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Abstract: This article is concerned with a discrete time Geo/G/1 retrial queue with general retrial times, Bernoulli feedback and the
server subject to starting failures and a vacation. In this article we generalize the previous works in discrete time retrial queue with
unreliable server due to starting failures in the sense that we consider general service with Bernoulli feed back and general retrial times
with single vacation. In this model arrival time follows geometrical distribution and vacation times are generally distributed. In this
model the PGF is derived by using generating function technique and also we obtain the analytical expression for mean queue length
in performance measure. In numerical examples we analyzed the effects of mean queue length in several possible ways.
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1 Introduction

In Queuing models many researchers have found a lot of application in computer communications and manufacturing
systems. Currently many researchers are interested in discrete queue, due to applications in a various slotted digital
communicated systems and other related areas. The analysis of discrete queuing model has received considerable attention
in the scientific literature over the past years because of its applications which are widely used in the real life.

In brief, in telecommunication and computer systems the role of retrial queues is very important and are characterized
by the fact that a customer who leaves the service area and joins a retrial group ( orbit) when the server is busy. In the
customers in the orbit can not receive service immediately, when the server is idle but, it is not so standard queues this is
the main difference between retrial and standard queues. Falm (1990), Falm and Templation (1997), Kulkarni and Liang
(1997), yang and Templation (1987) have discussed on retrial queues and analyzed the fundamental methods on retrial
queues.

In the most of literature the researchers analyze continuous queuing model, but only some of the authors concentrate
on discrete queues since in practice it is applied many systems which shows an inherent genetic slotted time scale (
time shared computing system). Initially, the discrete queues are discussed by Meisling (1958), Bindsall, Ristenbatt, and
Weinstein (1962) and also by powell and Avi – Lizha (1967). In modelling computers and telecommunications the role of
discrete queuing models are the most important when compared with continuous time models. The concept feedback is
initiated by Takacs (1963) which has been widely investigated in continuous time [5,6,7,8,14,15,16] whereas it has been
rarely analyzes in discrete time [1].Takacs thinks about that the number of services needed by a customer is geometrically
distributed, that is, after receiving each service a customers quit the system with probability 1-α or rejoins the end of
the queue for another service with probability α . This phenomenon of feed back has many practical applications. Also,
Atencia, Fortes, and Sanchez (2009) have analyzed a discrete queue with Bernoulli feedback and starting failures.

In this article we have developed a new concept in discrete retrial queue deals with Bernoulli feedback, starting failures
and a vacation. Since the role of vacation in discrete queue with feedback and starting failures has wide application in
many real situations of our life, which is motivated me to develop this article.

The aim of this article is to discuss the problem like that arises in telecommunication systems where messages that
produce errors at the destination are sent again in a call centre, where customers may call again (repeat their service)
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if their problems are completely solved after the service. Also, in the telecommunication system the starting failures
occurred and at the time of starting failures no service is produced to customers and the server also takes a vacation of
random time. This process is the most suitable for our model under consideration.

2 Model Description

In this model we deal with discrete time queuing system where the time axis is splitted into constant length interval of
one unit called slots. In continuous queue the probability of an arrival and a departure occurring simultaneously is zero,
whereas it is not so in discrete queues. Also, in this discrete retrial queue all the queuing activities occur around the slot
boundary. We divide the time axis marked by 0,1,2,. . .m. Consider the epoch m and assume that departures and the end of
repair times take place just before the slot boundary m ie in the interval (m−,m) and arrivals, retrials, beginning of repairs
and vacations just after the slot boundary ie in the interval (m,m+). That is, we follow an Early arrival system or departure
first policy.

Customers arrival times follow geometrical distribution with probability p and an arriving customer who finds the
server down or busy joins a group of blocked customers called orbit with a FCFS discipline, that is the customer who
is only at head of the orbit is allowed to access to the server. When the server is idle an arriving customer ( external
or repeated) must turn on the service station, if the server has started its service successfully ( with probability α )
the customer has served immediately, otherwise, if the server has started its service unsuccessfully ( with probability
α−1−α) the repair time of the server begins immediately and the customer must join the orbit. Also, the server takes a
vacation of random time if no customers present in the system and upon return from vacation if any customer present in
the system the server starts its service otherwise it is idle.

