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1 Introduction

Fractional differential equations are generalizations of classical differential equations of integer order. It has been shown
that these types of equations have numerous applications in diverse fields and thus have evolved into multidisciplinary
subjects. For more details on fractional calculus, we refer the reader to the remarkable books [1,2,3]. Many authors
discussed theoretical and application aspects of differential(or difference) equations within fractional integrals and
derivatives [4,5,6,7,8,9,10,11,12,13].

One of the most important inequalities in the theory of differential equations is known as the Gronwall inequality. It was
published in 1919 in the work by Gronwall [14]. Since then many generalizations and extensions of this inequality has
become part of the literature [15].

It is our aim in this study to contribute to the development of this theory, presenting a proof for Gronwall inequality. We
have presented some background materials as follows:
Riemann-Liouville fractional integral, α > 0,

(aIα x)(t) :=
1

Γ (α)

∫ t

a
(t− s)α−1x(s)s. (1)

For 0 < α < 1 Riemann-Liouville fracdional derivative of order α starting from a,

(aDα x)(t) := .
t.

(
aI1−α x

)
(t) =

1
Γ (α)

.
t.

∫ t

a
(t− s)−α x(s)s. (2)
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For 0 < α < 1 Caputo fracdional derivative of order α starting from a,

(C
a Dα x

)
(t) :=

(
aI1−α x′

)
(t) =

1
Γ (α)

∫ t

a
(t− s)−α x′(s)s. (3)

Definition 1. [16] Let x ∈ H1(a,b), a < b and α ∈ [0,1]. The Atangana-Baleanu fractional derivative of the function x
order α in the sense of Caputo is defined by

(ABC
a Dα x

)
(t) :=

B(α)

1−α

∫ t

a
x′(s)Eα

[
−α

(t−1)α

1−α

]
s. , (4)

where Eα(z) := ∑
∞
n=0

zn

Γ (nα+1) is the Mittag-Leffler function and B(α) is a normalizing positive function satisfying B(0) =
B(1)= 1. Similarly, the Atangana-Baleanu fractional derivative of the function x order α in the sense of Riemann-Liouville
is defined by (ABR

a Dα x
)
(t) :=

B(α)

1−α

.
t.

∫ t

a
x(s)Eα

[
−α

(t−1)α

1−α

]
s. . (5)

The associated Atangana-Baleanu fractional integral of the function x is defined by

(AB
a Iα x

)
(t) :=

1−α

B(α)
x(t)+

α

B(α)
(aIα x)(t), (6)

where (aIα x)(t) is the Riemann-Liouville fractional integral given with (1).

Lemma 1. [[17]] Let α > 0, u(t) is nonnegative, nondecreasing and locally integrable on the interval a < t < b < ∞,
v(t)≤M and x(t) is nonnegative and locally integrable on the interval [a,b) with

x(t)≤ u(t)+ v(t)(aIα x)(t) (7)

for all t ∈ [a,b). Then the inequality
x(t)≤ u(t)Eα [v(t)(t−a)α ] (8)

holds for all t ∈ [a,b).

2 Main results

Theorem 1. Suppose α > 0, ε1,ε2 > 0 and x(t) is a nonnegative locally integrable function satisfying

x(t)≤ ε1 + ε2
(AB

a Iα x
)
(t) (9)

on [a,b). Then the following inequality holds for all n ∈ N

x(t)≤ ε1

n

∑
k=0

[A(α)ε2]
k +[A(α)ε2]

n+1 x(t)+
α

B(α)

n

∑
k=0

[
Ak(α)εk+1

2

]
(aIα x)(t), (10)

where A(α) := (1−α)/B(α).

© 2020 BISKA Bilisim Technology



CMMA 5, No. 1, 1-5 (2020) / ntmsci.com/cmma 3

Proof. We will prove by induction. By using (6) in the inequality (9), we obtain

x(t)≤ ε1 + ε2
(AB

a Iα x
)
(t)

= ε1 + ε2

[
A(α)x(t)+

α

B(α)
(aIα x)(t)

]
= ε1 +A(α)ε2x(t)+

α

B(α)
ε2 (aIα x)(t),

that is, the inequality (10) holds for n = 1. Now for a N ∈ N, assume that the inequality (10) holds for n = N, i.e.

x(t)≤ ε1

N

∑
k=0

[A(α)ε2]
k +[A(α)ε2]

N+1 x(t)+
α

B(α)

N

∑
k=0

[
Ak(α)εk+1

2

]
(aIα x)(t).

