Jα
(
gh(t)

) ,
for all α > 0, t > 0.

Theorem 2. Let f ,g and h be positive and continuous functions on [0,∞), such that

(
g(τ)−g(ρ)

)( f (ρ)
h(ρ)

− f (τ)
h(τ)

)
≥ 0; τ,ρ ∈ [0, t], t > 0,

then for all α > 0, w, t > 0, we have

Jα
(

f (t)
)
· Jw
(
gh(t)

)
+ Jw

(
f (t)
)
· Jα
(
gh(t)

)
Jα
(
h(t)

)
· Jw
(
g f (t)

)
+ Jw

(
h(t)

)
· Jα
(
g f (t)

) ≥ 1.

Theorem 3. Let f and h be two positive continuous functions and f ≤ h on [0,∞). If f
h is decreasing and f is increasing

on [0,∞), then for any p≥ 1,α > 0, t > 0, the inequality

Jα
(

f (t)
)

Jα
(
h(t)

) ≥ Jα
(

f p(t)
)

Jα
(
hp(t)

) ,
is valid.

Theorem 4. Let f and h be two positive continuous functions and f ≤ h on [0,∞). If f
h is decreasing and f is increasing

on [0,∞), then for any p≥ 1,α > 0,w > 0, t > 0, we have

Jα
(

f (t)
)
· Jw
(
hp(t)

)
+ Jw

(
f (t)
)
· Jα
(
hp(t)

)
Jα
(
h(t)

)
· Jw
(

f p(t)
)
+ Jw

(
h(t)

)
· Jα
(

f p(t)
) ≥ 1.

In [7], it is established the following integral inequalities:

Theorem 5. Let f (x)≥ 0 be a continuous function on [a,b] and satisfies [(y−a)α · f α(x)− (x−a)α · f α(y)] · [ f β−γ(x)−
f β−γ(y)] ≥ 0,∀x,y ∈ [a,b] and f β (x) ≤ f γ(x),∀x ∈ [a,b]. Then for every positive real number α > 0 and β ≥ γ > 0 the
inequality ∫ b

a f α+β (x)dx∫ b
a f α+γ(x)dx

≥
(∫ b

a (x−a)α · f β (x)dx
)δ(∫ b

a (x−a)α · f γ(x)dx
)λ

,

holds under each of the following conditions

(1) λ = δ = 0 and β = γ , ∀x ∈ [a,b],
(2) λ = δ ∈ [1,+∞),∀x ∈ [a,b],
(3) If

∫ b
x f β (t)dt ≥ 1

(b−a)α and 1≤ δ < 1,∀x ∈ [a,b],

(4) If
∫ b

x f β (t)dt ≤ 1
(b−a)α and 1≤ λ < δ ,∀x ∈ [a,b].

Theorem 6. Let f (x),g(x)> 0 continuous function on [a,b] and satisfies

[gα(y) f α(x)−gα(x) f α(y)] · [ f β−γ(x)− f β−γ(y)]≥ 0, ∀x,y ∈ [a,b],
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and f β (x)≤ f γ(x),∀x ∈ [a,b]. Then for every positive real number α > 0 and β ≥ γ > 0, the inequality

∫ b
a f α+β (x)dx∫ b
a f α+γ(x)dx

≥

(∫ b
a gα(x) · f β (x)dx

)δ

(∫ b
a gα(x) · f γ(x)dx

)λ
,

holds under each of the following conditions

(1) λ = δ = 0 and β = γ , ∀x ∈ [a,b],
(2) λ = δ ∈ [1,+∞),∀x ∈ [a,b],
(3) If gα(a)≥ 1

(b−a) f γ (a) and 1≤ δ < λ ,

(4) If gα(b)≤ 1
(b−a) f β (b)

and 1≤ λ < δ .

