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Abstract: In this paper we suggest new fractional derivatives which, from the theoretical viewpoint, improve the Riemann-Liouville
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1 Introduction

A fractional derivative is an integral operator which generalizes the ordinary derivative, such that if the fractional derivative
is represented by Dα then, when α =, it coincides with the usual differential operator Dn [1]. Its origin dates back to 1695
when L’Hopital raised by a letter to Leibniz the question of how the expression

Dα u(t) =
dn

dtn u(t),

should be understood if n was a real number [2]. Since then, this new branch turned out to be very attractive to
mathematicians such as Euler, Laplace, Fourier, Liouville, Riemann, Laurent, Weyl and Abel who first applied it in
physics to solve the integral equation arising from the tautochron problem [3]. There are some specific spaces in which
fractional derivatives are defined:

Definition 1. A function f : [a,b]→R is said to be absolutely continuous, denoted by f ∈ AC[a,b] on [a,b] if given ε > 0,
there exists some σ > 0 such that

∑
k
| f (yk)− f (xk)|< ε.

whenever {[xk,yk] : k = 1, · · · ,n} is a finite collection of mutually disjoint subintervals of [a,b] with

∑
k
(yk− xk)< σ .

Definition 2. Let n ∈ N and k = 1,2, · · · ,n−1, the space ACn[a,b] is defined by

ACn[a,b] := { f : [a,b]→ R : f (k)(t) ∈C[a,b], f (n−1)(t) ∈ AC[a,b]}.

There are many types of fractional derivatives (three popular definitions were given by Gronwald-Letnikov, Riemann-
Liouville and Caputo) [4-6]. One of the most used fractional derivatives was defined by Gronwald and Letnikov:
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Definition 3. Let a,b ∈R, a < b, α > 0, f ∈Cn[a,b]. The Gronwald-Letnikov fractional derivative of order α , is given by

GLDα
at f (t) = lim

h→0+

1
hα

[
x−a

h

]
∑
k=0

(−1)k
(

α

k

)
f (t− kh). (1)

By induction, if f(t) has n continuous derivatives, it is proved in [7] that the formula (1) is equivalent to the following
integral form

GLDα
at f (t) =

n−1

∑
k=0

(t−a)k−α

Γ (k−α +1)
f (k)(a)+

1
Γ (n−α)

t∫
a

(t− τ)n−(α+1) f (n)(τ)dτ. (2)

The relation (2) presents two inconveniences: on one hand, from the theoretical point of view, the class of functions
for which this derivative is defined (n times continuously differentiable functions) is very narrow. On the other hand,
the presence of non-integral terms in the right-hand-side of (2) does not look better. To overcome both inconveniences,
Riemann and Liouville proposed the following definition [8]:

Definition 4. Let a,b ∈ R, a < b, n−1 < α ≤ n ∈ N, f ∈ ACn[a,b]. The Riemann-Liouville fractional derivative of order
α , is defined by

RLDα
at f (t) =

1
Γ (n−α)

dn

dtn

t∫
a

(t− s)n−(α+1) f (s)ds.

Even though the Riemann-Liouville approach overcomes the drawbacks related the Gronwald-Letnikov definition and it
has been applied successfully in many areas of engineering, unfortunately, it leads to initial conditions containing the limit
values of the Riemann-Liouville fractional derivative at the lower terminal t = a, for example

lim
t→a
{RLDα−1

at f (t)}= b1,

lim
t→a
{RLDα−2

at f (t)}= b2,

· · ·
lim
t→a
{RLDα−n

at f (t)}= bn.

In spite of the fact that initial value problems with such initial conditions can be successfully solved mathematically, their
solutions are practically useless, because there is no known physical interpretation for such types of initial conditions. An
alternative solution to this conflict was proposed by M. Caputo [8]:

Definition 5. Let a,b∈R, a < b, n−1 < α ≤ n∈N, f ∈ ACn[a,b]. The Caputo fractional derivative of order α , is defined
by

CDα
at f (t) =

1
Γ (n−α)

t∫
a

(t− s)n−(α+1) f (n)(s)ds.

To describe material heterogeneities and structures with different scales, which cannot be well described by classical local
theories or by fractional models with singular kernel, in [9] Caputo and Fabrizio introduced a new fractional approach:

Definition 6. Let a,b ∈ R, a < b, 0 < α < 1, f ∈ AC1[a,b]. The Caputo-Fabrizio fractional derivative of order α , is
defined by

Dα
at f (t) =

1
1−α

t∫
a

e−
α

1−α
(t−s) f ′(s)ds.

