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Abstract: This paper concerns the oscillation problem of a general class of fractional differential equations. New oscillation criteria
for a class of fractional nonlinear differential equations with damping and forcing terms have been established by using the classical
Riccati technique.
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1 Introduction and Preliminaries

Fractional differential (or difference) equations are a more general form of differential equations with integer order. And
there is an increasing interest in the study of them due to some important contributions in science and engineering see [1,
2]. For the many theories and applications of fractional differential equations, we refer the monographs [3,4,5].

In recent years, research on oscillation of various equations, including differential equations, fractional differential
equations, difference equations, fractional difference equations, partial differential equations, fractional partial
differential equations and dynamic equations on time scales has been a hot topic in the literature, and much effort has
already been put into establishing new oscillation criteria for these equations; see [6,7,8,9,10,11,12,13,14,15,16,17,18,
19,20,21,22,23,24,25,26,27,28].

In this study, with the definition of conformable fractional derivative given by R. Khalil [29], we study the oscillation
properties of the solutions of following conformable fractional differential equations

Tα [a(t)ψ (x(t)) f (Tα x(t))]+h(t) f (Tα x(t))+q(t)g(x(t)) = Q(t,Tα x(t) ,x(t)) (1)

where a ∈ Cα ([t0,∞) ,R), h,q ∈ C ([t0,∞) ,R), ψ, f ∈ Cα (R,R), g ∈ C (R,R), Q ∈ C
(
[t0,∞)×R2,R

)
, Tα denotes the

operator called conformable fractional derivative of order α , Cα denotes continuous function with fractional derivative of
order α . We shall make use of the following conditions in our results:

(C1) a(t)> 0, t ≥ 0;
(C2) 0 < k1 ≤ ψ (x)≤ k2, for all x 6= 0;
(C3) there exists a constant l > 0 such that f 2 (y)≤ ly f (y) for all y ∈ R;
(C4) Q(t,y,x)/g(x)≤ p(t) for t ∈ [t0,∞) , x,y ∈ R, x 6= 0 and p ∈C ([t0,∞) ,R) ;
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(C5) g′ (x)≥ k > 0 for all x 6= 0;
(C6) g satisfies g(x)/x≥ k∗ > 0 for all x 6= 0 and q(t)− p(t)≥ 0 for t ≥ t0.

Definition 1. [29] Given a function f : [0,∞)→R. Then the ”conformable fractional derivative” of f of order α is defined
by

Tα ( f )(t) = lim
ε→0

f
(
t + εt1−α

)
− f (t)

ε
, ∀t > 0, α ∈ (0,1) .

If f is α−differentiable in some (0,a), a > 0, and limt→0+ f α (t) exists, then define

f (α) (0) = lim
t→0+

f (α) (t) .

Definition 2. [29] Let α ∈ (n,n+1], and f be an n−differentiable at t, where t > 0. Then the conformable fractional
derivative of f of order α is defined as

Tα ( f )(t) = lim
ε→0

f (dαe−1)
(

t + εt(dαe−α)
)
− f (dαe−1) (t)

ε
, ∀t > 0, α ∈ (0,1)

where dαe is the smallest integer greater than or equal to α.

Definition 3. [29] Let α ∈ (0,1] and 0≤ a < b. A function f : [a,b]→R is α−fractional integrable on [a,b] if the integral

∫ b

a
f (x)dα x =

∫ b

a
f (x)xα−1dx

exists and is finite.

Theorem 1. [29] Let α ∈ (0,1] and f ,g be α−differentiable at a point t, then:

(1) Tα (a f +bg) = aTα ( f )+bTα (g) for all a,b ∈ R.
(2) Tα ( f g) = f Tα (g)+gTα ( f ) .
(3) Tα (t p) = pt p−α , for all p ∈ R.
(4) Tα

(
f
g

)
= f Tα (g)−gTα ( f )

g2 .

(5) Tα (c) = 0 where c is constant.
If, in addition, f is differentiable, then Tα ( f )(t) = t1−α d f

dt .