Also we can find some interesting integral inequalities in [11]:

Theorem 7. Let α > 0,µ > 0,δ > 0,β > 0,γ > 0 and let f (t) be a positive and continuous function on (0,∞) such that

(τµ −ρ
µ)
(

f δ+β−γ(ρ)− f δ+β−γ(τ)
)
≥ 0,

(τµ −ρ
µ)
( 1

f δ (ρ)
− 1

f δ (τ)

)
≥ 0,(

f β−γ(τ)− f β−γ(ρ)
)( 1

f δ (ρ)
− 1

f δ (τ)

)
≥ 0,

for all τ,ρ ∈ (0, t]. Then we have
Jα
(

f δ+β (t)
)

Jα
(

f δ+γ(t)
) ≥ Jα

(
tµ f β (t)

)
Jα
(
tµ f γ(t)

) .
Theorem 8. Let α > 0,µ > 0,γ > 0,δ > 0,β > 0, t > 0 and let f (t) be a positive and continuous function on (0,∞) such
that (

f β−γ(τ)− f β−γ(ρ)
)( 1

f δ (ρ)
− 1

f δ (τ)

)
≥ 0,

for all τ,ρ ∈ (0, t]. Then we have
Jα
(
tµ f γ(t)

)
Jα
(
tµ f δ+γ(t)

) ≥ Jα
(
tµ f β (t)

)
Jα
(
tµ f δ+β (t)

) .
Theorem 9. Let α > 0,µ > 0,δ > 0,β > 0,γ > 0 and let f (t) be a positive and continuous function on (0,∞) such that

(τµ −ρ
µ)
( 1

f δ (ρ)
− 1

f δ (τ)

)
≥ 0,(

f β−γ(τ)− f β−γ(ρ)
)( 1

f δ (ρ)
− 1

f δ (τ)

)
≥ 0,

for all τ,ρ ∈ (0, t]. Then we have
Jα
(

f γ(t)
)

Jα
(

f δ+γ(t)
) ≥ Jα

(
tµ f β (t)

)
Jα
(
tµ f δ+β (t)

) .
Theorem 10. Let α > 0,δ > 0,β > 0 and f (t) be a continuous function on (0,∞) such that f (t)≥ t on (0,∞).

(a) If 0 < γ < 1 and Jα
(
tδ f β (t)

)
≥ 1, then we have

Jα
(

f δ+β (t)
)
≥
(

Jα
(
tδ f β (t)

))γ

.
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12 G.A. M. Nchama: New fractional integral inequalities via Caputo-Fabrizio operator and an open problem...

(b) If γ ≥ 1 and 0 < Jα
(
tδ f β (t)

)
< 1, then we have

Jα
(

f δ+β (t)
)
≥
(

Jα
(
tδ f β (t)

))γ

.

Theorem 11. Let α > 0,δ > 0,β > 0,γ > 0,0 < r < 1,s≥ 1 and let f (t) be a positive and continuous function on (0,∞)

such that

Jα(tδ · f γ(t))≥ 1, Jα(tδ · f β (t))≥ 1,

(τµ −ρ
µ)
(

f δ+β−γ(ρ)− f δ+β−γ(τ)
)
≥ 0,

(τµ −ρ
µ)
( 1

f δ (ρ)
− 1

f δ (τ)

)
≥ 0,(

f β−γ(τ)− f β−γ(ρ)
)( 1

f δ (ρ)
− 1

f δ (τ)

)
≥ 0,

for all τ,ρ ∈ (0, t]. Then we have

Jα
(

f δ+β (t)
)

Jα
(

f δ+γ(t)
) ≥

(
Jα
(
tδ f β (t)

))r

(
Jα
(
tδ f γ(t)

))s .

And in [8], authors proved the following results:

Theorem 12. Let f (x),g(x)≥ 0 be continuous functions on [a,b] and satisfy[
gα(y) · f α(x)−gα(x) · f α(y)

][
f β−γ(x)− f β−γ(y)

]
≥ 0,∀x,y ∈ [a,b].

Then the inequality ∫ b
a f α+β (x)dx∫ b
a f α+γ(x)dx

≥
∫ b

a gα(x) · f β (x)dx∫ b
a gα(x) f γ(x)dx

,

holds for every positive real number α > 0 and β ≥ γ > 0.