All above defined fractional approaches have been used in numerous fields of science such as anomalous diffusion [10-12],
circuit theory [13-15], image processing [16-19], and many others [20-40].
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1.1 Basic properties of Riemann-Liouville fractional integral

Let us recall the Riemann-Liouville fractional integral of order α > 0, given by

Iα
at f (t) =

1
Γ (α)

∫ t

a
(t− τ)α−1 f (τ)dτ. (3)

For α = 0, we define I0
at f (t) = f (t). This definition is motivated by the following reasoning: suppose that f (t)∈C1([a,b]).

Then, calculating the integral (3) by the method of integration by parts, we obtain

Iα
at f (t) =

(t−a)α

Γ (α +1)
f (a)+

1
Γ (α +1)

t∫
a

(t− τ)α f ′(τ)dτ.

Therefore,

lim
α→0

Iα
at f (t) = f (a)+

t∫
a

f ′(τ)dτ = f (t). (4)

One of the elemental properties of the Riemann-Liouville fractional integral is its linearity:

Iα
at
(
λ f (t)+βg(t)

)
= λ Iα

at
(

f (t)
)
+β Iα

at
(
g(t)

)
. (5)

For f ∈ Lp(a,b), 1≤ p≤ ∞, α,β > 0, its corresponding composition property reads

Iα
at
(
Iβ

at f (t)
)
= Iα+β

at f (t). (6)

As examples, we recall the application of Riemann-Liouville fractional integral to the following elementary functions:

Iα
0t
(
tβ
)
=

Γ (β +1)
Γ (α +β +1)

tα+β , (7)

Iα
0t
(
1
)
=

1
Γ (α +1)

tα , (8)

Iα
0t
(
eλ t)= tα ·E1,α+1(λ t), λ ∈ R. (9)

Now, using the linearity property (5), the formula (9) for the exponential function and the representation of the sine
function

sinz =
eiz− e−iz

2i
, z ∈ C,

it can be shown that

Iα
0t
(

sinλ t
)
= Iα

0t

(eiλ t − e−iλ t

2i

)
=

1
2i

Iα
0t
(
eiλ t)− 1

2i
Iα
0t
(
e−iλ t)=−1

2
· i · tα

(
E1,α+1(iλ t)−E1,α+1(−iλ t)

)
. (10)

In the same manner, by using the formula

cosz =
eiz + e−iz

2
, z ∈ C,

we obtain the expression for Riemann-Liouville integral of the cosine function:

Iα
at
(

cosλ t
)
= Iα

at

(eiλ t + e−iλ t

2

)
=

1
2

Iα
at
(
eiλ t)+ 1

2
Iα
at
(
e−iλ t)= 1

2
tα
(
E1,α+1(iλ t)+E1,α+1(−iλ t)

)
. (11)
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1.2 New fractional derivatives

In the present work, we shall introduce new definitions of fractional derivatives to improve theoretically the Riemann-
Liouville and Caputo fractional derivatives. These defintions are motivated by the following reasoning: differentiating the
Riemann-Liouville derivative

RLDα
at f (t) =

1
Γ (n−α)

dn

dtn

t∫
a

(t− s)n−(α+1) f (s)ds,

and integrating by parts the Caputo derivative

CDα
at f (t) =

1
Γ (n−α)

t∫
a

(t− s)n−(α+1) f (n)(s)ds,

we obtain

RLDα
at f (t) =

1
Γ (n−α)

dn−1

dtn−1

[
d
dt

∫ t

a
(t− s)n−(α+1) f (s)ds

]

=
1

Γ (n−α)

dn−1

dtn−1

[
0n−(α+1) · f (t)+ [n− (α +1)]

t∫
a

(t− s)n−(α+2) f (s)ds
]
, (12)

and

CDα
at f (t) =

1
Γ (n−α)

[
0n−(α+1) · f (n−1)(t)− (t−a)n−(α+1) f (n−1)(a)

+ [n− (α +1)]
t∫

a

(t− s)n−(α+2) f (n−1)(s)ds
]
, (13)

respectively. Since n− (α + 1) < 0, the terms 0n−(α+1) · f (t) and 0n−(α+1) · f (n−1)(t) of (12) and (13), respectively, are
not defined. To avoid this issue, we propose the following definitions:

Definition 7. Let a,b∈R, a < b, n−1 < α ≤ n∈N, f ∈ ACn[a,b]. The new fractional derivative in the Riemann-Liouville
sense of order α , is defined by

ARLDα,n
at f (t) :=

1
Γ (n−α)

d2n

dt2n

∫ t

a
(t− s)n+α−1 f (s)ds. (14)

Definition 8. Let a,b ∈ R, a < b, n−1 < α ≤ n ∈ N, f ∈ ACn[a,b]. The new fractional derivative in the Caputo sense of
order. α , is defined by

ACDα,n
at f (t) :=

1
Γ (n−α)

dn

dtn

∫ t

a
(t− s)n+α−1 f (n)(s)ds. (15)

2 Main properties

2.1 Basic properties of new fractional order derivatives

One of the important properties which characterize the fractional derivatives is the linearity:
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Theorem 1. Let a, µ,β ∈ R, n−1 < α ≤ n ∈ N, f ,g ∈ ACn[a,b]. Then

ARLDα,n
at (µ f (t)+βg(t)) = µ ·ARL Dα,n

at f (t)+β ·ARL Dα,n
at g(t), (16)

ACDα,n
at (µ f (t)+βg(t)) = µ ·AC Dα,n

at f (t)+β ·AC Dα,n
at g(t). (17)

Proof. From (14), we obtain

ARLDα,n
at (µ f (t)+βg(t)) =

1
Γ (n−α)

d2n

dt2n

∫ t

a
(t− τ)n+α−1(µ f (τ)+βg(τ))dτ

=
µ

Γ (n−α)

d2n

dt2n

∫ t

a
(t− τ)n+α−1 f (τ)dτ +

β

Γ (n−α)

d2n

dt2n

∫ t

a
(t− τ)n+α−1g(τ)dτ

= µ ·ARL Dα,n
at f (t)+β ·ARL Dα,n

at g(t).

Similar to the proof of the equality (16), we have (17).

In the two following theorems we give the expressions of the Laplace transform of the defined fractional derivatives:

Theorem 2. Let n−1 < α ≤ n ∈ N. Then

L{ARLDα,n
0t f (t)}= sn−α ·L

{
f
}
− 1

Γ (n−α)
·

2n−1

∑
k=0

s2n−1−k · dk

dtk

{∫ t

0
(t− s)n+α−1 f (s)ds

}
t=0

.

Proof. Applying the Laplace transform to the formula (14) and taking into account the formula for the Laplace transform
of the derivative of any integer order, we have

L{ARLDα,n
0t f (t)}= 1

Γ (n−α)
·L
{

d2n

dt2n

∫ t

0
(t− s)n+α−1 f (s)ds

}
=

1
Γ (n−α)

·

{
s2n ·L

{∫ t

0
(t− s)n+α−1 f (s)ds

}
−

2n−1

∑
k=0

s2n−1−k · dk

dtk

{∫ t

0
(t− s)n+α−1 f (s)ds

}
t=0

}
. (18)

Combining the property of the Laplace transform of the convolution with the second equality of (18), we obtain

L{ARLDα,n
0t f (t)}= 1

Γ (n−α)
· s2n ·L

{
sn+α−1} ·L{ f (t)

}
− 1

Γ (n−α)

2n−1

∑
k=0

s2n−1−k · dk

dtk

{∫ t

0
(t− s)n+α−1 f (s)ds

}
t=0

.

Nowing that L{tn+α−1}(s) = s−n−αΓ (n−α), we get

L{ARLDα,n
0t f (t)}= sn−α ·L

{
f (t)
}
− 1

Γ (n−α)

2n−1

∑
k=0

s2n−1−k · dk

dtk

{∫ t

0
(t− s)n+α−1 f (s)ds

}
t=0

.

Theorem 3. Let n−1 < α ≤ n ∈ N. Then

L{ACDα,n
0t f (t)}= Γ (α)

Γ (n−α)
·
[ n

∏
k=1

(n+α− k)
]
· s−α ·

{
snL{ f (t)}−

n−1

∑
k=0

sn−1−k f (k)(0)
}
.

