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1 Introduction

Several authors [1–5] have investigated the theory of neutral differential equations in Banach spaces. A neutral functional
differential equation is one in which the derivatives of the past history or derivatives of functionals of the past history are
implied as well as the present state of the system. Neutral differential equations emerge in problems dealing with electric
networks containing lossless transmission lines. Such networks appeared, for example, in high speed computers where
lossless transmission lines are applied to interconnect switching circuits.

To make the use of the method of semigroups, Pazy [6] examined the existence and uniqueness of mild, strong and
classical solutions of semilinear evolution equations. Balachandran et al. [7] analyzed the existence of results for nonlinear
abstract neutral differential equations with time varying delays of the form

d
dx

[x(t)+F (t, x(t) , x(b1 (t)) , . . . , x(bm (t)))] = Ax(t)+G(t, x(t) , x(a1 (t)) , . . . , x(an (t))) ,

x(0) = x0,
(1)

where t ∈ J = [0, a] , A is the infinitesimal generator of a compact analytic semigroup of bounded linear operators
T (t) in a Banach space X by employing Schaefer fixed point theorem. The same class of neutral equation with nonlocal
condition is also investigated by Fu and Ezzinbi [8] by applying Sadovskii’s fixed point theorem.

The nonlocal Cauchy problem was first evaluated by Byszewski [9]. The significance of the problem comprises in
the fact that it is more general and has a finer effect than the classical initial condition. In the past many years, theorems
about existence, uniqueness and stability of differential and functional differential abstract evolution Cauchy problem with
nonlocal conditions have been worked by different authors [10, 11].

The authors [12, 13] studied the existence of solutions for neutral functional integrodifferential equations in Banach
spaces. Recently, Manimaran et al. [14] examined the existence of solutions for neutral functional integrodifferential
evolution equations with nonlocal conditions by applying the fractional power of operators and Sadovskii’s fixed point
theorem. Kumar et.al [15] proved the mild solution of the impulsive fractional integrodifferential equation with
nonlocal conditions in Banach spaces by using fractional calculus and fixed point theorem. Munusamy et. al [16]
showed the existence of solutions for some functional integrodifferential equations with nonlocal conditions to
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establish the results by using the resolvent operator theory and Sadovskii-Krasnosel’skii type of fixed point
theorem. The authors [17, 18] established the existence as well as controllability results of different classes of
integrodifferential equations in abstract spaces.

In the following paper, we investigate the existence of mild solution of the evolution equation of the form

d
dx

[x(t)+F (t, x(t) , x(b1 (t)) , . . . , x(bm (t)))]+Ax(t) = G(t, x(t) , x(a1 (t)) , . . . , x(an (t)))

+H
(

t, x(t) ,
∫ t

0
k (t, s, x(s))ds,

∫ T

0
g(t, s, x(s))ds

)
, t ∈ J = [0, T ] ,

x(0)+h(x) = x0,

(2)

where−A generates an analytic semigroup and F, G, H, k, g, h are given functions to be specified later. The findings
are the generalization and continuation of some results (see [6–8] ).

2 Preliminaries

All over the paper X will be a Banach space with norm‖ . ‖. Let -A be the infinitesimal generator of a compact analytic
semigroup of uniformly bounded linear operators S (t). Assume that 0 ∈ ρ (A), then define the fractional power Aα , for
0≤ α ≤ 1, as a closed linear operator on its domain D(Aα). Also, the subspace D(Aα) is dense. Additionally, D(Aα) is
a Banach space under the norm

‖x‖
α
= ‖Aα x‖ , x ∈ D(Aα) , (3)

which is expressed by Xα . Then for every 0<α ≤ 1, Xα → Xβ for 0< β <α ≤ 1 and the imbedding is compact whenever
the resolvent operator of A is compact. The properties will be used for the semigroup S (t) which is given below.

