
NTMSCI 5, No. 1, 1-9 (2020) 1

Journal of Abstract and Computational Mathematics
http://www.ntmsci.com/jacm

Hermite-Hadamard type inequalities for fourth-times
differentiable arithmetic-harmonically functions
Kerim Bekar

Department of Mathematics, Faculty of Sciences and Arts, Giresun University-Giresun-TÜRKİYE
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Abstract: In this study, by using an integral identity together with both the Hölder integral inequality and the power-mean integral
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1 Introduction

Definition 1.A function f : I ⊆ R→ R is said to be convex if the inequality

f (tx+(1− t)y)≤ t f (x)+(1− t) f (y)

valid for all x,y ∈ I and t ∈ [0,1]. If this inequality reverses, then f is said to be concave on interval I 6=∅. This definition
is well known in the literature.

Convexity theory has appeared as a powerful technique to study a wide class of unrelated problems in pure and applied
sciences. For some inequalities, generalizations and applications concerning convexity see [2,3,17,19,20]. Many papers
have been written by a number of mathematicians concerning inequalities for different classes of convex functions see for
instance the recent papers [5,6,7,8,10] and the references within these papers.

Theorem 1.Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers and a,b ∈ I with a < b. The
following inequality

f
(

a+b
2

)
≤ 1

b−a

b∫
a

f (x)dx≤ f (a)+ f (b)
2

. (1)

holds.

This double inequality is known in the literature as Hermite-Hadamard integral inequality for convex functions. See [5,
9,11,12,13,14,18], for the results of the generalization, improvement and extention of the famous integral inequality (1).
It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [15]). But this result was nowhere mentioned
in the mathematical literature and was not widely known as Hermite’s result. E. F. Beckenbach, a leading expert on the
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2 Kerim Bekar: Integral inequalities

history and the theory of convex functions, wrote that this inequality was proven by J. Hadamard in 1893 [1]. In 1974,
D. S. Mitrinovic found Hermite’s note in Mathesis [15]. Since (1) was known as Hadamard’s inequality, the inequality is
now commonly referred as the Hermite-Hadamard inequality.

Definition 2([4]). A function f : I ⊂ R→ (0,∞) is said to be arithmetic-harmonically (AH) convex function if for all
x,y ∈ I and t ∈ [0,1] the equality

f (tx+(1− t)y)≤ f (x) f (y)
t f (y)+(1− t) f (x)

(2)

holds. If the inequality (2) is reversed then the function f (x) is said to be arithmetic-harmonically (AH) concave function.

Theorem 2(Hölder Inequality for Integrals [16]). Let p > 1 and 1
p +

1
q = 1. If f and g are real functions defined on

[a,b] and if | f |p, |g|q are integrable functions on [a,b] then

∫ b

a
| f (x)g(x)|dx≤

(∫ b

a
| f (x)|p dx

) 1
p
(∫ b

a
|g(x)|q dx

) 1
q

,

with equality holding if and only if A | f (x)|p = B |g(x)|q almost everywhere, where A and B are constants.

Theorem 3(Power-mean Integral Inequality ). Let q≥ 1. If f and g are real functions defined on [a,b] and if | f |, | f | |g|q

are integrable functions on [a,b] then

∫ b

a
| f (x)g(x)|dx≤

(∫ b

a
| f (x)|dx

)1− 1
q
(∫ b

a
| f (x)| |g(x)|q dx

) 1
q .

.

In this study, in order to establish some new inequalities of Hermite-Hadamard type inequalities for arithmetic
harmonically convex functions, we will use the following lemma obtained in the specials case of identity given in [14].

Lemma 1.Let f : I ⊆R→ R be a fourth-times differentiable mapping on I◦ and f (4) ∈ L [a,b] , where a,b ∈ I◦ with a < b,
we have the identity

b f (b)−a f (a)
1!

− b2 f ′(b)−a2 f ′(a)
2!

+
b3 f ′′(b)−a3 f ′′(a)

3!
(3)

−b4 f ′′′(b)−a4 f ′′′(a)
4!

−
∫ b

a
f (x)dx =− 1

4!

∫ b

a
x4 f (4)(x)dx.

where an empty sum is understood to be nil.

By using above Lemma together with Hölder and power-mean integral inequalities, we derive a general integral
identity for differentiable functions in order to provide inequality for functions whose fourth derivatives in absolute value
at certain power are arithmetic-harmonically-convex functions.