Proof. Performing repeatedly the differentiation n times, we obtain

dn

dtn

∫ t

a
(t− s)n+α−1 f (n)(s)ds =

[ n

∏
k=1

(n+α− k)
]
·
∫ t

a
(t− s)α−1 f (n)(s)ds. (19)

© 2020 BISKA Bilisim Technology

www.ntmsci.com


14 G. A. MBoro Nchama: New fractional derivatives in the sense of Riemann-Liouville and Caputo approaches

Applying
1

Γ (n−α)
into the both sides of (19), yields

ACDα,n
0t f (t) =

1
Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
·
∫ t

a
(t− s)α−1 f (n)(s)ds. (20)

Now, applying the Laplace transform to the equality (20), we obtain

L{ACDα,n
0t f (t)}= 1

Γ (n−α)
·
[ n

∏
k=1

(n+α− k)
]
·L
{∫ t

a
(t− s)α−1 f (n)(s)ds

}
. (21)

Combining the property of the Laplace transform of the convolution with (21), we get

L{ACDα,n
0t f (t)}= 1

Γ (n−α)
·
[ n

∏
k=1

(n+α− k)
]
·L
{

tα−1} ·L{ f (n)(t)
}
.

Nowing that L{tα−1}(s) = s−αΓ (α) and using the Laplace transform of the derivative of any integer order, we obtain

L{ACDα,n
0t f (t)}= 1

Γ (n−α)
·
[ n

∏
k=1

(n+α− k)
]
· s−α

Γ (α)
{

snL{ f (t)}−
n−1

∑
k=0

sn−1−k f (k)(0)
}
,

as required.

To prove that the proposed fractional derivatives coincide with the derivative of integer order dn

dtn , for α = n ∈N, we need
the two following results.

Lemma 1. Let a ∈ R, n−1 < α ≤ n ∈ N. Then, the operator dα
at f (t) defined by

dα
at f (t) :=

1
Γ (n−α)

dn

dtn

∫ t

a
(t− s)n+α−1 f (s)ds,

satisfies

dα
at f (t) =

1
Γ (n−α)

·
[n−1

∏
i=0

(i+α)

]
·
∫ t

a
(t− s)α−1 f (s)ds. (22)

Proof. The equality (22) will be proved by using the method of mathematical induction. For n = 1, we have

dα
at f (t) =

1
Γ (1−α)

d
dt

∫ t

a
(t− s)α f (s)ds =

1
Γ (1−α)

·α
∫ t

a
(t− s)α−1 f (s)ds =

1
Γ (1−α)

[1−1

∏
i=0

(i+α)

]∫ t

a
(t− s)α−1 f (s)ds.

Thus, (22) is true for n = 1. Let suppose that (22) is true for n ∈ N (n > 1). To conclude with the proof we have to
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demonstrate that (22) is also true for n+1. We have

dα
at f (t) =

1
Γ (n+1−α)

dn+1

dtn+1

∫ t

a
(t− s)n+1−(1−α) f (s)ds

=
1

Γ (n+1−α)

dn

dtn

[
d
dt

∫ t

a
(t− s)n+α f (s)ds

]
=

n+α

Γ (n+1−α)

dn

dtn

∫ t

a
(t− s)n−(1−α) f (s)ds

=
n+α

Γ (n+1−α)
·
[n−1

∏
i=0

(i+α)

]
·
∫ t

a
(t− s)α−1 f (s)ds

=
1

Γ (n+1−α)
·
[ n

∏
i=0

(i+α)

]
·
∫ t

a
(t− s)α−1 f (s)ds.

Lemma 2.Let a ∈ R, n−1 < α ≤ n ∈ N. Then

lim
α→n

dα
at f (t) = f (t). (23)

Proof.By rewriting formula (22) as

dα
at f (t) =

1
Γ (n−α)

·
[n−1

∏
i=0

(i+α)

]
·
∫ t

a
(t− s)α−1 f (s)ds

=
Γ (α)∏

n−1
i=0 (i+α)

Γ (n−α)
· 1

Γ (α)

∫ t

a
(t− s)α−1 f (s)ds

=
Γ (n+α)

Γ (n−α)
· 1

Γ (α)

∫ t

a
(t− s)α−1 f (s)ds,

and using the fact that 1
Γ (α)

∫ t
a(t− s)α−1 f (s)ds→ f (t) for α → 0 (see (4)), we obtain (23).

Now, we are in conditions to prove that ARLDα,n
at f (t)→ f (n)(t) and ACDα,n

at f (t)→ f (n)(t), for α → n:

Theorem 4. Let a ∈ R, n−1 < α ≤ n ∈ N. Then

lim
α→n
{ARLDα,n

at f (t)}= f (n)(t),

lim
α→n
{ACDα,n

at f (t)}= f (n)(t).

