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Abstract: The aim of this paper is to give some properties and results of continued fractions with matrix arguments. Then we give
continued fraction expansion of the Gauss hypergeometric function. At the end, some numerical examples illustrating the theoretical
results are discussed.

Keywords: Matrix continued fractions, Convergence criteria, Hypergeometric function.

1 Introduction and motivation

The theory of continued fractions has been a topic of great interest over the last two hundred years. The basic idea of this
theory over real numbers is to give an approximation of various real numbers by the rational ones. A continued fraction
is an expression obtained through an iterative process of representing a number as the sum of its integer part and the
reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so
on. One of the main raisons why continued fractions are so useful in computation is that they often provide
representation for transcendental functions that are much more generally valid than the classical representation by,
say,the power series. Further; in the convergent case, the continued fractions expansions have the advantage that they
converge more rapidly than other numerical algorithms.

Recently, the extension of continued fractions theory from real numbers to the matrix case has seen several developments
and interesting applications (see [1,6,7]). Since calculations involving matrix valued functions with matrix arguments are
feasible with large computers, it will be interesting attempt to develop such matrix theory. In this direction, and generally
in a Banach space, few convergence results on noncommutative continued fraction are known ([4,5]).

Two theorems are stated in [13], where Wynn reviews many aspects of the theory of continued fractions, whose elements
do not commute under a multiplication law. In Banach space, extensions of Worpitsky’s have been proven by Haydan [5]
and Negoescu [11].

In [12], several convergence criteria on the noncommutative continued fractions whose arguments are m×m matrices of
the forms K(Bn/An) are given.

The Gaussian or ordinary hypergeometric function 2F1(a,b;c;z) is a special function represented by the hypergeometric
series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear
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ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be
transformed into this equation. For systematic lists of some of the many published identities involving the
hypergeometric function, see the reference works by Olde Daalhuis ([2,8]. There is no known system for organizing all
of the identities; indeed, there is no known algorithm that can generate all identities, a number of different algorithms are
known that generate different series of identities. The theory of the algorithmic discovery of identities remains an active
research topic.

2 Preliminary and notations

Throughout this paper, we denote by Mm the set of mxm real (or complex) matrices endowed with the subordinate matrix
infinity norm defined by,

∀A = (ai, j) ∈Mm, ‖ A ‖= max
1≤i≤m

m

∑
j=1
| ai, j | .

This norm satisfies the inequality
‖ AB ‖≤‖ A ‖‖ B ‖ .

Let A ∈Mm, A is said to be positive semidefinite (resp. positive definite) if A is symmetric and

∀x ∈ Rm,(Ax,x) ≥ 0(resp.∀x ∈ Rm,x 6= 0,(Ax,x) > 0)

where (., .) denotes the standard scalar product of Rm.

For any A,B ∈Mm with B invertible, we write A/B = B−1A, in particular, if A = I, where I is the mth order identity
matrix, then we write I/B = B−1. It is clear that for any invertible matrix C, we have

CA
CB

=
A
B
.

Definition 1. Let (An)n≥0,(Bn)n≥1 be two nonzero sequences of Mm. The continued fraction of (An) and (Bn) denoted by
K(Bn/An) is the quantity

A0 +
B1

A1 +
B2

A2+...

= [A0;
B1

A1
,

B2

A2
, ...].

Sometimes, we use briefly the notation [
A0;

Bk

Ak

]+∞

k=1

or
K(Bn/An),

where [
A0;

Bk

Ak

]n

k=1
=

[
A0;

B1

A1
,

B2

A2
, ...,

Bn

An

]
.

The fractions
Bn

An
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and
Pn

Qn
:=
[

A0;
Bk

Ak

]n

k=1

are called, respectively, the nth partial quotient and the nth convergent of the continued fraction K(Bn/An).

When Bn = I for all n ≥ 1, then K(I/An) is called an ordinary continued fraction. The following proposition gives an
adequate method to calculate K(Bn/An).