Successive inter retrial times {ai} are generally distributed with generating function A(x) = ∑
∞
i=0 aixi, service

times{si}, repair times{ri} and vacation times{vi} are also generally distributed with generating function
S (x) = ∑

∞
i=1 sixi, R(x) = ∑

∞
i=1 rixi and V (x) = ∑

∞
i=0 vixiand nthfactorial moments β1,n, β2.n and β3.nrespectively.

After completion of service the customer decide either to join the retrial group again for another service with
probability θ or leave the system with complementary probability θ . It is assumed that inter arrival times, repair times,
service times and vacation times are mutually independent. In order to avoid trivial cases, it is also assumed that 0<p<1,
0<v<1 and 0<θ<1.

3 Markov Chain

At time m+ the system can be described by the markov process {ym;m≥ 1} with ym =
{

cm,ξom,ξ1m,ξ2m,ξ3m,Nm
}

,
where cm denotes the state of the server 0,1,2, and 3 according to whether the server is on vacation, idle, busy and down
respectively and Nm represents the number of customers in the retrial group. If cm=0, then ξom represents remaining
vacation time , if cm=1, then ξ1m represents remaining retrial time, if cm=2, then ξ2m represents remaining service time,
if cm=3, then ξ3m represents remaining repair time. It is clear that {ym;m≥ 1} is the markov chain of our queuing model,
whose state space is {(0, i,k) , i≥ 1,k ≥ 0,(1, i,k) , i≥ 1,k ≥ 1,(2, i,k) , i≥ 1,k ≥ o,(3, i,k) i≥ 1,k ≥ 1}

The limiting probabilities are defined as;

π0,i,k = lim
m→∞

Pr{Cm = 0,ξ0,m = i, Nm = k} ,

π1,i,k = lim
m→∞

Pr{Cm = 1,ξ1,m = i, Nm = k} ,

π2,i,k = lim
m→∞

Pr{Cm = 2,ξ2,m = i, Nm = k} ,

π3,i,k = lim
m→∞

Pr{Cm = 3,ξ3,m = i, Nm = k} .

The Kolmogorov equations for the stationary distributions are;

π0,1,0 = pπ0,1,0 + pπ0,0i≥ 1. (1)

π0,i,k = pπ0,i+1,k + pviπ0,1,k + pviπ0,1,k+1i≥ 1. (2)

π1,1,0 = pπ0,0 +θ pπ1,1,0i≥ 1. (3)
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π1,i,k = θ paiπ0,1,k−1 +θ paiπ0,1,k + pπ1,i+1,k +θ paiπ2,1,k+1 +θ paiπ2,1,k + paiπ3,1,k, i≥ 1,k ≥ 1. (4)

π2,i,k = psiδ0kαπ00 +α psiπ0,1,k−1 +α psiπ0,1,k +α psiπ1,1,k+1 +(1−δ0k) pαsi

∞

∑
j=1

π1, j,k

+(1−δ0k)θ pαsiπ2,1,k−1 +
(
θ pαsi +θ pαa0si

)
π2,1,k +θ pa0αsiπ2,1,k−1 +(1−δ0k)π2,i+1,k−1

+pπ2,ii+1,k +(1−δ0k) pαsiπ3,1,k + pαsia0π3,1,k+1i≥ 1,k ≥ 0.

(5)

π3,i,k = priαδokπ00 + priαπ0,1,k−1 + priαπ0,1,k +(1−δ1k) pαri

∞

∑
j=1

π1, j,k−1 + pαriπ1,1,k +(1−δ0k)ϑ priαπ2,1,k−2

+
(
θα pri +ϑ pa0αri

)
π2,1,k−1 +θ pαa0riπ2,1,k +(1−δ1k) pαriπ3,1,k−1 + pαa0π3,i,k

+(1−δ1k) pπ3,i+1,k−1 + pπ3,i=1,ki≥ 1k ≥ 1.

(6)

The normalization condition is

π00 +
∞

∑
i=1

∞

∑
k=0

π0,i,k +
3

∑
j=1

∞

∑
i=1

∞

∑
k=1

π j,i,k = 1.