Proof.Formulas (14) and (15) can be rewritten as

ARLDα,n
at f (t) =

dn

dtn

(
dα

at f (t)
)
, (24)

and
ACDα,n

at f (t) = dα
at
(

f (n)(t)
)
, (25)

respectively. Taking limit for α → n, we obtain from (24)-(25) that

lim
α→n

{ARLDα,n
at f (t)

}
= lim

α→n

{ dn

dtn

(
dα

at f (t)
)}

=
dn

dtn

{
lim
α→n

(
dα

at f (t)
)}

= f (n)(t),

lim
α→n
{ACDα,n

at f (t)}= lim
α→n
{dα

at
(

f (n)(t)
)
}= f (n)(t),

as required.
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To give the relation between the two proposed operators, we need the following results:

Lemma 3. Let a ∈ R, n−1 < α ≤ n ∈ N. Then,

ACDα,n
at f (t) =− 1

Γ (n−α)

n−1

∑
k=0

Γ (α +n)
Γ (α + k+1−n)

(t−a)α+k−n f (k)(a)

+
1

Γ (n−α)

[n−1

∏
k=0

(α + k)
]
· dn

dtn

∫ t

a
(t− s)α−1 f (s)ds. (26)

Proof. Performing repeatedly the method of integration by parts n times, we obtain

∫ t

a
(t− s)n+α−1 f (n)(s)ds =−

n−1

∑
k=0

Γ (α +n)
Γ (α + k+1)

(t−a)α+k f (k)(a)+
[n−1

∏
k=0

(α + k)
]
·
∫ t

a
(t− s)α−1 f (s)ds. (27)

Applying the operator dn

dtn to the both sides of (27) and then multiplying by 1
Γ (n−α) , we get (26).

Lemma 4.Let a ∈ R, n−1 < α ≤ n ∈ N. Then,

ARLDα,n
at f (t) =

1
Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· dn

dtn

∫ t

a
(t− s)α−1 f (s)ds. (28)

Proof.Performing repeatedly the differentiation n times, we obtain

dn

dtn

∫ t

a
(t− s)n+α−1 f (s)ds =

[ n

∏
k=1

(n+α− k)
]
·
∫ t

a
(t− s)α−1 f (s)ds. (29)

Applying dn

dtn into the both sides of (29) and then multiplying the obtained result by 1
Γ (n−α) , we get (28).

Now we are in conditions to establish the relation between the two proposed operators.

Theorem 5. Let a ∈ R, n−1 < α ≤ n ∈ N. Then,

ARLDα,n
at f (t) =

1
Γ (n−α)

n−1

∑
k=0

Γ (α +n)
Γ (α + k+1−n)

(t−a)α+k−n f (k)(a)+AC Dα,n
at f (t). (30)

Proof. Considering that ∏
n−1
k=0(α + k) = ∏

n
k=1(n+α− k) and combining (26) with (28), we obtain (30).

Next, we formulate results to establish the composition of the proposed operators with derivative of integer order.

Theorem 6. Let a ∈ R, n−1 < α ≤ n ∈ N. Then,

dn

dtn {
ACDα,n

at f (t)}=ARL Dα,n
at
(

f (n)(t)
)
. (31)

Proof. We have

dn

dtn {
ACDα,n

at f (t)}= dn

dtn

{ 1
Γ (n−α)

dn

dtn

∫ t

a
(t− s)n+α−1 f (n)(s)ds

}
=

1
Γ (n−α)

d2n

dt2n

∫ t

a
(t− s)n+α−1 f (n)(s)ds. (32)

Formula (31) follows from (32).
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Theorem 7. Let a ∈ R, n−1 < α ≤ n ∈ N. Then

dn

dtn {
ARLDα,n

at f (t)}= ∏
n
k=1(n+α− k)

Γ (n−α)
·

n−1

∑
k=0

Γ (α + k+1)(t−a)α+k−2n

Γ (α + k+1−2n)
k
∏
i=0

(α + i)
f (k)(a)+ARL Dα,n

at f (n)(t). (33)

Proof. From (14), we obtain

dn

dtn {
ARLDα,n

at f (t)}= dn

dtn

{ 1
Γ (n−α)

d2n

dt2n

∫ t

a
(t− s)n+α−1 f (s)ds

}
=

d2n

dt2n

{ 1
Γ (n−α)

dn

dtn

∫ t

a
(t− s)n+α−1 f (s)ds

}
. (34)