Proposition 1. The elements (Pn)n≥−1 and (Qn)n≥−1of the nth convergent of K(Bn/An) are given by the relationships{
P−1 = I, P0 = A0

Q−1 = 0, Q0 = I

and {
Pn = AnPn−1 +BnPn−2

Qn = AnQn−1 +BnQn−2
, n≥ 1.

Proof. We prove it by induction.

The proof of the next Proposition is elementary and we left it to the reader.

Proposition 2. For any two matrices C and D with C invertible, we have

C
[

A0;
Bk

Ak

]n

k=1
D =

[
CA0D;

B1D
A1C−1 ,

B2C−1

A2
,

Bk

Ak

]n

k=3
. (1)

The continued fraction K(Bn/An) converges in Mm if the sequence (Fn) = ( Pn
Qn ) = (Q−1

n Pn) converges in Mm in the sense
that there exists a matrix F ∈Mm such that limn→+∞||Fn−F ||= 0. In the other case, we say that K(Bn/An) is divergent.
It is clear that

Pn

Qn
= A0 +

n

∑
i=1

(
Pi

Qi
− Pi−1

Qi−1
) (2)

From (2), we see that the continued fraction K(Bn/An) converges in Mm if and only if the series
+∞

∑
n=1

( Pn
Qn
− Pn−1

Qn−1
) converge

in Mm.

Definition 2. Let (An), (Bn), (Cn) and (Dn) be four sequences of matrices. We say that the continued fractions K(Bn/An)

and K(Dn/Cn) are equivalent if we have Fn = Gn for all n≥ 1, where Fn and Gn are the nth convergent of K(Bn/An) and
K(Dn/Cn) respectively.

The following lemma characterizes equivalence of continued fractions.

Lemma 1. [6]. Let (rn) be a non-zero sequence of real numbers. The continued fractions[
a0;

r1b1

r1a1
,

r2r1b2

r2a2
, ...,

rnrn−1bn

rnan
, ...

]
and

[
a0;

b1

a1
,

b2

a2
, ...,

bn

an
, ...

]
are equivalent.

We also recall the following Lemma, from the development of a function given by the Taylor series, we give the
development in continued fractions of the series that was established by Euler.

© 2021 BISKA Bilisim Technology

www.ntmsci.com


45 S. Mennou, S. Salhi and A. Kacha: Matrix continued fraction representation of the Gauss hypergeometric...

Lemma 2. [7]. Let f be a function with the Taylor series development is f (x) =
+∞

∑
n=0

cnxn in J ⊂ R. Then, the development

in continued fraction of f (x) is

f (x) =
[

c0;
c1x
1

,
−c2x

c1 + c2x
,
−c1c3x
c2 + c3x

, ...
−cn−2cnx
cn−1 + cnx

, ...

]
.

Remark. Let (An) and (Bn) be two sequences of Mm, we notice that we can write the first convergents of the continued
fraction K(Bn/An) by:

F1 = A0 +A−1
1 B1 = A0 +(B−1

1 A1)
−1.

F2 = A0 +(A1 +A−1
2 B2)

−1B1 = A0 +(B−1
1 A1 +(B−1

2 A2B1)
−1)−1.

If we put, A∗1 = B−1
1 A1 and A∗2 = B−1

2 A2B1, we have

F1 = A0 +
I

A∗1
,F2 = A0 +

I
A∗1 +

I
A∗2

.

Generally, we prove by a recurrence that if we put for all k ≥ 1,

A∗2k = (B2k...B2)
−1A2kB2k−1...B1

and
A∗2k+1 = (B2k+1...B1)

−1A2k+1B2k...B2,

then the continued fractions A0 +K(Bn/An) and A0 +K(I/A∗n) are equivalent.

We need to present the following proposition:

Proposition 3. ([12]) Let
[
A0; Bk

Ak

]+∞

k=1
be a given continued fraction. Then

Pn

Qn
=

[
A0;

Bk

Ak

]n

k=1
=

[
A0;

XkBkX−1
k−2

XkAkX−1
k−1

]n

k=1

,

where X−1 = X0 = I and X1,X2, ...,Xn are arbitrary invertible matrices.