Let 0 < a < b, throught this paper, we will use

A(a,b) =
a+b

2
G(a,b) =

√
ab

Lp(a,b) =


(

bp+1−ap+1

(p+1)(b−a)

) 1
p
, p 6=−1,0

b−a
lnb−lna , p =−1

1
e

(
bb

aa

) 1
b−a

, p = 0.
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for the arithmetic, the geometric and generalized logarithmic mean for a,b > 0 respectively. In addition, we will use the
following notation for shortness:

I f (a,b) =
b f (b)−a f (a)

1!
− b2 f ′(b)−a2 f ′(a)

2!
+

b3 f ′′(b)−a3 f ′′(a)
3!

−b4 f ′′′(b)−a4 f ′′′(a)
4!

−
∫ b

a
f (x)dx =− 1

4!

∫ b

a
x4 f (4)(x)dx.

2 Main results

In this section, we will obtain our main results by using the Lemma 1.

Theorem 4.Let f : I ⊂ (0,∞)→(0,∞) be a fourth-times differentiable mapping on I◦, and a,b ∈ I◦ with a < b. If
∣∣∣ f (4)∣∣∣q

is an arithmetic-harmonically convex function on the interval [a,b], then the following inequality holds:

i) If
∣∣∣ f (4)(a)∣∣∣q− ∣∣∣ f (4)(b)∣∣∣q 6= 0, then

∣∣I f (a,b)
∣∣≤ b−a

4!

L4
4p(a,b)G

2
(∣∣∣ f (4)(a)∣∣∣ , ∣∣∣ f (4)(b)∣∣∣)

L
1
q
(∣∣ f (4)(a)∣∣q , ∣∣ f (4)(b)∣∣q) , (4)

ii) If
∣∣∣ f (4)(a)∣∣∣q− ∣∣∣ f (4)(b)∣∣∣q = 0, then

∣∣I f (a,b)
∣∣≤ b−a

n!

∣∣∣ f (4)(b)∣∣∣L4
4p(a,b),

where

Bq, f = Bq, f (a,b) =
∣∣∣ f (4)(a)∣∣∣q− ∣∣∣ f (4)(b)∣∣∣q ,

Cq, f = Cq, f (a,b) =
b
∣∣∣ f (4)(b)∣∣∣q−a

∣∣∣ f (4)(a)∣∣∣q
Bq, f

,

and 1
p +

1
q = 1.

Proof.i) Let
∣∣∣ f (4)(a)∣∣∣q− ∣∣∣ f (4)(b)∣∣∣q 6= 0. If

∣∣∣ f (4)∣∣∣q for q > 1 is an arithmetic-harmonically convex function on the interval
[a,b], then using Lemma 1, well known Hölder integral inequality and the following identity

∣∣∣ f (4)(x)∣∣∣q = ∣∣∣∣ f (4)(b− x
b−a

a+
x−a
b−a

b
)∣∣∣∣q ≤ (b−a)

∣∣∣ f (4)(a)∣∣∣q ∣∣∣ f (4)(b)∣∣∣q
(b− x)

∣∣ f (4)(b)∣∣q +(x−a)
∣∣ f (4)(a)∣∣q ,

we obtain

∣∣I f (a,b)
∣∣ ≤ 1

4!

(∫ b

a
x4pdx

) 1
p
(∫ b

a

∣∣∣ f (4)(x)∣∣∣q dx
) 1

q

≤ 1
4!

(∫ b

a
x4pdx

) 1
p

∫ b

a

(b−a)
∣∣∣ f (4)(a)∣∣∣q ∣∣∣ f (4)(b)∣∣∣q

(b− x)
∣∣ f (4)(b)∣∣q +(x−a)

∣∣ f (4)(a)∣∣q dx


1
q

. (5)
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4 Kerim Bekar: Integral inequalities

Since
0 < (b− x)

∣∣∣ f (4)(b)∣∣∣q +(x−a)
∣∣∣ f (4)(a)∣∣∣q = Bq, f

(
x+Cq, f

)
,

we can write the following inequality:

I f (a,b)≤
(b−a)L4

4p(a,b)
∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣
4!

(
1

Bq, f

∫ b

a

1
x+Cq, f

dx
) 1

q

.