Combining (29) with the second equality of (34), we get

dn

dtn {
ARLDα,n

at f (t)}= 1
Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· d2n

dt2n

∫ t

a
(t− s)α−1 f (s)ds. (35)

Performing repeatedly the method of integration by parts n times, we obtain

t∫
a

(t− s)α−1 f (s)ds =
n−1

∑
k=0

(t−a)α+k

k
∏
i=0

(α + i)
f (k)(a)+

1
n−1
∏

k=0
(α + k)

t∫
a

(t− s)n+α−1 f (n)(s)ds. (36)

From (35) and (36), we obtain

dn

dtn {
ARLDα,n

at f (t)}= 1
Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· dn

dtn

{
dn

dtn

[n−1

∑
k=0

(t−a)α+k

k
∏
i=0

(α + i)
f (k)(a)

+
1

n−1
∏

k=0
(α + k)

t∫
a

(t− s)n+α−1 f (n)(s)ds
]}

=

[ n

∏
k=1

(n+α− k)
]
· dn

dtn

{
1

Γ (n−α)

n−1

∑
k=0

Γ (α + k+1)(t−a)α+k−n

Γ (α + k+1−n)
k
∏
i=0

(α + i)
f (k)(a)

+
1

n−1
∏

k=0
(α + k)

1
Γ (n−α)

dn

dtn

t∫
a

(t− s)n+α−1 f (n)(s)ds

}
. (37)
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Combining (15) with (37), it follows

dn

dtn {
ARLDα,n

at f (t)}=
[ n

∏
k=1

(n+α− k)
]
· dn

dtn

{
1

Γ (n−α)

n−1

∑
k=0

Γ (α + k+1)(t−a)α+k−n

Γ (α + k+1−n)
k
∏
i=0

(α + i)
f (k)(a)

+
1

n−1
∏

k=0
(α + k)

{ACDα,n
at f (t)}

}

=

[ n

∏
k=1

(n+α− k)
]{

1
Γ (n−α)

n−1

∑
k=0

Γ (α + k+1)(t−a)α+k−2n

Γ (α + k+1−2n)
k
∏
i=0

(α + i)
f (k)(a)

+
1

n−1
∏

k=0
(α + k)

dn

dtn {
ACDα,n

at f (t)}

}
. (38)

From (31) and (38), we obtain

dn

dtn {
ARLDα,n

at f (t)}= ∏
n
k=1(n+α− k)

Γ (n−α)
·

n−1

∑
k=0

Γ (α + k+1)(t−a)α+k−2n

Γ (α + k+1−2n)
k
∏
i=0

(α + i)
f (k)(a)

+
∏

n
k=1(n+α− k)

n−1
∏

k=0
(α + k)

· {ARLDα,n
at f (n)(t)}. (39)

Since ∏
n
k=1(n+α− k) =

n−1
∏

k=0
(α + k), then the equality (33) follows from (39).

Theorem 8. Let a ∈ R, n−1 < α ≤ n ∈ N, f (k)(a) = 0 for k = 0,1, · · · ,n−1. Then

dn

dtn {
ARLDα,n

at f (t)}= ARLDα,n
at

( dn

dtn f (t)
)
. (40)

Proof.Equality (40) follows from (33).

Theorem 9. Let a ∈ R, n−1 < α ≤ n ∈ N. Then,

ARLDα,n
at
(

f (n)(t)
)
=

1
Γ (n−α)

[ n

∏
k=1

(n+α− k)
]

dn

dtn

∫ t

a
(t− s)α−1 f (n)(s)ds. (41)

Proof. Using the formula (19), we obtain

ARLDα,n
at
(

f (n)(t)
)
=

1
Γ (n−α)

d2n

dt2n

∫ t

a
(t− s)n+α−1 f (n)(s)ds

=
dn

dtn

{ 1
Γ (n−α)

dn

dtn

∫ t

a
(t− s)n+α−1 f (n)(s)ds

}
=

1
Γ (n−α)

[ n

∏
k=1

(n+α− k)
]

dn

dtn

∫ t

a
(t− s)α−1 f (n)(s)ds.
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Theorem 10. Let a ∈ R, n−1 < α ≤ n ∈ N. Then,