To end this section, we give the following Proposition.

Proposition 4. [11]. If the function f (x) can be expanded in a power series in the circle | x− x0 |< r by

f (x) =
+∞

∑
k=0

ak(x− x0)
k, (3)

then this expansion remains valid when the scalar argument x is replaced by a matrix A whose characteristic values lie
within the circle of convergence.
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3 Main results

3.1 The real case

The Gauss hypergeometric function 2F1 is defined in [10] as follows for a,b,x ∈ R,c ∈ R/Z− such that | x |< 1, by

2F1(a,b;c;x) =
+∞

∑
n=0

(a)n(b)n

(c)n

xn

n!
,

where, for some parameter µ , the Pochhammer symbol (µ) j is defined as (µ)0 = 1; (µ) j = µ(µ + 1)...(µ + j− 1),
j = 1,2, ...
As explained in [6], the Gauss hypergeometric function satisfies the differential equation

x(1− x)
d2y
dx2 +[c− (a+b+1)x]

dy
dx
−aby = 0 (4)

The equation (4) has three regular singular points at x = 0, x = 1 and x = ∞.

If a ∈ Z− or b ∈ Z−, the function 2F1(a,b;c;x) is reduced to polynomial in x.
We recall that many elementary and special functions can be expressed in terms of hypergeometric functions.

Example 1.
2F1(1,1;2;x) =−x−1 ln(1− x),

2F1(1/2,1;3/2;x2) =
1
2x

ln(
1+ x
1− x

),

2F1(1/2,1;3/2;x2) = x−1 arctan(x),

2F1(1/2,−1/2;1/2;x2)

2F1(1/2,1/2;3/2;x2)
=

x
√

1− x2

arcsin(x)
,

xa

a 2
F1(a,1−b;a+1;x) = Bx(a,b) =

∫ x

0
ta−1(1− t)b−1dt,

where a,b ∈ R+, 0≤ x≤ 1 and Bx(a,b) is the incomplete beta function.

Theorem 1. Let x be a real number | x |< 1, the continued fraction representation of the Gauss hypergeometric function
is

2F1(a,b;c;x) =
[

1;
abx

c
,
−(n−1)(c+n−2)(a+n−1)(b+n−1)x

n(c+n−1)+(a+n−1)(b+n−1)x

]+∞

n=2

Proof. We apply Lemma 2.6 to the function: 2F1(a,b;c;x) =
+∞

∑
n=0

cnxn by putting cn =
(a)n(b)n
(c)nn! . So, we have

c0 = 1,
c1x
1

=
ab
c x
1

,
−c2x

c1 + c2x
=

−(a)2(b)2
2(c)2

x
ab
c + (a)2(b)2

2(c)2
x
.

For n≥ 3, we get

cn−2cnx =
(a)n−2(b)n−2(a)n(b)n

(c)n−2(n−2) !(c)nn !
x.

Furthermore, we have

cn−1 + cnx =
(a)n−1(b)n−1

(c)n−1(n−1) !
+

(a)n(b)n

(c)nn !
x
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Then, we obtain

−cn−2.cnx
cn−1 + cnx

=
− (a)n−2(b)n−2(a)n(b)n

(c)n−2(n−2)!(c)nn! x
(a)n−1(b)n−1
(c)n−1(n−1)! +

(a)n(b)n
(c)nn! x

.

Therefore, the continued fraction expansion of 2F1(a,b;c;x) is

2F1(a,b;c;x) =

1;
ab
c x
1

,

−(a)2(b)2
2(c)2

x
ab
c + (a)2(b)2

2(c)2
x
,
− (a)n−2(b)n−2(a)n(b)n

(c)n−2(n−2)!(c)nn! x
(a)n−1(b)n−1
(c)n−1(n−1)! +

(a)n(b)n
(c)nn! x

+∞

n=3

.