Theorem 2. [30] Let f ,g : [a,∞]→ R be two functions such that f g is differentiable. Then

∫ b

a
f (x)T a

α (g)(x)dα x = f g|ba−
∫ b

a
g(x)T a

α ( f )(x)dα x

where T a
α (.) represent the conformable fractional derivative of order α.

Theorem 3. [30,31,32] Assume functions f ,g : (0,∞)→ R be α−differentiable functions, where 0 < α ≤ 1. Then the
following rule is obtained

T a
α ( f ◦g)(t) = t1−α g′ (t) f ′ (g(t)) .

In the proof of our results we define following a useful operator, as an important tool. Firstly, we introduce a class of
functions Y . We say that a function Φ (t,s,r) belongs to the function class Y denoted by Φ ∈ Y , if Φ ∈C (E,R), where
E = {(t,s,r) : t0 ≤ r ≤ s≤ t < ∞} which satisfies Φ (t, t,r) = 0, Φ (t,r,r) = 0, Φ (t,s,r) 6= 0 for r < s < t, and has the
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partial derivative ∂ α Φ/∂ sα on E such that ∂ α Φ/∂ sα is locally α− integrable with respect to s in E and satisfies

∂ α Φ (t,s,r)
∂ sα

= φ (t,s,r)Φ (t,s,r) . (2)

Next, we define the operator

A(b;r, t) =
∫ t

r
Φ

2 (t,s,r)b(s)dα s for t ≥ s≥ r ≥ t0 and b ∈C ([0,∞) ,R) . (3)

It is easy to verify that linear operator A(.;r, t) satisfies

A(Tα (b) ;r, t) =−2A(φb;r, t) for b ∈Cα ([0,∞) ,R) . (4)

2 Main Results

Theorem 4. Let assumption (C1)–(C5) be fulfilled. If there exist functions Φ ∈ Y , η ∈Cα ([t0,∞) ,(0,∞)) such that

limsup
t→∞

A
[

η (s)H (s)− 2lk2

k
η (s)a(s)φ

2;r, t
]
> 0, (5)

where r ≥ t0, the operator A is defined by (3), the function φ = φ (s,r, t) is defined by (2) and

H (t) = q(t)− p(t)− l
4k

(
1
k1
− 1

k2

)
h2 (t)
a(t)

− lk2

2k
a(t)

(
Tα η (t)

η (t)
− h(t)

k2a(t)

)2

,

then every solution of (1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1). Without loss of generality, we assume that x(t) > 0 for t ≥ t1 ≥ t0. A
similar argument holds for the case when x is eventually negative. Define

ϑ (t) =η (t)
a(t)ψ (x(t)) f (Tα x(t))

g(x(t))
,

Tα ϑ (t) = η (t)Tα

a(t)ψ (x(t)) f (Tα x(t))
g(x(t))

+
a(t)ψ (x(t)) f (Tα x(t))

g(x(t))
Tα η (t)

=η (t)
(

Tα [a(t)ψ (x(t)) f (Tα x(t))]g(x(t))−a(t)ψ (x(t)) f (Tα x(t))Tα g(x(t))
g2 (x(t))

)
+

a(t)ψ (x(t)) f (Tα x(t))
g(x(t))

Tα η (t)

= η (t)
Tα [a(t)ψ (x(t)) f (Tα x(t))]

g(x(t))
−η (t)

a(t)ψ (x(t)) f (Tα x(t))Tα x(t)g′ (x(t))
g2 (x(t))

+
a(t)ψ (x(t)) f (Tα x(t))

g(x(t))
Tα η (t)

and then we have

Tα ϑ (t) = η (t)
(

Q(t,Tα x(t) ,x(t))
g(x(t))

− h(t) f (Tα x(t))
g(x(t))

−q(t)
)

−η (t)
a(t)ψ (x(t)) f (Tα x(t))Tα x(t)g′ (x(t))

g2 (x(t))
+

Tα η (t)
η (t)