1.There is a M ≥ 1 such that ‖S(t)‖ ≤M for each 0≤ t ≤ T ;
2.For any α > 0, there exists a positive constant Cα such that

‖Aα S (t)‖ ≤ Cα

tα
, 0 < t ≤ T. (4)

We assume the conditions which are given below:
(A1)F : [0, T ]×Xm+1 → X is a continuous function, and there exists β ∈ (0, 1) and L1, L2 > 0 such that the function
Aβ F satisfies the Lipschitz condition:∥∥∥Aβ F (s1, x0, x1, . . . , xm)−Aβ F (s2, x0, x1, . . . , xm)

∥∥∥≤ L1

(
|s1− s2|+ max

i=0, 1,..., m
‖xi− xi‖

)
, (5)

for any 0≤ s1, s2 ≤ T, xi, xi ∈ X , i = 0, 1, 2, . . . , m; and the inequality∥∥∥Aβ F (t, x0, x1, . . . , xm)
∥∥∥≤ L2(max{‖xi‖ : i = 0,1, . . . ,m} +1 ), (6)

holds for any (t, x0, x1, . . . , xm) ∈ [0, T ]×Xm+1.
(A2) The function G : [0, T ]×Xn+1→ X fulfills the following conditions:

1.For each t ∈ [0, T ], the function G(t, .) : Xn+1→ X is continuous and for each (x0, x1, . . . , xn) ∈ Xn+1 the function
G(., x0, x1, . . . , xn) : [0, T ]→ X is strongly measurable;

2.For each positive number p ∈ N, there is a positive function gp ∈ L1 ([0, T ]) such that

sup
‖x0‖, ..., ‖xn‖≤p

‖G(t, x0, x1, . . . , xn)‖ ≤ gp (t)

and

lim
p→∞

inf
1
p

∫ T

0
gp (s)ds = γ1 < ∞.

(7)

(A3)The function H : [0, T ]×X×X×X → X satisfies the following conditions:

1.For each t ∈ [0, T ], the function H (t, ., ., .) : X×X×X→ X and for all x, y, z∈ X ,H (., x, y, z) : [0, T ]→ X is strongly
measurable.
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2.For each positive number r ∈ N, there exists a positive function qr ∈ L1 ([0, T ]) such that

sup
‖x‖≤r

∥∥∥∥H
(

s, x(s) ,
∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)∥∥∥∥≤ qr (s)

and

lim
r→∞

inf
1
r

∫ T

0
qr (s)ds = γ2 < ∞.

(8)

(A3)a j, b j ∈C ([0, T ] ; [0, T ]) , i = 1, 2, . . . ,n, j = 1, 2, . . . , m;h ∈C (E;X). Here and hereafter E =C ([0, T ] ;X), and
h satisfies that

1.There exist positive constants L3 and L3
′

such that ‖h(x)‖ ≤ L3 ‖x‖+L3
′

for all x ∈ E;
2.h is a completely continuous map.

Theorem 2.1. (Sadovskii’s Fixed Point Theorem [19])
Let P be a condensing operator on a Banach space X , i.e., P is continuous and takes bounded sets into bounded sets, and
α (P(D))≤ α (D) for every bounded set D of x with α (D)> 0. If P(E)⊂ E for convex, closed and bounded set E of X ,
then P has a bounded point in E (where α (.) denotes the Kuratowski’s measures of non-compactness).

3 Existence of the Mild Solution

Definition 3.1. A continuous function x(.) : [0, T ]→ X is said to be a mild solution of the nonlocal Cauchy problem (2), if
the function AS (t− s)F (s, x(s) , x(b1 (s)) , . . . , x(bm (s))) , s ∈ [0, T )is integrable on [0, T ) and the following integral
equation is verified:

x(t) = S (t) [x0 +F (0, x(0) ,x(b1 (0)) , . . . , x(bm (0)))−h(x)]−F (t, x(t) , x(b1 (t)) , . . . , x(bm (t)))

+
∫ t

0
AS (t− s)F (s, x(s) , x(b1 (s)) , . . . , x(bm (s)))ds+

∫ t

0
S (t− s)G(s, x(s) , x(a1 (s)) , . . . , x(an (s)))ds

+
∫ t

0
S (t− s)

[
H
(

s, x(s) ,
∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)]
ds.