In order to simplify the above equality, let us define the sequence (rn)n≥1 by{
r1 = c,
rn =

(c)nn!
(a)n−1(b)n−1

for n≥ 2.

Then, we have 
r1b1
r1a1

= abx
c ,

r1r2b2
r2a2

= −c(a+1)(b+1)x
2(c+1)+(a+1)(b+1)x ,

rnrn−1bn
rnan

= −(n−1)(c+n−2)(a+n−1)(b+n−1)x
n(c+n−1)+(a+n−1)(b+n−1)x for n≥ 3.

By applying the result of Lemma 2.5 to the sequence (rn)n≥1, we obtain

2F1(a,b;c;x) =
[

1;
abx

c
,
−(n−1)(c+n−2)(a+n−1)(b+n−1)x

n(c+n−1)+(a+n−1)(b+n−1)x

]+∞

n=2

and the proof is complete.

Corollary 1. Let x be a real number | x |< 1. From Theorem 3.3, Lemma 2.5 and by appropriate transformations, we
deduce the continued fraction representations of the special functions which we have seen in the above examples.

(i)

ln(1− x) =

[
−x;
−x2

2
,
−2x
1+ x

,
−n
n−1 x
1+ x

]+∞

n=3

(ii)

arctan(x) =
[

x;
x3

1
,

3x2

1−3x2 ,
(n−1/2)(n−5/2)x2

(n−3/2)− (n−1/2)x2

]+∞

n=3

3.2 The matrix case

Definition 3. Let A be a matrix in Mm, such that ‖A‖< 1, we define the Gauss hypergeometric function of a matrix A by
the expression

2F1(a,b;c;A) =
+∞

∑
n=0

(a)n(b)n

(c)nn !
An.

Theorem 2. Let A ∈Mm be a positive definite matrix such that ‖A‖ < 1. The representation continued fraction of the
Gauss hypergeometric function 2F1(a,b;c;A) is

2F1(a,b;c;A) =
[

I;
abA
cI

,
−(n−1)(c+n−2)(a+n−1)(b+n−1)A

n(c+n−1)I +(a+n−1)(b+n−1)A

]+∞

n=2
.
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Proof. Since A is a positive definite matrix, then there exists an invertible matrix X such that
A = XDX−1 where D = diag(λ1,λ2, ...,λm) and λi > 0 for all 1≤ i≤ m. As the function F = 2F1(a,b;c; ) is analytic in
a domain J =]−1,1[ then

F(A) =F(XDX−1) = XF(diag(λ1,λ2, ...,λm))X−1 = Xdiag(F(λ1),F(λ2), ...,F(λm))X−1.

Let us define the sequences (Pn) and (Qn) by{
P−1 = I, P0 = I, P1 = cI +abA,
Q−1 = 0, Q0 = I, Q1 = cI,

and for n≥ 2,

{
Pn = (n(c+n−1)I +(a+n−1)(b+n−1)A)Pn−1− (n−1)(c+n−2)(a+n−1)(b+n−1)A)Pn−2,

Qn = (n(c+n−1)I +(a+n−1)(b+n−1)A)Qn−1− (n−1)(c+n−2)(a+n−1)(b+n−1)A)Qn−2.

We see that Pnand Qn are diagonal matrices. By setting Pn = diag(p1
n, ..., pm

n ), and Qn = diag(q1
n, ...,q

m
n ), We obtain for

each i,1≤ i≤ m, {
pi
−1 = 1, pi

0 = 1, pi
1 = c+abλi,

qi
−1 = 0, qi

0 = 1, qi
1 = c,

and for n≥ 2,

{
pi

n = (n(c+n−1)+(a+n−1)(b+n−1λi)pi
n−1 +(−(n−1)(c+n−2)(a+n−1)(b+n−1)λi)pi

n−2,

qi
n = (n(c+n−1)I +(a+n−1)(b+n−1)λi)qi

n−1 +(−(n−1)(c+n−2)(a+n−1)(b+n−1)λi)qi
n−2.