To solve above Kolmogorov equations we define generating function and auxiliary generating function as follows:

φ0 (x,z) =
∞

∑
i=1

∞

∑
k=0

π0,i,kxizk,

φ1 (x,z) =
∞

∑
i=1

∞

∑
k=1

π1,i,kxizk,

φ2 (x,z) =
∞

∑
i=1

∞

∑
k=0

π2,i,kxizk,

φ3 (x,z) =
∞

∑
i=1

∞

∑
k=1

π3,i,kxizk,

φ0,i (z) =
∞

∑
k=0

π0,i,kzk,

φ1,i (z) =
∞

∑
k=1

π1,i,kzk,

φ2,i (z) =
∞

∑
k=0

π2,i,kzk,

φ3,i (z) =
∞

∑
k=1

π3,i,kzk.

In equation (2) multiply both sides by zkand taking summation over k and using (1), we get;

φoi (z) = pφoi+1 (z)+ viφ01 (z)
[

p+ pz
z

]
− pvi

z
π00. (7)

In the above equations multiply both sides by xiand taking summation over i and after some algebraic simplifications,
we get;

φo (x,z)
(

x− p
x

)
= φ01 (z)

[
(p+ pz)

z
V (x)− p

]
− pV (x)

z
π00. (8)
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In equation (4) multiply both sides by zkand taking summation over k and using (3), we get;

φ1i (z) = φ01 (z)ai p
(
θ +θz

)
+ pφi+1 (z)+φ21 (z)ai p

(
θz+θ

)
+ paiφ31 (z)− paiπ00. (9)

In the above equations multiply both sides by xiand taking summation over i and after some algebraic simplifications,
we get

φ1 (x,z)
(

x− p
x

)
= φ01 (z) p

(
θ +θz

)
(A(x)−a0)− pφ11 (z)+φ21 (z) p

(
θ +θz

)
(A(x)−a0)+

φ31 (z) p(A(x)−a0)− pπ00 (A(x)−a0) .

(10)

In equation (5) multiply both sides by zkand taking summation over k and using (3), we get;

φ2i (z) = αsiφ01 (z)(p+ pz)+
pαsi

z
φ11 (z)+(p+ pz)φ2i+1 (z)+ pαsiφ1 (1,z)+

αsi

(
θ +θz

)
(p+ pz)

z
φ21 (z)+ pαsi

(
z−a0

z

)
π00.

(11)

In the above equations multiply both sides by xiand taking summation over i and after some algebraic simplifications,
we get;

φ2 (x,z)
(

x− (p+ pz)
x

)
= (p+ pz)αS (x)φ01 (z)+

pαS (x)
z

φ11 (z)+αS (x)
(

a0 p+ pz
z

)
φ31 (z)+ pαS (x)φ1 (1,z)

+

[(
θ +θz

)
(a0 p+ pz)
z

αS (x)− (p+ pz)

]
φ21 (z)+

p(z−a0)

z
αS (x)π00.

(12)

In equation (6) multiply both sides by zkand taking summation over k and using (3), we get;

φ3i (z) = αri (p+ pz)φ01 (z)+(p+ pz)φ3i+1 (z)+ pzαriφ1 (1,z)+αri (pa0 + pz)φ31 (z)

+(pa0 + pz)
(
θ +θz

)
αriφ21 (z) pαriφ11 (z)+ p(z−a0)αriπ00.

(13)

In the above equations multiply both sides by xiand taking summation over i and after some algebraic simplifications,
we get;

φ3 (x,z)
(

x− (p+ pz)
x

)
= (p+ pz)αR(x)φ01 (z)+ pzαφ1 (1,z)R(x)+ [α (pa0 + pz)R(x)− (p+ pz)]φ31 (z)

+(pa0 + pz)
(
θ +θz

)
αR(x)φ21 (z)+ pαR(x)φ11 (z)+ p(z−a0)αR(x)π00.

(14)

Put x = 1 in (10) and after some algebraic simplifications, we get;

φ1 (1,z) p = p
(
θ +θz

)
(1−a0)φ01 (z)− pφ11 (z)+φ21 (z) p

(
θ +θz

)
(1−a0)+ p(1−a0)φ31 (z)− p(1−a0)π00. (15)

Using (15) in (12) and after some algebraic simplifications, we get;

φ2 (x,z)
(

x− (p+ pz)
x

)
= αS (x)

[
(p+ pz)+ p

(
θ +θz

)
(1−a0)

]
φ01 (z)+ pS (x)

(
1− z

z

)
φ11

(z)+
[

z+ pa0 (1− z)
z

αS (x)
]

φ31 (z)+
[

z+ pa0 (1− z)
z

αS (x)
]

φ31 (z)

+

[
(z+ pa0 (1− z))

(
θ +θz

)
z

αS (x)− (p+ pz)

]
φ21 (z)+

pa0 (z−1)
z

αS (x)π00.