(9)

Theorem 3.1.If assumptions (A1)-(A4) are satisfied and x0 ∈ X , then the nonlocal Cauchy problem (2) has a mild
solution provided that

L0 :=

[
(M+1)M0 +

C1−β T β

β

]
L1 < 1 (10)

and

M0L2 +M (L3 +M0L2 + γ1 + γ2)+L2
C1−β T β

β
< 1, (11)

where M0 =
∥∥A−β

∥∥.
Proof : For the sake of brevity, we rewrite that

(t, x(t) , x(b1 (t)) , . . . , x(bm (t))) = (t, v(t))
and

(t, x(t) , x(a1 (t)) , . . . , x(an (t))) = (t, u(t)) .
(12)

Define the operator ψ on E by the formula

(ψx)(t) = S (t) [x0 +F (0, v(0))−h(x)]−F (t, v(t))+
∫ t

0
AS (t− s)F (s, v(s)) ds +

∫ t

0
S (t− s)G(s, u(s))ds

+
∫ t

0
S (t− s)

[
H
(

s, x(s) ,
∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)]
ds, 0≤ t ≤ T.

(13)
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For each positive integer p, let
Dp = {x ∈ E : ‖x(t)‖ ≤ p, 0≤ t ≤ T} . (14)

Then for each p, Dp is obviously a bounded closed convex set in E. Since by (4) and (5) the following relation holds:

‖AS (t− s)F (s, v(s))‖ ≤
∥∥∥A1−β S (t− s)Aβ F (s, v(s))

∥∥∥≤ C1−β

(t− s)1−β
L2 (p+1) , (15)

then from Bocher’s theorem [20] it follows that AS (t− s)F (s, v(s)) is integrable on [0, T ], so ψ is well defined on Dp.
We claim that there exists a positive integer p such that ψDp ⊆ Dp. If it is not true, then for each positive integer p, there
is a function xp (.)∈Dp, but ψxp /∈Dp , that is

∥∥ψxp (t)
∥∥> p for some t (p)∈ [0, T ], where t (p) denotes t is independent

of p.On the other hand, we have

p <
∥∥(ψxp)(t)

∥∥= ∥∥∥∥S (t) [x0−h(xp)+F (0, vp (0))]−F (t, vp (t))+
∫ t

0
AS (t− s)F (s, vp (s)) ds

+
∫ t

0
S (t− s)G(s, up (s))ds+

∫ t

0
S (t− s)

[
H
(

s, xp (s) ,
∫ s

0
k (s, τ, xp (τ))dτ,

∫ T

0
g(s, τ, xp (τ))dτ

)]
ds
∥∥∥∥

≤
∥∥S (t) [x0−h(xp)+F (0, vp (0))]

∥∥+∥∥∥A−β Aβ F (t, vp (t))
∥∥∥+∥∥∥∥∫ t

0
A1−β S (t− s)Aβ F (s, vp (s)) ds

∥∥∥∥
+

∥∥∥∥∫ t

0
S (t− s)G(s, up (s))ds

∥∥∥∥+∥∥∥∥∫ t

0
S (t− s)

[
H
(

s, xp (s) ,
∫ s

0
k (s, τ, xp (τ))dτ,

∫ T

0
g(s, τ, xp (τ))dτ

)]
ds
∥∥∥∥

≤M
[
‖x0‖+L3 p+L

′
3+M0L2(p+1)

]
+M0L2 (p+1)+

∫ t

0

C1−β

(t− s)1−β
L2 (p+1) ds+M

∫ T

0
gp (s)ds+M

∫ T

0
qr (s)ds

≤M
[
‖x0‖+L3 p+L

′
3

]
+M0L2 (p+1)(M+1)+

T β

β
C1−β L2 (p+1)+M

∫ T

0
gp (s)ds+M

∫ T

0
qr (s)ds.