ACDα,n
at
(

f (n)(t)
)
=− 1

Γ (n−α)

n−1

∑
k=0

Γ (α +n)
Γ (α− k)

(t−a)α−k−1 f (2n−1−k)(a)+
dn

dtn {
ACDα,n

at f (t)}. (42)

Proof.From formula (15), we obtain

ACDα,n
at
(

f (n)(t)
)
=

1
Γ (n−α)

dn

dtn

∫ t

a
(t− s)n+α−1 f (2n)(s)ds. (43)

Calculating the integral ∫ t

a
(t− s)n+α−1 f (2n)(s)ds, (44)

n times by parts, we have

∫ t

a
(t− s)n+α−1 f (2n)(s)ds =−

n−1

∑
k=0

Γ (α +n)
Γ (α +n− k)

(t−a)α+n−1−k f (2n−1−k)(a)

+

[n−1

∏
k=0

(α +n− k)
]
·
∫ t

a
(t− s)α−1 f (n)(s)ds. (45)

Combining (43) with (45), we have

ACDα,n
at
(

f (n)(t)
)
=

1
Γ (n−α)

dn

dtn

∫ t

a
(t− s)n+α−1 f (2n)(s)ds

=− 1
Γ (n−α)

n−1

∑
k=0

Γ (α +n)
Γ (α− k)

(t−a)α−k−1 f (2n−1−k)(a)

+
1

Γ (n−α)

[n−1

∏
k=0

(α +n− k)
]
· dn

dtn

∫ t

a
(t− s)α−1 f (n)(s)ds. (46)

From (41) and (46), we have

ACDα,n
at
(

f (n)(t)
)
=− 1

Γ (n−α)

n−1

∑
k=0

Γ (α +n)
Γ (α− k)

(t−a)α−k−1 f (2n−1−k)(a)+ARL Dα
at
(

f (n)(t)
)
. (47)

Using (31), we get

ACDα,n
at
(

f (n)(t)
)
=− 1

Γ (n−α)

n−1

∑
k=0

Γ (α +n)
Γ (α− k)

(t−a)α−k−1 f (2n−1−k)(a)+
dn

dtn {
ACDα,n

at f (t)}.

Theorem 11. Let a ∈ R, n−1 < α ≤ n ∈ N, f (2n−1−k)(a) = 0 for k = 0,1, · · · ,n−1. Then,

dn

dtn {
ACDα,n

at f (t)}= ACDα,n
at

( dn

dtn f (t)
)
. (48)

Proof. Formula (48) follows from (42).

Next, some examples of the new fractional derivative in the Riemann-Liouville sense are discussed, that is, the constant,
the power and the exponential function, as well as the sine and cosine function.
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Theorem 12. Let α ∈ R, n−1 < α ≤ n ∈ N. Then,

ARLDα,n
0t 1 =

Γ (α)

Γ (n−α)

[ n

∏
k=1

(n+α− k)
]

1
Γ (α +1−n)

tα−n. (49)

Proof. On the one hand, from the formula (8), we have

dn

dtn

(
Iα
0t1
)
=

1
Γ (α +1−n)

tα−n. (50)

On the other hand, combining the relation (28) with (50), we obtain (49).

For the potential function, we have the following result:

Theorem 13. Let β ∈ R, n−1 < α ≤ n ∈ N. Then,

ARLDα,n
0t tβ =

Γ (α)

Γ (n−α)

[ n

∏
k=1

(n+α− k)
]

Γ (β +1)
Γ (β +α +1−n)

tβ+α−n. (51)

Proof. On the one hand, from the relation (28), we have

ARLDα,n
0t tβ =

Γ (α)

Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· 1

Γ (α)

dn

dtn

∫ t

0
(t− s)α−1sβ ds

=
Γ (α)

Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· dn

dtn

(
Iα
0tt

β
)
. (52)

On the other hand, from (7), we get

dn

dtn

(
Iα
0tt

β
)
=

Γ (β +1)
Γ (β +α +1−n)

tβ+α−n. (53)

Combining (52) with (53), we obtain (51).