It is easily seen that

1
Bq, f

∫ b

a

1
x+Cq, f

dx =
1

Bq, f
ln

∣∣∣ f (4)(a)∣∣∣q∣∣ f (4)(b)∣∣q =
1

L
(∣∣ f (4)(a)∣∣q , ∣∣ f (4)(b)∣∣q) (6)

Therefeore, we have ∣∣I f (a,b)
∣∣≤ b−a

4!

L4
4p(a,b)G

2
(∣∣∣ f (4)(a)∣∣∣ , ∣∣∣ f (4)(b)∣∣∣)

L
1
q
(∣∣ f (4)(a)∣∣q , ∣∣ f (4)(b)∣∣q) ,

where ∫ b

a
x4pdx = (b−a)L4p

4p(a,b).

ii) Let
∣∣∣ f (4)(a)∣∣∣q − ∣∣∣ f (4)(b)∣∣∣q = 0. In this case, by substituting

∣∣∣ f (4)(a)∣∣∣q =
∣∣∣ f (4)(b)∣∣∣q in (5) we obtain the following

inequality: ∣∣I f (a,b)
∣∣≤ b−a

4!

∣∣∣ f (4)(b)∣∣∣L4
4p(a,b). (7)

This completes the proof of the Theorem.

Theorem 5.Let f : I ⊂ (0,∞)→(0,∞) be a fourth-times differentiable mapping on I◦, and a,b ∈ I◦ with a < b. If∣∣∣ f (4)∣∣∣q ,q≥ 1 is an arithmetic-harmonically convex function on the interval [a,b], then the following inequality holds:

i) If
∣∣∣ f (4)(a)∣∣∣q− ∣∣∣ f (4)(b)∣∣∣q 6= 0, then

∣∣I f (a,b)
∣∣≤ (b−a)L

4
(

1− 1
q

)
4 (a,b)

∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣
4!

(8)

×

[
1

Bq, f

3

∑
k=0

(−1)kCk
q, f

(
b4−k−a4−k

4− k

)
+

C4
q, f

L
(∣∣ f (4)(a)∣∣q , ∣∣ f (4)(b)∣∣q)

] 1
q

.

ii) If
∣∣∣ f (4)(a)∣∣∣q− ∣∣∣ f (4)(b)∣∣∣q = 0, then

∣∣I f (a,b)
∣∣≤ (b−a)L4

4(a,b)
∣∣∣ f (4)(b)∣∣∣

4!
,

where

Bq, f = Bq, f (a,b) =
∣∣∣ f (4)(a)∣∣∣q− ∣∣∣ f (4)(b)∣∣∣q ,

Cq, f = Cq, f (a,b) =
b
∣∣∣ f (4)(b)∣∣∣q−a

∣∣∣ f (4)(a)∣∣∣q
Bq, f

.
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Proof.i) Let
∣∣∣ f (4)(a)∣∣∣q− ∣∣∣ f (4)(b)∣∣∣q 6= 0. If

∣∣∣ f (4)∣∣∣q for q≥ 1 is an arithmetic-harmonically convex function on the interval
[a,b], then using Lemma 1, well known power-mean integral inequality and

∣∣∣ f (4)(x)∣∣∣q ≤ ∣∣∣∣ f (4)(b− x
b−a

a+
x−a
b−a

b
)∣∣∣∣q = (b−a)

∣∣∣ f (4)(a)∣∣∣q ∣∣∣ f (4)(b)∣∣∣q
(b− x)

∣∣ f (4)(b)∣∣q +(x−a)
∣∣ f (4)(a)∣∣q

we write the following ineqaulity:∣∣I f (a,b)
∣∣ (9)

≤ 1
4!

(∫ b

a
x4dx

)1− 1
q
(∫ b

a
x4
∣∣∣ f (4)(x)∣∣∣q dx

) 1
q

≤ 1
4!

(∫ b

a
x4dx

)1− 1
q

∫ b

a

x4(b−a)
∣∣∣ f (4)(a)∣∣∣q ∣∣∣ f (4)(b)∣∣∣q

(b− x)
∣∣ f (4)(b)∣∣q +(x−a)

∣∣ f (4)(a)∣∣q dx


1
q

=
b−a

4!
L

4
(

1− 1
q

)
4 (a,b)

∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣(∫ b

a

x4

(b− x)
∣∣ f (4)(b)∣∣q +(x−a)

∣∣ f (4)(a)∣∣q dx

) 1
q

=
(b−a)L

4
(

1− 1
q

)
4 (a,b)

∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣
4!

(
1

Bq, f

∫ b

a

x4

x+Cq, f
dx
) 1

q

.