Theorem 13. Let f (x),h(x)> 0 be continuous functions on [a,b] with f (x)≤ h(x) for all x and such that f (x)
h(x) is decreasing

and f (x) increasing. Assume that ϕ(x) is a convex function with ϕ(0) = 0. Then the inequality

∫ b
a f (x)dx∫ b
a h(x)dx

≥
∫ b

a ϕ( f (x))dx∫ b
a ϕ(h(x))dx

,

holds.

Theorem 14. Let f (x),g(x),h(x) > 0 be continuous functions on [a,b] with f (x) ≤ h(x) for all x and such that f (x)
h(x) is

decreasing and f (x),g(x) are increasing. Assume that ϕ(x) is a convex function with ϕ(0) = 0. Then the inequality

∫ b
a f (x)dx∫ b
a h(x)dx

≥
∫ b

a ϕ( f (x))g(x)dx∫ b
a ϕ(h(x))g(x)dx

,

holds.

Next, they proposed the following open problems:

© 2020 BISKA Bilisim Technology



NTMSCI 8, No. 2, 9-21 (2020) / www.ntmsci.com 13

Open problem 1. Under what conditions does the inequality

∫ b

a
f α+β (x)dx≥

(∫ b

a
(x−a)α · f β (x)dx

)λ

,

hold for α,β and λ?.

Open problem 2. Under what conditions does the inequality

∫ b
a f α+β (x)dx∫ b
a f α+γ(x)dx

≥
(∫ b

a (x−a)α f β (x)dx
)δ(∫ b

a (x−a)α f γ(x)dx
)λ

,

hold for α,β ,γ,δ and λ?.

Open problem 3. Assume that φ(x) is a convex function with φ(0) = 0. Under what conditions does the inequality

∫ b
a f (x)dx∫ b
a h(x)dx

≥

(∫ b
a φ( f (x))g(x)dx

)δ

(∫ b
a φ(h(x))g(x)dx

)λ
,

hold for δ and λ?.

In literature few results have been obtained on properties of the Caputo-Fabrizio fractional integral [10, 18]. Motivated
from [1], the main purpose of this paper is to establish some new inequalities using Caputo-Fabrizio fractional integral.
Also a solution to the open problem 1 is established. The paper has been organized as follows, in Section 2, we define
basic concepts and definitions. In Section 3, we give the main results. The paper finalize with the conclusion in the
section 4.

2 Basic Concepts and definitions

Firstly, we give some necessary definitions and preliminaries of fractional calculus theory which are used further in this
paper.

Definition 1. Let α > 0. The Riemann-Liouville fractional integral of order α of a function f is defined by [29]

Jα f (t) =
1

Γ (α)

∫ t

0
(t− τ)α−1 f (τ)dτ.

Definition 2. Let 0 < α < 1. The Caputo-Fabrizio fractional integral of order α of a function f is defined by [9, 31]

Iα
0t f (t) = (1−α) f (t)+α

∫ t

0
f (τ)dτ.

Definition 3. Let 0 < α < 1 The Caputo-Fabrizio fractional derivative of order α of a function f is defined by [9, 32]

Dα
at f (t) =

1
1−α

∫ t

a
e−

α
1−α

(t−τ) f ′(τ)dτ.

Definition 4. We say that two functions f and g have the same sense of variation on [0,∞) if

( f (τ)− f (ρ))(g(τ)−g(ρ))≥ 0, τ,ρ ∈ (0, t), t > 0.

© 2020 BISKA Bilisim Technology
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14 G.A. M. Nchama: New fractional integral inequalities via Caputo-Fabrizio operator and an open problem...

Note 1. Let M > 0, p≥ 1 and f ,g be two positive functions on [0,∞). The inequality f
g ≥M is equivalent to

Mp( f +g)p ≤ (M+1)p · f p, (1)

because
Mp( f +g)p ≥ (M+1)p f p⇔M( f +g)≥ (M+1) f ⇔Mg≥ f ⇔M ≥ f

p
.

Note 2. Let m > 0, p≥ 1 and f ,g be two positive functions on [0,∞). The inequality f
g ≥ m is equivalent to

(1/m)p( f +g)p ≥ (1/m+1)p ·gp, (2)

because

(1/m)p( f +g)p ≥ (1/m+1)pgp⇔ (1/m)( f +g)≥ (1/m+1)g⇔

⇔ (1/m) f ≥ g⇔ f
p
≥ m.