ϑ (t) .
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Using (C3) and (C4), we get

Tα ϑ (t)≤ η (t)
(

p(t)− h(t) f (Tα x(t))
g(x(t))

−q(t)
)
− k

l
η (t)

a(t)ψ (x(t)) f 2 (Tα x(t))
g2 (x(t))

+
Tα η (t)

η (t)
ϑ (t)

=
Tα η (t)

η (t)
ϑ (t)+η (t)(p(t)−q(t))+

lη (t)h2 (t)
4ka(t)ψ (x(t))

− η (t)
ψ (x(t))

(√
ka(t)

l
ψ (x(t)) f (Tα x(t))

g(x(t))
+

h(t)
2

√
l

ka(t)

)2

.

By assuming (C2), we obtain

Tα ϑ (t)≤ Tα η (t)
η (t)

ϑ (t)+η (t)(p(t)−q(t))+
lη (t)h2 (t)
4kk1a(t)

− η (t)
k2

(√
ka(t)

l
ϑ (t)

η (t)a(t)
+

h(t)
2

√
l

ka(t)

)2

= η (t)
(

p(t)−q(t)+
l

4k

(
1
k1
− 1

k2

)
h2 (t)
a(t)

)
+

(
Tα η (t)

η (t)
− h(t)

k2a(t)

)
ϑ (t)− k

lk2η (t)a(t)
ϑ

2 (t) .

Using the following inequality

−az2 +bz≤−a
2

z2 +
b2

2a
, a > 0, b,z ∈ R,

we have

Tα ϑ (t)≤−η (t)H (t)− kϑ 2 (t)
2lk2η (t)a(t)

. (6)

Applying A [·;r, t] to (6) and using (4) we have

A [η (s)H (s) ;r, t]≤ A
[

2 |φ | |ϑ (s)|− kϑ 2 (s)
2lk2η (s)a(s)

;r, t
]
. (7)

Set
F (v) = 2 |φ |v− k

2lk2ηa
v2, v > 0.

We have F ′ (v∗) = 0 and F ′′ (v∗)< 0 where v∗ = 2lk2
k ηa |φ | , which implies that F obtains its maximum at v∗. So we have

F (v)≤ F (v∗) =
2lk2

k
ηaφ

2. (8)

Then by using (8) in (7) we get

A [η (s)H (s) ;r, t]≤ A
[

2lk2

k
η (s)a(s)φ

2;r, t
]

which contradicts (5). Thus, the proof is complete.

Theorem 5. Let assumption (C1)–(C4) and (C6) be fulfilled. If there exist functions Φ ∈ Y , η ∈Cα ([t0,∞) ,(0,∞)) such
that

limsup
t→∞

A
[
η (s)H∗ (s)−2lk2η (s)a(s)φ

2;r, t
]
> 0, (9)

where r ≥ t0, the operator A is defined by (3), the function φ = φ (s,r, t) is defined by (2) and

H∗ (t) = k∗ (q(t)− p(t))− l
4

(
1
k1
− 1

k2

)
h2 (t)
a(t)

− lk2

2
a(t)

(
Tα η (t)

η (t)
− h(t)

k2a(t)

)2
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then every solution of (1) is oscillatory.

Proof. Let x be a nonoscillatory solution of (1). Without loss of generality, we assume that x(t) > 0 for t ≥ t1 ≥ t0. A
similar argument holds for the case when x is eventually negative. Define

ϑ (t) = η (t)
a(t)ψ (x(t)) f (Tα x(t))

x(t)
,

Tα ϑ (t) = η (t)Tα

a(t)ψ (x(t)) f (Tα x(t))
x(t)

+
a(t)ψ (x(t)) f (Tα x(t))

x(t)
Tα η (t)

= η (t)
(

Tα [a(t)ψ (x(t)) f (Tα x(t))]x(t)−a(t)ψ (x(t)) f (Tα x(t))Tα x(t)
x2 (t)