(16)

Dividing into both sides by p and taking the lower limit as p→+∞, we get

ML3 +M0L2M+M0L2 +
T β

β
C1−β L2 +Mγ1 +Mγ2 ≥ 1,

⇒M0L2 +M (L3 +M0L2 + γ1 + γ2)+
T β

β
C1−β L2 ≥ 1.

(17)

This contradicts (11). Hence, for some positive integer p, we must have ψDp ⊆ Dp.

Next, we will show that the operator ψ has a fixed point on Dp, which implies equation (2) has a mild solution. To this
end, we decompose ψ as ψ = ψ1 +ψ2, where the operators ψ1, ψ2 are defined on Dp, respectively, by

(ψ1x)(t) = S (t)F (0, v(0))−F (t, v(t))+
∫ t

0
AS (t− s)F (s, v(s))ds

and
(ψ2x)(t) = S (t) [x0−h(x)]

+
∫ t

0
S (t− s)G(s, u(s))ds+

∫ t

0
S (t− s)

[
H
(

s, x(s) ,
∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)]
ds ,

(18)

for 0≤ t ≤ T , and we will verify that ψ1 is a contraction while ψ2 is a compact operator.
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To prove that ψ1 is a contraction, we take x1, x2 ∈ Dp. Then for each t ∈ [0, T ] and by condition (A1) and (10), we
have

‖(ψ1x1)(t)− (ψ1x2)(t)‖ ≤ ‖S (t) [F (0, v1 (0))−F (0, v2 (0))]‖+‖F (t, v1 (t))−F (t, v2 (t))‖

+

∥∥∥∥∫ t

0
AS (t− s) [F (s, v1 (s))−F (s, v2 (s))]ds

∥∥∥∥
≤ (M+1)M0L1 sup

0≤s≤T
‖x1 (s)− x2 (s)‖ +

∫ t

0

C1−β

(t− s)1−β
L1 sup

0≤s≤T
‖x1 (s)− x2 (s)‖ ds

≤ L1

[
(M+1)M0 +

C1−β T β

β

]
sup

0≤s≤T
‖x1 (s)− x2 (s)‖ ≤ L0 sup

0≤s≤T
‖x1 (s)− x2 (s)‖ .

(19)

Thus ‖ψx1−ψx2‖ ≤ L0 ‖x1− x2‖.
So by assumption 0 < L0 < 1, we see that ψ1 is a contraction.
To prove that ψ2 is compact, firstly we prove that ψ2 is continuous on Dp. Let {xn}⊆Dp with xn→ xin Dp, then by(A2)(i),
we have

G(s, un (s))→ G(s, u(s)) , as n→ ∞. (20)

H
(

t, xn (t) ,
∫ t

0
k (t, s, xn (s))ds,

∫ T

0
g(t, s, xn (s))ds

)
→ H

(
t, x(t) ,

∫ t

0
k (t, s, x(s))ds,

∫ T

0
g(t, s, x(s))ds

)
,

as n→ ∞.
(21)

Since ‖G(s, un (s))−G(s, u(s))‖ ≤ 2gp (s) and

∥∥∥∥H
(

t, xn (t) ,
∫ t

0
k (t, s, xn (s))ds,

∫ T

0
g(t, s, xn (s))ds

)
− H

(
t, x(t) ,

∫ t

0
k (t, s, x(s))ds,

∫ T

0
g(t, s, x(s))ds

)∥∥∥∥≤ 2qr (s) ,

(22)
by the dominated convergence theorem, we have

‖ψ2xn−ψ2x‖= sup
0≤s≤T

∥∥∥∥S (t) [h(x)−h(xn)]+
∫ t

0
S (t− s) [G(s, un (s))−G(s, u(s))]ds +

∫ t

0
S (t− s)×[

H
(

s, xn (s) ,
∫ s

0
k (s, τ, xn (τ))dτ,

∫ T

0
g(s, τ, xn (τ))dτ

)
−H

(
s, x(s) ,

∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)]
ds
∥∥∥∥

→ 0, as n→ ∞ i.e. ψ2is continuous.
(23)