By Theorem 3.1 the convergent (pi
n/qi

n) converges to F(λi). It follows that Pn/Qn converges to the matrix
diag(F(λ1),F(λ2), ...,F(λm)), so that

F(D) =

[
I;

abD
cI

,
−(n−1)(c+n−2)(a+n−1)(b+n−1)D

n(c+n−1)I +(a+n−1)(b+n−1)D

]+∞

n=2

then

F(A) = X
[

I;
abD
cI

,
−(n−1)(c+n−2)(a+n−1)(b+n−1)D

n(c+n−1)I +(a+n−1)(b+n−1)D
]+∞

n=3X−1

=

[
I;

abDX−1

cX−1 ,
−(n−1)(c+n−2)(a+n−1)(b+n−1)D

n(c+n−1)I +(a+n−1)(b+n−1)D

]+∞

n=2

Let us define the sequence (Xn)n≥−1 by

{
X−1 = X0 = I,
Xn = X , f or n≥ 1,
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By applying the result of proposition 2.7 to the sequence (Xn)n≥−1, we obtain

X1abDX−1X−1
−1

X1cX−1X−1
0

= abA
cI ,

X2(−c(a+1)(b+1)D)X−1
1

X2(2(c+1)I+(a+1)(b+1)D)X−1
0

−c(a+1)(b+1)A
2(c+1)I+(a+1)(b+1)A ,

XnbnDX−1
n−2

XnanDX−1
n−1

= bnA
anA .

where bn = −(n−1)(c+n−2)(a+n−1)(b+n−1) and an = n(c+n−1)I +(a+n−1)(b+n−1) for n ≥ 3. Which
finish the proof of Theorem 3.4.

4 Numerical applications

This section will provide some numerical data to illustrate the preceding results. The focus will be on two cases.

4.1 Real case

The following table clarifies the differences between 2F1(x) and its first convergents when Applying Theorem 3.4

x (2F1−F1)(x)
2F1(x)

(2F1−F2)(x)
2F1(x)

(2F1−F3)(x)
2F1(x)

(2F1−F4)(x)
2F1(x)

(2F1−F5)(x)
2F1(x)

0.005 0.5009625484e-5 0.1796995989e-7 0 0 0
0.05 0.5098196233e-3 0.1826707577e-4 0.7117680889e-6 0.2949315285e-7 0.1966210190e-8
0.1 0.2081107059e-2 0.1496511363e-3 0.1169013697e-4 0.9589678655e-6 0.8112114874e-7
0.2 0.8694693918e-2 0.1259904125e-2 0.1977914303e-3 0.3257367278e-4 0.5538918396e-5
0.3 0.2052794626e-1 0.4500221749e-2 0.1065709225e-2 0.2643229997e-3 0.6761918887e-4
0.4 0.3851816176e-1 0.1137043926e-1 0.3613947237e-2 0.1200815877e-2 0.4110640272e-3
0.5 0.6400881084e-1 0.2389490275e-1 0.9568506885e-2 0.3997131117e-2 0.1717931867e-2
0.6 0.9906047842e-1 0.4500410712e-1 0.2183709075e-1 0.1102581649e-1 0.5718463603e-2
0.7 0.1471603053 0.7939412418e-1 0.4551103360e-1 0.2706357301e-1 0.1649820925e-1
0.8 0.2152166332 0.1359122088 0.9059539494e-1 0.6239826632e-1 0.4394196386e-1
0.9 0.3217901569 0.2372747765 0.1829434606 0.1449115394 0.1169062156

We can clearly see that F5 is approximately the exact value of 2F1(x).

4.2 Matrix case

Example 2. Let A be a 2×2 matrix, such that

A =

 3
64

1
32

1
32

3
64

 ,

A is a positive definite matrix such that ‖ A ‖= 5/64 < 1.