)
+

a(t)ψ (x(t)) f (Tα x(t))
g(x(t))

Tα η (t)

= η (t)
Tα [a(t)ψ (x(t)) f (Tα x(t))]

x(t)
−η (t)

a(t)ψ (x(t)) f (Tα x(t))Tα x(t)
x2 (t)

+
a(t)ψ (x(t)) f (Tα x(t))

g(x(t))
Tα η (t)

and then we deduce

Tα ϑ (t) = η (t)
(

Q(t,Tα x(t) ,x(t))
x(t)

− h(t) f (Tα x(t))
x(t)

− q(t)g(x(t))
x(t)

)
−η (t)

a(t)ψ (x(t)) f (Tα x(t))Tα x(t)
x2 (t)

+
Tα η (t)

η (t)
ϑ (t) .

Using (C3) and (C4), we have

Tα ϑ (t)≤ η (t)
(
(p(t)−q(t))

g(x(t))
x(t)

− h(t) f (Tα x(t))
x(t)

)
−η (t)

a(t)ψ (x(t)) f (Tα x(t))Tα x(t)
x2 (t)

+
Tα η (t)

η (t)
ϑ (t)

≤ η (t)
(
(p(t)−q(t))k∗− h(t) f (Tα x(t))

x(t)

)
−η (t)

a(t)ψ (x(t)) f 2 (Tα x(t))
lx2 (t)

+
Tα η (t)

η (t)
ϑ (t) ,

i.e.

Tα ϑ (t)≤ Tα η (t)
η (t)

ϑ (t)+ k∗η (t)(p(t)−q(t))−η (t)
h(t) f (Tα x(t))

x(t)
+

lη (t)h2 (t)
4k1a(t)

− η (t)
k2

(√
a(t)

l
ψ (x(t)) f (Tα x(t))

x(t)
+

h(t)
2

√
l

a(t)

)2

.

By assuming (C2), we obtain

Tα ϑ (t)≤ η (t)
(

k∗ (p(t)−q(t))+
l
4

(
1
k1
− 1

k2

)
h2 (t)
a(t)

)
+

(
Tα η (t)

η (t)
− h(t)

k2a(t)

)
ϑ (t)− 1

lk2η (t)a(t)
ϑ

2 (t) .

Using the following inequality

−az2 +bz≤−a
2

z2 +
b2

2a
, a > 0, b,z ∈ R,

we have

Tα ϑ (t)≤−η (t)H∗ (t)− ϑ 2 (t)
2lk2η (t)a(t)

.
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The rest of the proof is similar to that of Theorem 1, hence is omitted.

Theorem 6. Let assumption (C1)–(C5) be fulfilled. If there exist functions Φ ∈Y , η ∈Cα ([t0,∞) ,(0,∞)) such that for any
sufficiently large T ≥ t0, there exist c,d with T ≤ c < d satisfying

A
[

η (s)H (s)− 2lk2

k
η (s)a(s)φ

2;c,d
]
> 0, (10)

where A, φ and H are the same as defined in Theorem 4, then every solution of (1) is oscillatory.

Theorem 7. Let assumption (C1)–(C4) and (C6) be fulfilled. If there exist functions Φ ∈ Y , η ∈Cα ([t0,∞) ,(0,∞)) such
that for any sufficiently large T ≥ t0, there exist c,d with T ≤ c < d satisfying

A
[
η (s)H∗ (s)−2lk2η (s)a(s)φ

2;c,d
]
> 0, (11)

where A, φ and H∗ are the same as defined in Theorem 5, then every solution of (1) is oscillatory

3 Conclusion

In this study, we are concerned with the oscillatory behavior of solutions of a class of conformable fractional differential
equations. By using the properties of conformable fractional derivative and the classical Riccati technique, we present
some new oscillation criteria for Eq. (1). We note that the approach in establishing the main theorems above can be
generalized to research oscillation of fractional differential equations with more complicated forms, which are expected
to research further.
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