(16)
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Using (15) in (14) and after some algebraic simplifications, we get;

φ3 (x,z)
[

x− (p+ pz)
x

]
=
[
(p+ pz)+ zp

(
θ +θz

)
(1−a0)

]
αR(x)φ01 (z)+ [[z+ pa0 (1− z)]αR(x)− (p+ pz)]φ31 (z)

+[z+ pa0 (1− z)]
(
θ +θz

)
αR(x)φ21 (z)+ pαR(x)(1− z)φ11 (z)+αR(x)a0 (z−1)π00.

(17)

Put x= p in (8) and solving for φ01 (z), we get;

φ01 (z) =
pV (p)

[(p+ pz)V (p)− pz]
π00. (18)

Put x= p in (8) and after simplification , we get;

pφ11 (z) = p
(
θ +θz

)
(A(p)−a0)φ01 (z)+ p

(
θ +θz

)
(A(p)−a0)φ21 (z)+ p(A(p)−a0)φ31 (z)− p(A(p)−a0)π00.

(19)

In equation (16) put x =(p+ pz ) and solving for Φ2,1 (z), we get;

φ21 (z) =

αzS (p+ pz)
[
(p+ pz)+ p

(
θ +θz

)
(1−a0)

]
φ01 (z)+αS (p+ pz)(1− z) pφ11 (z)

+[z+ pa0z−1]αS (p+ pz)φ31 (z)+αS (p+ pz) pa0 (z−1)π00{
S (p+ pz)−

[
(z+ pa0 (1− z))αS (p+ pz)

(
θ +θz

)]} . (20)

In equation (17) put x =(p+ pz) and solving for Φ3,1 (z), we get;

φ31 (z) =

[
(p+ pz)+ zp

(
θ +θz

)
(1−a0)

]
αR(p+ pz)φ01 (z)+αR(p+ pz)

(
θ +θz

)
[z+ pa0 (1− z)]φ21 (z)

+pαR(p+ pz)(1− z)φ11 (z)+αR(p+ pz)(z−1)a0π00

{(p+ pz)− [(z+ pa0 (1− z))αR(p+ pz)]}
. (21)

Using (21) in (20) and after some algebraic calculations , we get;

φ21 (z)=

φ01 (z)αR(p+ pz)



αS (p+ pz) [(p+ pz)−αR(p+ pz)] [(p+ pz)− (1− z) p(A(p)−a0)] p
(
θ +θz

)
(1− z)(A(p)−a0)(1+ zpa0 (1− z))+

[
(p+ pz)
+pz

(
θ +θz

)
(1−a0)

]
[2z+ pa0 (1− z)]


+
[
(p+ pz)+ zpa0 (1− z))

(
θ +θz

)]
+

[
((p+ pz)− (z+ pa0 (1− z)))p(1− z))

(
θ +θz

)
(A(p)−a0)

]
p(A(p)−a0)(1− z)αS (p+ pz)(1+ z+ pa0 (1− z))αR(p+ pz)


+π00

 (z−1) [p+ z+ pa0 (1− z))]αS (p+ pz)αR(p+ pz) [a0 + p(A(p)−a0)] ([(p+ pz)−αR(p+ pz)]
[z+ pa0 (1− z)]− (1− z) p(A(p)−a0))+αR(p+ pz)(z−1) p(A(p)−a0)+ p(A(p)−a0)(z−1)
[(p+ pz)− (z+ pa0 (1− z))]αS (p+ pz)αR(p+ pz)(1+ z+ pa0 (1− z))αR(p+ pz)


z(p+ pz)−αS (p+ pz)

(
θ +θz

)[ (z+ pa0 (1− z))(1+αR(p+ pz))(z+ pa0 (1− z))+ p(A(p)−a0)
(1− z)(1+ z+ pa0 (1− z))αR(p+ pz)

]
[(p+ pz)−αR(p+ pz) [(z+ pa0 (1− z))− (1− z) p(A(p)−a0)]]−

[
αR(p+ pz)

(
θ +θz

)
(1− z)

p(A(p)−a0)