Next, we prove that
{

ψ2x : x ∈ Dp
}

is a family of equicontinuous functions. To see this we fix t1 > 0 and let t2 > t1
and ε > 0 be enough small. Then

‖(ψ2x)(t2)− (ψ2x)(t1)‖ ≤ ‖S (t2)−S (t1)‖‖x0−h(x)‖+
∫ t1−ε

0
‖S (t2− s)−S (t1− s)‖‖G(s, u(s))‖ds

+
∫ t1

t1−ε

‖S (t2− s)−S (t1− s)‖‖G(s, u(s))‖ds+
∫ t2

t1
‖S (t2− s)‖‖G(s, u(s))‖ds

+
∫ t1−ε

0
‖S (t2− s)−S (t1− s)‖

∥∥∥∥H
(

s, x(s) ,
∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)∥∥∥∥ds

+
∫ t1

t1−ε

‖S (t2− s)−S (t1− s)‖
∥∥∥∥H
(

s, x(s) ,
∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)∥∥∥∥ds

+
∫ t2

t1
‖S (t2− s)‖

∥∥∥∥H
(

s, x(s) ,
∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)∥∥∥∥ds.

(24)
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Noting that ‖G(s, u(s))‖ ≤ gp (s) and gp (s) ∈ L′, we see that ‖(ψ2x)(t2)− (ψ2x)(t1)‖ tends to zero independent
of x ∈ Dp as t2− t1 → 0 since the compactness of S (t)(t > 0) implies the continuity of S (t)(t > 0) in t in the uniform
operators topology. We can prove that the functions ψ2x, x ∈ Dp are equicontinuous at t = 0. Hence,ψ2 maps Dp into a
family of equicontinuous functions.
It remains to prove that V (t) =

{
(ψ2x)(t) : x ∈ Dp

}
is relatively compact in X . V (0) is relatively compact in X . Let

0≤ t ≤ T be fixed and 0 < ε < t. For x ∈ Dp, we define

(ψ2, ε x)(t) = S (t) [x0−h(x)]+
∫ t−ε

0
S (t− s)G(s, u(s))ds

+
∫ t−ε

0
S(t− s)

[
H
(

s, x(s) ,
∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)]
ds

= S (t) [x0−h(x)]+S (ε)
∫ t−ε

0
S (t− ε− s)G(s, u(s))ds

+S (ε)
∫ t−ε

0
S(t− ε− s)

[
H
(

s, x(s) ,
∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)]
ds.

(25)

Then from the compactness of S (ε)(ε > 0), we obtain Vε (t) =
{
(ψ2,ε x)(t) : x ∈ Dp

}
is relatively compact in X for

every ε, 0 < ε < t. Moreover, for every x ∈ Dp, we have

‖(ψ2x)(t)− (ψ2, ε x)(t)‖

≤
∫ t

t−ε

‖S (t− s)G(s, u(s))‖ds+
∫ t

t−ε

∥∥∥∥S (t− s)
[

H
(

s, x(s) ,
∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)]∥∥∥∥ds
(26)

≤M
∫ t

t−ε

gp (s)ds+M
∫ t

t−ε

qr (s)ds.

Therefore, there are relatively compact sets arbitrarily close to the set V (t). Hence the set V (t) is also relatively compact
in X .
Thus ψ2 is a compact operator by the Arzela-Ascoli theorem. These logics allow us to deduce that ψ = ψ1 +ψ2 is a
condensing map on Dp, and by the fixed point theorem of Sadovskii there exists a fixed point x(.) for ψ on Dp. Therefore,
the equation (2) has a mild solution, and the proof is completed.