For the exponential function, we formulate the following theorem:

Theorem 14. Let λ ∈ R, n−1 < α ≤ n ∈ N. Then,

ARLDα,n
0t

(
eλ t)= Γ (α) · tα−n

Γ (n−α)

[ n

∏
k=1

(α +n− k)
]
·

·
{

Γ (α +1)
Γ (α−n+1)

E1,α+1(λ t)+
∞

∑
k=0

k!(λ t)k

Γ (k+α +1)Γ (k−n+1)

}
. (54)

Proof. On the one hand, from the relation (28), we obtain

ARLDα,n
0t

(
eλ t)= Γ (α)

Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· 1

Γ (α)

dn

dtn

∫ t

0
(t− s)α−1eλ sds

=
Γ (α)

Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· dn

dtn

(
Iα
0t(e

λ s)
)
. (55)

On the other hand, from (9), we have

dn

dtn

(
Iα
0t(e

λ s)
)
= tα−n

[
Γ (α +1)

Γ (α−n+1)
E1,α+1(λ t)+

∞

∑
k=0

k!(λ t)k

Γ (k+α +1)Γ (k−n+1)

]
. (56)
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Equality (54) follows from the combination of (55) with (56).

The expressions of the new fractional derivative in Riemann-Liouville sense for sine and cosine function are given by the
two following theorems:

Theorem 15. Let λ ∈ R, n−1 < α ≤ n ∈ N. Then,

ARLDα,n
0t

(
sinλ t

)
=− i ·Γ (α) · tα−n

2 ·Γ (n−α)

[ n

∏
k=1

(α +n− k)
]
·
{

Γ (α +1)
Γ (α−n+1)

[
E1,α+1(iλ t)−E1,α+1(−iλ t)

]
+

∞

∑
k=0

k!(iλ t)k

Γ (k+α +1)Γ (k−n+1)
−

∞

∑
k=0

k!(−iλ t)k

Γ (k+α +1)Γ (k−n+1)

}
. (57)

Proof. On the one hand, from the relation (28), we obtain

ARLDα,n
0t

(
sinλ t

)
=

Γ (α)

Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· 1

Γ (α)

dn

dtn

∫ t

0
(t− s)α−1 sinλ sds

=
Γ (α)

Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· dn

dtn

(
Iα
0t(sinλ t)

)
. (58)

On the other hand from (10), we have

dn

dtn

(
Iα
0t(sinλ t)

)
=− i

2
· tα−n

{
Γ (α +1)

Γ (α−n+1)

[
E1,α+1(iλ t)−E1,α+1(−iλ t)

]
+

∞

∑
k=0

k!(iλ t)k

Γ (k+α +1)Γ (k−n+1)
−

∞

∑
k=0

k!(−iλ t)k

Γ (k+α +1)Γ (k−n+1)

}
. (59)

Combining (58) with (59), we obtain (57).

Theorem 16. Let λ ∈ R, n−1 < α ≤ n ∈ N. Then,

ARLDα,n
0t

(
cosλ t

)
=

Γ (α) · tα−n

2 ·Γ (n−α)

[ n

∏
k=1

(α +n− k)
]
·
{

Γ (α +1)
Γ (α−n+1)

[
E1,α+1(iλ t)+E1,α+1(−iλ t)

]
+

∞

∑
k=0

k!(iλ t)k

Γ (k+α +1)Γ (k−n+1)
+

∞

∑
k=0

k!(−iλ t)k

Γ (k+α +1)Γ (k−n+1)

}
. (60)

Proof. On the one hand, from the relation (28), we have

ARLDα,n
0t

(
cosλ t

)
=

Γ (α)

Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· 1

Γ (α)

dn

dtn

∫ t

0
(t− s)α−1 cosλ sds

=
Γ (α)

Γ (n−α)

[ n

∏
k=1

(n+α− k)
]
· dn

dtn

(
Iα
0t(cosλ t)

)
. (61)

On the other hand, from (11), we get

dn

dtn

(
Iα
0t(cosλ t)

)
=

1
2
· tα−n

{
Γ (α +1)

Γ (α−n+1)

[
E1,α+1(iλ t)+E1,α+1(−iλ t)

]
+

∞

∑
k=0

k!(iλ t)k

Γ (k+α +1)Γ (k−n+1)
+

∞

∑
k=0

k!(−iλ t)k

Γ (k+α +1)Γ (k−n+1)

}
. (62)

Combining (61) with (62), we obtain (60).
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3 Conclusion

The aim of this paper was to suggest new fractional derivatives to improve theoretically the Riemann-Liouville and
Caputo fractional derivatives. In this sense, one of the derivatives is based upon the Riemann-Liouville viewpoint and the
other one on the Caputo approach. Also some properties have been given to illustrate results.
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