3 Main Results

In literature few results have been obtained on some fractional integral inequalities using Caputo-Fabrizio fractional
integral [10]. The purpose of this section is to establish some new inequalities using the Caputo-Fabrizio fractional
integral.

Theorem 15. Let p ≥ 1 and let f ,g be two positive and continuous functions on [0,∞). If 0 < m ≤ f (τ)
g(τ) ≤M,τ ∈ (0, t),

then we have [
Iα
0t f p(t)

] 1
p
+
[
Iα
0tg

p(t)
] 1

p ≤ M(m+2)+1
(M+1)(m+1)

[
Iα
0t

[
( f +g)p(t)

]] 1
p . (3)

Proof. Using the condition f (τ)
g(τ) ≤M,τ ∈ (0, t), t > 0, we can write

(M+1)p · f (τ)≤Mp · ( f +g)p(τ). (4)

Multiplying both sides of (4) by α , then integrating resulting identity with respect to τ from 0 to t, we get

(M+1)p ·
[
(1−α) f p(t)+α

∫ t

0
f p(s)ds− (1−α) f p(t)

]
≤Mp ·

[
(1−α)( f (t)+g(t))p +α

∫ t

0
( f (τ)+g(τ))pdτ− (1−α)( f (t)+g(t))p

]
,

which is equivalent to

(M+1)pIα
0t f p(t)+(1−α)Mp[ f +g]p ≤MpIα

0t [ f (t)+g(t)]p +(M+1)p(1−α) f p(t). (5)

By using (1) in (5), follows
(M+1)p · Iα

0t f p(t)≤MpIα
0t [( f +g)p(t)].

Hence, we can write [
Iα
0t f p(t)

] 1
p ≤ M

M+1

[
Iα
0t [( f +g)p(t)]

] 1
p
. (6)

© 2020 BISKA Bilisim Technology
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On the other hand, from the condition m≤ f (τ)
g(τ) , we obtain

(
1+

1
m

)
g(τ)≤ 1

m

(
f (τ)+g(τ)

)
.

Therefore (
1+

1
m

)pgp(τ)≤
( 1

m

)p( f (τ)+g(τ)
)p
. (7)

Now, multiplying both sides of (7) by α , then integrating resulting identity with respect to τ from 0 to t, we have the
inequality

(
1+

1
m

)p
[
(1−α)gp(t)+α

∫ t

0
gp(τ)dτ− (1−α)gp(t)

]
≤( 1

m

)p
[
(1−α)( f (t)+g(t))p +α

∫ t

0

(
f (τ)+g(τ)

)pdτ− (1−α)( f (t)+g(t))p
]
,

which implies

(
1+

1
m

)pIα
0tg

p +(1−α)
( 1

m

)p
( f +g)p ≤

( 1
m

)pIα
0t [( f +g)p(t)]+(1−α)

(
1+

1
m

)pgp. (8)

By using (2) into (8), yields (
1+

1
m

)pIα
0tg

p(t)≤
( 1

m

)pIα
0t [( f +g)p(t)].

Hence, we can write [
Iα
0tg

p(t)
] 1

p ≤ 1
m+1

[
Iα
0t [( f +g)p(t)]

] 1
p
. (9)

The inequality (3) follows on adding the inequalities (6) and (9).

Remark. Let m > 0, p > 1, 1
p +

1
q = 1 and f ,g be two positive functions on [0,∞). The inequality f

g ≥ m is equivalent to

m1/pg(t)≤ g1/q · f 1/p, (10)

as

f
g
≥ m⇔ m≤ f

g
⇔ m1/p ≤

( f
g

)1/p
⇔ m1/p ≤ g−

1
p f

1
p ,

⇔ m1/p ≤ g
1
q−1 f

1
p ⇔ m1/pg(t)≤ g1/q f 1/p.