Since∫ b

a

x4

x+Cq, f
dx =

∫ b

a

3

∑
k=0

(−1)kCk
q, f x3−kdx+

∫ b

a

C4
q, f

x+Cq, f
dx

=
3

∑
k=0

(−1)kCk
q, f

∫ b

a
x3−kdx+C4

q, f

∫ b

a

1
x+Cq, f

dx

=
3

∑
k=0

(−1)kCk
q, f

(
b4−k−a4−k

4− k

)
+C4

q, f

∫ b

a

1
x+Cq, f

dx,

we have the following inequality:

∣∣I f (a,b)
∣∣ ≤ (b−a)L

4
(

1− 1
q

)
4 (a,b)

∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣
4!

×

[
1

Bq, f

3

∑
k=0

(−1)kCk
q, f

(
b4−k−a4−k

4− k

)
+

C4
q, f

L
(∣∣ f (4)(a)∣∣q , ∣∣ f (4)(b)∣∣q)

] 1
q

.

ii) Let
∣∣∣ f (4)(a)∣∣∣q− ∣∣∣ f (4)(b)∣∣∣q = 0. By using the inequality (9), we obtain

∣∣I f (a,b)
∣∣≤ (b−a)L4

4(a,b)
∣∣∣ f (4)(b)∣∣∣

4!
(10)

This completes the proof of the Theorem.
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Corollary 1.If we take q = 1 in (8), we get the following inequality:

∣∣I f (a,b)
∣∣ ≤ (b−a)G2

(∣∣∣ f (4)(a)∣∣∣ , ∣∣∣ f (4)(b)∣∣∣)
4!

×

[
1

B f

3

∑
k=0

(−1)kCk
f

(
b4−k−a4−k

4− k

)
+

C4
f

L
(∣∣ f (4)(a)∣∣ , ∣∣ f (4)(b)∣∣)

]
.

Theorem 6.Let f : I ⊂ R→(0,∞) be a fourth-times differentiable mapping on I◦, and a,b ∈ I◦ with a < b. If
∣∣∣ f (4)∣∣∣ is an

arithmetic-harmonically convex function on the interval [a,b], then the following inequality holds:

i) If
∣∣∣ f (4)(a)∣∣∣− ∣∣∣ f (4)(b)∣∣∣ 6= 0, then

∣∣I f (a,b)
∣∣ ≤ (b−a)

∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣
4!

[
1

B f

3

∑
k=0

(−1)kCk
f

(
b4−k−a4−k

n− k

)
+

C4
f

L
(∣∣ f (4)(a)∣∣q , ∣∣ f (4)(b)∣∣q)

]
, (11)

ii) If
∣∣∣ f (4)(a)∣∣∣− ∣∣∣ f (4)(b)∣∣∣= 0, then

∣∣I f (a,b)
∣∣≤ (b−a)

∣∣∣ f (4)(b)∣∣∣
4!

L4
4 (a,b) ,

where

B f = B f (a,b) =
∣∣∣ f (4)(a)∣∣∣− ∣∣∣ f (4)(b)∣∣∣ ,

C f = C f (a,b) =
b
∣∣∣ f (4)(b)∣∣∣−a

∣∣∣ f (4)(a)∣∣∣
B f

.

Proof.i) Let
∣∣∣ f (4)(a)∣∣∣− ∣∣∣ f (4)(b)∣∣∣ 6= 0. If

∣∣∣ f (4)∣∣∣ is an arithmetic-harmonically convex function on the interval [a,b], using
Lemma 1 and ∣∣∣ f (4)(x)∣∣∣= ∣∣∣∣ f (4)(b− x

b−a
a+

x−a
b−a

b
)∣∣∣∣≤ (b−a)

∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣
(b− x)

∣∣ f (4)(b)∣∣+(x−a)
∣∣ f (4)(a)∣∣

we get∣∣I f (a,b)
∣∣

≤ 1
4!

∫ b

a
x4
∣∣∣ f (4)(x)∣∣∣dx

≤ 1
4!

∫ b

a

x4(b−a)
∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣

(b− x)
∣∣ f (4)(b)∣∣+(x−a)

∣∣ f (4)(a)∣∣dx

=
(b−a)

∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣
4!