By using the relations (9) and (6) in this inequality, we obtain

x(t)≤ ε1

N

∑
k=0

[A(α)ε2]
k +[A(α)ε2]

N+1 ·
[
ε1 + ε2

(AB
a Iα x

)
(t)
]
+

α

B(α)

N

∑
k=0

[
Ak(α)εk+1

2

]
(aIα x)(t)

= ε1

N

∑
k=0

[A(α)ε2]
k +[A(α)ε2]

N+1 ·
[

ε1 + ε2

(
A(α)x(t)+

α

B(α)

)
(aIα x)(t)

]
+

α

B(α)

N

∑
k=0

[
Ak(α)εk+1

2

]
(aIα x)(t)

= ε1

N

∑
k=0

[A(α)ε2]
k + ε1 [A(α)ε2]

N+1 +[A(α)ε2]
N+2 x(t)+

α

B(α)

N

∑
k=0

[
Ak(α)εk+1

2

]
(aIα x)(t)+

α

B(α)
[A(α)ε2]

N+1 (aIα x)(t)

= ε1

N+1

∑
k=0

[A(α)ε2]
k +[A(α)ε2]

N+2 x(t)+
α

B(α)

N+1

∑
k=0

[
Ak(α)εk+1

2

]
(aIα x)(t),

that is, the inequality (10) holds for k = N. Thus, the proof is complete.

By rearranging the inequality (10), we obtain the following useful result. Note that A(α)ε2 > 0 for α ∈ [0,1].

Corollary 1. Suppose α ∈ [0,1], ε1,ε2 > 0 and x(t) is a nonnegative locally integrable function satisfying (9) on [a,b). If
there exists a n1 ∈ N such that An1+1(α)εn1+1

2 < 1, then the function x(t) satisfies

x(t)≤ K +L(aIα x)(t) (11)

for all t ∈ [a,b), where

K := ε1
∑

n1
k=0 [A(α)ε2]

k

1− [A(α)ε2]
n1+1 and L :=

α

B(α)

∑
n1
k=0

[
Ak(α)εk+1

2

]
1− [A(α)ε2]

n1+1 .

Now, by using Lemma 1 in Corollary 1, we obtain following Gronwall type inequality for Atangana-Baleanu fractional
integrals.

Corollary 2. Suppose α ∈ [0,1], ε1,ε2 > 0 and x(t) is a nonnegative locally integrable function satisfying (9) on [a,b). If
there exists a n1 ∈ N such that An1+1(α)εn1+1

2 < 1, then the inequality

x(t)≤ KEα [L(t−a)α ] (12)

holds for all t ∈ [a,b).

© 2020 BISKA Bilisim Technology

 ntmsci.com/cmma 
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By letting n→ ∞ in (10) and applying Lemma 1, one can obtain following special case of Gronwall inequality stated in
Corollary 2. Note that if ε2 < A−1(α), then we have

ε1

∞

∑
k=0

[A(α)ε2]
k =

ε1B(α)

B(α)− (1−α)ε2
and lim

n→∞
[A(α)ε2]

n+1 x(t) = 0.

Corollary 3. Suppose α ∈ [0,1], ε1,ε2 > 0 and x(t) is a nonnegative locally integrable function satisfying (9) on [a,b). If
ε2 < A−1(α), then the function x(t) satisfies

x(t)≤ K∗Eα [L∗(t−a)α ] (13)

for all t ∈ [a,b), where

K∗ :=
ε1B(α)

B(α)− (1−α)ε2
and L∗ :=

αε2

B(α)− (1−α)ε2
.

It is easy to see that the result of Theorem 1 is valid for variable ε1(t) and ε2(t) provided that ε1(t),ε2(t) > 0 for all
t ∈ [a,b). Therefore, we have the following results analogue to Corollary 2 and Corollary 3 succesively.

Corollary 4. Suppose α ∈ [0,1], ε1(t),ε2(t)> 0 and x(t) is a nonnegative locally integrable function satisfying

x(t)≤ ε1(t)+ ε2(t)
(AB

a Iα x
)
(t) (14)

on [a,b). If there exists a n1 ∈ N such that An1+1(α)εn1+1
2 (t)< 1, then the inequality

x(t)≤ K(t)Eα [L(t)(t−a)α ] (15)

holds for all t ∈ [a,b), where

K(t) := ε1(t)
∑

n1
k=0 [A(α)ε2(t)]

k

1− [A(α)ε2(t)]
n1+1 and L(t) :=

α

B(α)

∑
n1
k=0

[
Ak(α)ε2(t)k+1

]
1− [A(α)ε2(t)]

n1+1 .

Corollary 5. Suppose α ∈ [0,1], ε1(t),ε2(t) > 0 and x(t) is a nonnegative locally integrable function satisfying (9) on
[a,b). If ε2(t)< A−1(α) for all t ∈ [a,b), then the function x(t) satisfies

x(t)≤ K∗(t)Eα [L∗(t)(t−a)α ] (16)

for all t ∈ [a,b), where

K∗(t) :=
ε1(t)B(α)

B(α)− (1−α)ε2(t)
and L∗(t) :=

αε2(t)
B(α)− (1−α)ε2(t)

.

Remark. The results given in Corollary 3 and Corollary 5 are same with the result given in Theorem 2.1 of the paper [18]
(see also Remark 2.1 of [18]), but the results given in Corollary 2 and Corollary 4 are more general than the results of
[18].
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