Remark. In the same way, inequality f
g ≤M is equivalent to

M−1/q f (t)≤
[

f (t)
]1/p[

g(t)
]1/q

. (11)

Lemma 1. Let 0 < α < 1, p > 1, 1
p +

1
q = 1 and let f and g be two positive and continuous functions on [0,∞). If

0 < m≤ f (τ)
g(τ)

≤M < ∞, τ ∈ [0, t],

then the inequality [
Iα
0t f (t)

]1/p[Iα
0tg(t)

]1/q ≤
(M

m

) 1
pq Iα

0t
[
( f (t))

1
p (g(t))

1
q
]
, (12)

holds.

© 2020 BISKA Bilisim Technology
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16 G.A. M. Nchama: New fractional integral inequalities via Caputo-Fabrizio operator and an open problem...

Proof. Since f (τ)
g(τ) ≤M,τ ∈ [0, t], t > 0, therefore

[g(τ)]1/q ≥M−1/q[ f (τ)]1/q,

and so
[ f (τ)]1/p[g(τ)]1/q ≥M−1/q[ f (τ)]1/q[ f (τ)]1/p = M−1/q f (τ). (13)

Integrating (13) with respect to τ from 0 to t, we have

(1−α)[ f (t)]1/p[g(t)]1/q +α

∫ t

0
[ f (τ)]1/p[g(τ)]1/qdτ− (1−α)[ f (τ)]1/p[g(τ)]1/q

≥M−1/q[(1−α) f (t)+α

∫ t

0
f (τ)dτ− (1−α) f (t)].

That is

Iα
0t
[
[ f (t)]1/p[g(t)]1/q]+(1−α)M−1/q f (t)

≥M−1/qIα
0t f (t)+(1−α)[ f (t)]1/p[g(t)]1/q.

By using (11) we obtain
Iα
0t
[
[ f (t)]1/p[g(t)]1/q]≥M−1/qIα

0t f (t),

and consequently (
Iα
0t
[
[ f (t)]1/p[g(t)]1/q])1/p

≥M−1/pq[Iα
0t f (t)

]1/p
. (14)

On the other hand, since mg(τ)≤ f (τ),τ ∈ [0, t], t > 0, then we have

[ f (τ)]1/p ≥ m1/p[g(τ)]1/p,

and so
[g(τ)]1/q[ f (τ)]1/p ≥ m1/p[g(τ)]1/p[g(τ)]1/q = m1/pg(τ). (15)

Now, multiplying both sides of (15) by α , then integrating the resulting inequality with respect to τ over (0, t), we obtain

(1−α)[g(t)]1/q[ f (t)]1/p +α

∫ t

0
g1/q(τ) f 1/p(τ)dτ− (1−α)[g(t)]1/q[ f (t)]1/p

≥ m1/p[(1−α)g(t)+α

∫ t

0
g(τ)dτ− (1−α)g(t)].

Therefore
Iα
0t
[
[g(t)]1/q[ f (t)]1/p]+(1−α)m1/pg(t)≥ m1/pIα

0tg(t)+(1−α)[g(t)]1/q[ f (t)]1/p.

By using (10), we can write
Iα
0t

[
[g(t)]1/q[ f (t)]1/p

]
≥ m1/pIα

0tg(t).

Hence, we obtain (
Iα
0t
[
[g(t)]1/q[ f (t)]1/p])1/q

≥ m1/pq
(

Iα
0tg(t)

)1/q
. (16)

Thanks to (14) and (16), we obtain (12).
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Lemma 2. Let 0 < α < 1, p > 1, 1
p +

1
q = 1, f and g be two positive and continuous functions on [0,∞). If

0 < m≤ ( f (τ))p

(g(τ))q ≤M < ∞, τ ∈ [0, t],

then we have [
Iα
0t f p(t)

]1/p[Iα
0tg

q(t)
]1/q ≤

(M
m

) 1
pq Iα

0t

(
f (t)g(t)

)
. (17)

Proof. Replacing f (τ) and g(τ) reswpectively by ( f (τ))p and (g(τ))q, τ ∈ [0, t], t > 0 in Lemma 1, we obtain (17).