∫ b

a

x4

(b− x)
∣∣ f (4)(b)∣∣+(x−a)

∣∣ f (4)(a)∣∣dx. (12)

Since
0 < (b− x)

∣∣∣ f (4)(b)∣∣∣+(x−a)
∣∣∣ f (4)(a)∣∣∣= B f

(
x+C f

)
,

we can write the following inequality:

I f (a,b)≤
(b−a)

∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣
4!B f

∫ b

a

x4

x+C f
dx. (13)

c© 2020 BISKA Bilisim Technology



NTMSCI 5, No. 1, 1-9 (2020) / http://www.ntmsci.com/jacm 7

Sample calculation give us that∫ b

a

x4

x+C f
dx =

∫ b

a

3

∑
k=0

(−1)kCk
f x3−kdx+

∫ b

a

C4
f

x+C f
dx (14)

=
3

∑
k=0

(−1)kCk
f

∫ b

a
x3−kdx+C4

f

∫ b

a

1
x+C f

dx

=
3

∑
k=0

(−1)kCk
f

(
b4−k−a4−k

4− k

)
+C4

f

∫ b

a

1
x+C f

dx.

From the inequalities (12), (13) and (14), we get the desired inequality.

ii) Let
∣∣∣ f (4)(a)∣∣∣− ∣∣∣ f (4)(b)∣∣∣= 0. Then, by substituting

∣∣∣ f (4)(a)∣∣∣= ∣∣∣ f (4)(b)∣∣∣ in (12), we obtain

∣∣I f (a,b;n)
∣∣ ≤ (b−a)

∣∣∣ f (4)(a)∣∣∣ ∣∣∣ f (4)(b)∣∣∣
4!

∫ b

a

x4

(b− x)
∣∣ f (n)(b)∣∣+(x−a)

∣∣ f (n)(a)∣∣dx

=
(b−a)

∣∣∣ f (4)(b)∣∣∣
4!

L4
4 (a,b) . (15)

This completes the proof of theorem.

3 Applications for special means

We know that if p ∈ (−1,0) then the function f (x) = xp,x > 0 is an arithmetic harmonically-convex function [4]. By
using this function we obtain following propositions related to means:

Proposition 1.Let a,b ∈ (0,∞) with a < b, q > 1 and m ∈ (−1,0). Then, we have the following inequality:

L
m
q +4
m
q +4(a,b)≤

L4
4p(a,b)G

2m
q (a,b)[

L(a,b)Lm−1
m−1(a,b)

] 1
q
.

Proof.The assertion follows from the inequality (4) in the Theorem 4. Let

f (x) =
1(

m
q +1

)(
m
q +2

)
(m

q +3)(m
q +4)

x
m
q +4, x ∈ (0,∞) .

Then
∣∣∣ f (4)(x)∣∣∣q = xm is an arithmetic harmonically-convex on (0,∞) and the result follows directly from Theorem 4.
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Proposition 2.Let a,b ∈ (0,∞) with a < b, q > 1 and m ∈ (−1,0). Then, we have the following inequality:
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Proof.The assertion follows from the inequality (8) in the Theorem 5. Let
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1(
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)
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x
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q +4, x ∈ (0,∞) .

Then
∣∣∣ f (4)(x)∣∣∣q = xm is an arithmetic harmonically-convex on (0,∞) and the result follows directly from Theorem 5.

Proposition 3.Let 0 < a < b and p ∈ (−1,0). Then we have the following inequalities:
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Proof.Let be p ∈ (−1,0) . Then we consider the function

f (x) =
xp+4

(p+1)(p+2)(p+3)(p+4)
, x > 0.

Under the assumption of the Proposition ∣∣∣ f (4)(x)∣∣∣= xp

is an AH-convex on (0,∞) . Therefore, the assertion follows from the inequality (11) in the Theorem 6, for f : (0,∞)→
R, f (x) = xp+4

(p+1)(p+2)(p+3)(p+4) .

4 Conclusion

In this work, we established several new inequalities for fourth-times differentiable arithmetic-harmonically-convex
function and obtained some new Hermite-Hadamard type inequalities connected with means. Similar method can be
applied to the different type of convex functions.
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[8] İşcan, İ., Turhan, S. and Maden, S., Some Hermite-Hadamard-Fejer type inequalities for Harmonically convex functions via

Fractional Integral, New Trends Math. Sci., 4 (2016), 1–10.
[9] Kadakal, H., Hermite-Hadamard type inequalities for two times differentiable arithmetic-harmonically convex functions,

Cumhuriyet Science Journal, 40(3) (2019) 670-678 .
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