We calculate the difference between 2F1 and the first five convergents, by using the expansion of Theorem 3.4, such that
a = 1

2 , b = 1 and c = 3
2 , we obtain the following results

2F1−F1 =

0.671312531689949310e−3 0.621932741383298890e−3

0.621932741383298890e−3 0.671312531689949310e−3

 .
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2F1−F2 =

 0.365469066898604922e−4 0.359952413832992368e−4

0.359952413832992368e−4 0.365469066898604922e−4

 .

2F1−F3 =

 0.221463129990162600e−5 0.220792274490018425e−5

0.220792274490018425e−5 0.221463129990162600e−5

 .

2F1−F4 =

 0.141714209922483292e−6 0.141628392699363892e−

0.141628392699363892e− 0.141714209922483292e−6

 .

2F1−F5 =

 0.938174005149505774e−8 0.938058710049649580e−8

0.938058710049649580e−8 0.938174005149505774e−8

 .

Example 3. Let A be a 3×3 matrix, such that

A =


1

25
1
50

3
100

1
50

1
25

1
50

3
100

1
50

1
25


we verify that A is a positive definite matrix and ‖ A ‖= 9/100 < 1.

We calculate the difference between 2F1 and the first five convergents, by using the expansion of Theorem 3.4, such that
a = 1

2 , b = 1 and c = 1
2 , we obtain the following results

2F1−F1 =


0.316709697875605656e−2 0.242152466367712843e−2 0.306608687774607288e−2

0.242152466367712843e−2 0.260089686098652351e−2 0.242152466367712843e−2

0.306608687774607288e−2 0.242152466367712843e−2 0.316709697875605656e−2

 .

2F1−F2 =


0.230969787560209028e−4 0.221524663677127865e−3 0.266086877746068984e−3

0.221524663677127865e−3 0.200896860986565784e−3 0.221524663677127865e−3

0.266086877746068984e−3 0.221524663677127865e−3 0.230969787560209028e−4

 .

2F1−F3 =


0.419300593001992184e−5 0.195246636771305438e−4 0.230868777460688235e−4

0.195246636771305438e−4, 0.168968609866038122e−4 0.195246636771305438e−4,

0.230868777460688235e−4 0.195246636771305438e−4, 0.419300593001992184e−5

 .

2F1−F4 =


0.200697875607502852e−5 0.170466367712882039e−5 0.200687774606911340e−5

0.170466367712882039e−5 0.145686098651509610e−5 0.170466367712882039e−5

0.200687774606911340e−5 0.170466367712882039e−5 0.200697875607502852e−5

 .

2F1−F5 =


0.174578756118037860e−6 0.148463677129839768e−6 0.174577746071824526e−6

0.148463677129839768e−6 0.126460986571430568e−6 0.148463677129839768e−6

0.174577746071824526e−6 0.148463677129839768e−6 0.174578756118037860e−6

 .
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In the examples above, we can clearly see that F5 is approximately the exact value of 2F1(A).
Moreover when n = 16 we will have 2F1(A)−F16 ' 0. This shows the importance of the continued fractions approach.
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paramÃ¨tres IV Analysis and Applications 12 (2014), no. 6, 667-710.
[9] L. Lorentzen, H. Wadeland, Continued fractions with applications, Elsevier Science Publishers, 1992.

[10] Y. L. Luke,The Special Functions and Their Approximations, Volume I, Academic Press, 1969.
[11] N. Negoescu, Convergence theorems on noncommutative continued fractions, Rev. Anal. Numér. Theorie Approx., 5 (1977), pp.

165-180.
[12] M. Raissouli, A. Kacha , Convergence of matrix continued fractions. Linear Algebra Appl. 320 (2000), 115-129.
[13] P. Wynn, One some recent developments in the theory of continued fractions, SIAM J. Numer. Anal. 1 (1964), pp. 177-197.

© 2021 BISKA Bilisim Technology


	Introduction and motivation
	Preliminary and notations
	Main results
	Numerical applications