Lemma 3. Let 0 < α < 1, p > 1, 1
p +

1
q = 1 and let f and g be two positive and continuous functions on [0,∞). If

0 < m≤ f (τ)
g(τ)

≤M < ∞,

then

Iα
0t

[ ( f (t))p

(g(t))p/q

]
≤
(M

m

)1/q
(
Iα
0t f (t)

)p(
Iα
0tg(t)

)p/q . (18)

Proof. Using Lemma 1 we obtain

Iα
0t( f (t)) = Iα

0t

[( ( f (t))p

(g(t))p/q

) 1
p
(g(t))

1
q
]

≥
(m

M

) 1
pq
[
Iα
0t

( f (t))p

(g(t))p/q

] 1
p
[
Iα
0tg(t)

]1/q
.

Hence, we can write [
Iα
0t( f (t))

]p
≥
(m

M

) 1
q

[
Iα
0t
[ ( f (t))p

(g(t))p/q

]][
Iα
0tg(t)

]p/q
. (19)

Thanks to (19) we obtain (18).

Theorem 16. Let 0 < α < 1, p > 1, 1
p +

1
q = 1 and let f be a positive and continuous function on [0,∞). If 0 < m≤ f (τ)≤

M < ∞ and
Iα
0t f (t)≥ (1−α +αt)−

p
q , (20)

then the inequality

Iα
0t

[
( f (t))p

]
≤
(M

m

)1/q[
Iα
0t f (t)

]p+1
,

holds.

Proof. Using Lemma 3 and the condition (20), we obtain

Iα
0t

[
( f (t))p

]
= Iα

0t

[ ( f (t))p

(1)p/q

]

≤
(M

m

)1/q
.

(
Iα
0t f (t)

)p

(
Iα
0t1
) p

q

≤
(M

m

)1/q
(1−α +αt)−

p
q
(

Iα
0t f (t)

)p

≤
(M

m

)1/q(
Iα
0t f (t)

)p+1
,

as required.
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The following theorem gives conditions under which the open problem 1 holds.

Theorem 17. Let a,b ∈ R(a < b) and f (x) be a function such that f (x)≥ x−a for all x ∈ (a,b) and

(1/(α +β +1)) · (b−a)α+β+1 > 1, (21)

for α,β and γ positive real numbers with 0 < γ < 1. Then

∫ b

a
f α+β (x)dx≥

(∫ b

a
(x−a)α · f β (x)dx

)γ

. (22)

Proof. From f (x)≥ x−a > 0, it is easy to see that

( f (x))α+β ≥ (x−a)α+β > 0, (23)

( f (x))β ≥ (x−a)β > 0, (24)

( f (x))α ≥ (x−a)α > 0. (25)

On the one hand, by using inequalities (21) and (23), we obtain

b∫
a

( f (x))α+β dx≥
b∫

a

(x−a)α+β dx = (1/(α +β +1)) · (b−a)α+β+1 > 1. (26)

On the other hand, from (24) and (21), we obtain

∫ b

a
(x−a)α · f β (x)dx≥

∫ b

a
(x−a)α · (x−a)β dx =

∫ b

a
(x−a)α+β dx

= (1/(α +β +1)) · (b−a)α+β+1 > 1. (27)

Moreover, from (25) and (27), yields

∫ b

a
f α+β (x)dx =

∫ b

a
f α(x) · f β (x)dx≥

∫ b

a
(x−a)α · f β (x)dx > 1. (28)

Combining (28) with the fact that 0 < γ < 1, we obtain

∫ b

a
f α+β (x)dx =

∫ b

a
f α(x) · f β (x)dx

≥
∫ b

a
(x−a)α · f β (x)dx≥

(∫ b

a
(x−a)α · f β (x)dx

)γ

. (29)

From (29), we obtain (22).

4 Conclusion

In this paper, we have used the Caputo-Fabrizio fractional integral to develop some interesting fractional inequalities.
These results have been obtained with the help of functions with the same sense of variation. Also an open problem
concerning an integral inequality has been discussed. As a future work, author is planning to use these inequalities to
prove the existence and uniqueness of some ordinary differential equations containing the Caputo-Fabrizio operator.
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