]
+[[(p+ pz)− (z+ pa0 (1− z))]+ [[(p+ pz)− (z+ pa0 (1− z))]αR(p+ pz)(z+ pa0 (1− z))]]
p(A(p)−a0)(1− z)αS (p+ pz)(1+ z+ pa0 (1− z))αR(p+ pz)

(22)
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Using (19) and (22) in (21) and after some algebraic simplification, we get;

φ31 (z) =

φ01 (z)


αR(p+ pz)

[
(p+ pz)+ zp

(
θ +θz

)
(1−a0) [(p+ pz)− (z+ pa0 (1− z))]αR(p+ pz)(1− z)

p
(
θ +θz

)
(A(p)−a0)

[
z(p+ pz)− (z+ pa0 (1− z))αS (p+ pz)−

(
θ +θz

)] ]
+p
(
θ +θz

)
(A(p)−a0)z(1− z)+

[
[(p+ pz)− (z+ pa0 (1− z))] (z+ pa0 (1− z))αS (p+ pz)[
(p+ pz)+ p

(
θ +θz

)
(1−a0)

] ]


+φ21 (z)
{

pαS (p+ pz)(1− z)αR(p+ pz)
(
θ +θz

)
{(1− z) p(A(p)−a0)+ p(A(p)−a0)

αR(p+ pz)(z+ pa0 (1− z))
(
θ +θz

)
(A(p)−a0)

}
+π00

{
αS (p+ pz)αR(p+ pz)

(
θ +θz

)
(1− z){(1− z) p(A(p)−a0)+ [(p+ pz)− (z+ pa0 (1− z))]}

αR(p+ pz)(z+ pa0 (1− z)) [a0− p(A(p)−a0)]

}


z
[
[(p+ pz)− (z+ pa0 (1− z))] ((z+ pa0 (1− z))− (1− z) p(A(p)−a0))
z(p+ pz)− (z+ pa0 (1− z))αS (p+ pz)−

(
θ +θz

) ]
−
[

αS (p+ pz)αR(p+ pz){(1− z) p(A(p)−a0)+ [(p+ pz)− (z+ pa0 (1− z))]}
αR(p+ pz)(z+ pa0 (1− z))z

(
θ +θz

)
p(A(p)−a0)

]


.

(23)

The PGF of the model under consideration is obtained from

φ (z)−φ0,1 (1,z)+φ1,1 (1,z)+φ2,1 (1,z)+φ3,1 (1,z) ,

φ (z) = φ01 (z)
[

p(1−z)2+z[1+p(θ+θz)((1−a0)(2−z)+z)]
pz(1−z)

]
+φ11 (z)

[
p(1−zα)

p

]

+φ21 (z)

[
p(1−a0)

p
+

[z+ pa0 (1− z)]
(
θ +θz

)
(α +αz)

pz(1− z)
− (p+ pz)

p(1− z)

]

+φ31 (z)
[

p(1−a0)
p + (z+pa0(1−z))(α+αz)

pz(1−z) − (p+pz)
p(1−z)

]
−π00

[
a0(α p+αz)−p

pz − (1−a0)
]
.

Where φ01 (z), φ11 (z) , φ21 (z) , φ31 (z) are respectively given by the equations (18) , (19) , (22) and (23).

3.1 Steady State Condition

The steady state condition for the model under consideration is given below;

π00 =
2p [A(p)−a0] [pV (p)− p] [p−V (p)]

[
2p(1+α)+(αα)2 [A(p)−a0]+ p(1− pa0− p)

]
2p [A(p)−a0] [pV (p)− p] [p−V (p)]

[
2p(1+α)+(αα)2 [A(p)−a0]+ p(1− pa0− p)

]
{[pV (p)(2−a0)(1− pa0)+a0− pp(1−a) p [A(p)−a0]]+ [p−V (p)]}

+2 [p−V (p)]
{

2(p)2 [A(p)−a0] (α)2 (2p+2+2pα)+2(p)2V (p)(1−a0)
2 [A(p)−a0]

+(p)2 (1−a0)αα (2− pa0−a0)

}
,

which is obtained from PGF by substituting z =1 and equating to one and it is clearly less than one.
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4 Expected Queue Length

Performance degree of the queue length distribution that is predictable queue length is attained below. The mean of the
queue length is attained by differentiating the PGF with respect to z and then putting z=1,

E (Q)=

[p−V (p)]2

2(p)2 [A(p)−a0] (α)2 (2p+2+2α)+(p)2v(p)(1−a0)
2 (A(p)−a0)

+(p)2 (1−a0)αα (2− pa0−a0)+2 [A(p)−a0]
[
2p(1+α)+(αα)2 [A(p)−a0]

]
+[p [1− pa0− p] [pV (p)− p] [α pp [A(p)−a0]+a0 p(α p+α)− (1−a0)]]

π00

+[pV (p)− p]



pV (p) [A(p)−a0]
2 [[V (p)− p] p(αθ −α)−α p [[pV (p)− p]+ [V (p)− p]]]

2p [pV (p)− p]
[
2p(1+α)+(αα)2

[[A(p)−a0]+ p(1− pa0− p)]
+2pV (p) [1+ p(1+θ)] [p−V (p)] [A(p)−a0] [pV (p)− p]

[
2p(1+α)+(αα)2[

[A(p)−a0]
+p(1− pa0)

]
+[p−V (p)]2

[
2(p)2 [A(p)−a0] (α)2 (2p+2+2α)+(p)2α (p)(1−a0)

2 (A(p)−a0)
+(p)2 (1−a0)αα (2− pa0−a0)

]


π00

[p−V (p)] [pV (p)− p] [2p [A(p)−a] [2p(1+α)+(αα)2 [A(p)−a]+ p(1− pa0− p)]]
.

4.1 Particular Case

When the vacation is zero and there is no threshold policy the PGF is reduced into

φ (z) =
A(p)v(p+ pz)(1− z) [1−S (p+ pz)θ ][

vS (p+ pz)
(
θ +θz

)
+ vzR(p+ pz)

]
[z+(1− z) pA(p)]− z(p+ pz)

π00,

which is the PGF of discrete time retrial queue with starting failures, Bernoulli feedback and general retrial times.

5 Numerical Examples

This section has numerical examples are briefly analyzed in two different cases. In both of these two cases mean queue
length is investigated in following manner,

1.The result on mean queue length when the arrival rate increases.
2.The result on mean queue length when the service rate increases.

Case (I): In case (I), customer arrival times. Service times, vacation times are all geometrically distributed.

1.When the customer arrival rate rises the result on mean queue length is investigated below with the following index
with graph.

Arrival Rate π00 E(Q)
.2 .16 .231
.4 .33 .456
.6 .48 .837
.8 .63 1.558
1.0 .86 2.130

Index & Graph 1.1 Arrival Rate vs Mean Queue Length.
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We notice that mean queue length increases when arrival rate rises which is inferred by above index and graph.

2.When the server time rises the result on mean queue length is investigated below with the following index with graph.

Service Rate π00 Mean Queue Length
0.2 .74 .178
0.4 .61 .142
0.6 .42 .044
0.8 .32 .031
1.0 .21 .004

Index & Graph 1.2 Service Rate vs Mean Queue Length.

We notice that mean queue length increases when arrival rate rises which is inferred by above index and graph.

Case (II): In case (II) customer arrival times follow geometrical distribution. Service times and vacation times are
follow Poisson distribution.

1.When the customer arrival rate rises the result on mean queue length is investigated below with the following index
with graph.

© 2021 BISKA Bilisim Technology
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Arrival Rate π00 E(Q)
0 .32 0.086
.2 .48 0 .294
.4 .608 0 .792
.6 .73 1.47
.8 .88 2.26

Index & Graph 2.1 Arrival Rate vs Mean Queue Length.

We notice that mean queue length increases when arrival rate rises which is inferred by above index and graph.

2.When the server time rises the result on mean queue length is investigated below with the following index with graph.

Service Rate π00 Mean Queue Length
0 .92 0.298
.2 .75 0.293
.4 .613 0.290
.6 .45 0.267
.8 .27 0.158

Index & Graph 2.2 Service Rate vs Mean Queue Length.
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We notice that mean queue length decreases when service rate rises which is inferred by above index and table.

6 Conclusion

In this article a discrete time retrial queuing system with starting failures, Bernoulli feedback, general retrial times and a
vacation has been analyzed briefly. In this model an analytical expression for PGF is derived by using generating function
technique. In performance measure an expected queue length is derived in analytical expression form and by using this
expression we investigate the length of the queue in several ways. In many real life situation this model is the most
applicable.
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