4 Application

As an application of Theorem3.1, we shall consider the system (2) with control parameter such as:

d
dx

[x(t)+F (t, x(t) , x(b1 (t)) , . . . , x(bm (t)))]+Ax(t) =Cw(t)+G(t, x(t) , x(a1 (t)) , . . . , x(an (t)))

+H
(

t, x(t) ,
∫ t

0
k (t, s, x(s))ds,

∫ T

0
g(t, s, x(s))ds

)
, t ∈ J = [0, T ] ,

x(0)+h(x) = x0,

(27)

where the control function w( . ) is given in L2 (J, W )- the Banach space of admissible control function with W as a
Banach space and C is a bounded linear operator from W into X . The mild solution of the system (27) is given by

x(t) = S (t) [x0 +F (0, v(0))−h(x)]−F (t, v(t))+
∫ t

0
AS (t− s)F (s, v(s))ds

+
∫ t

0
S (t− s)

[
Cw(s)+G(s, u(s))+H

(
s, x(s) ,

∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)]
ds.

(28)

Definition 4.1. The system (27) is said to be controllable on the interval J if for every x0, x1 ∈ X , there exists a control
w ∈ L2 (J, W )such that the mild solution x( . ) of (27) satisfies

x(0)+h(x) = x0 and x(T ) = x1. (29)
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To establish the result, we need the following additional condition:

(A5) The linear operator Q : L2 (J, W )→ X defined by

Qw =
∫ T

0
S (T − s)Cw(s)ds, (30)

has an induced inverse operator Q̃−1,which takes values in L2 (J, W )/kerQ and there exists a positive constant M1
such that

∥∥CQ̃−1
∥∥≤M1.

For the construction of the operator Q and its inverse, see [21].

Theorem 4.1. If the assumptions (A1) - (A5) are satisfied then the system (27) is controllable on J if

L0 :=

[
(M+1)M0 +

C1−β T β

β

]
L1 < 1. (31)

(1+MM1T )

(
ML3 +M0L2M+M0L2 +

C1−β L2T β

β
+Mγ1 +Mγ2

)
< 1. (32)

Proof: Using the assumption(A5), for an arbitrary function x( .), define the control

w(t) = Q̃−1
[

x1−S (T ){x0 +F (0, v(0))−h(x)}+F (T, v(T ))−
∫ T

0
AS (T − s)F (s, v(s))ds

−
∫ T

0
S (T − s)

{
G(s, u(s))+H

(
s, x(s) ,

∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)}
ds
]
(t) .

(33)

We shall show that when using this control the operator ϕ defined by

(ϕx)(t) = S (t) [x0 +F (0, v(0))−h(x)]−F (t, v(t))+
∫ t

0
AS (t− s)F (s, v(s))ds

+
∫ t

0
S (t− s)

[
Cw(s)+G(s, u(s))+H

(
s, x(s) ,

∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

)]
ds, t ∈ J,

(34)

has a fixed point x( .). Then this fixed point x( .) is a mild solution of the problem (27), and we can easily verify
thatx(T ) = (ϕx)(T ) = x1. This means that the control w steers the system from the initial state x0 to x1 in time T , which
implies that the system is controllable.
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Our aim is to prove that there exists a positive integer p such thatϕDp ⊆ Dp. If possible, for each positive integer p, there
is a function xp ( .) ∈ Dp, but ϕxp /∈ Dp, that is

∥∥ϕxp (t)
∥∥> p for t ∈ [0, T ], from

p <
∥∥(ϕxp)(t)

∥∥= ∥∥∥∥S (t)
{

x0−h(xp)+F (0, vp (0))
}
−F (t, vp (t))+

∫ t

0
AS (t− s)F (s, vp (s)) ds

+
∫ t

0
S (t− s)G(s, up (s))ds+

∫ t

0
S (t− s)

{
H
(

s, xp (s) ,
∫ s

0
k (s, τ, xp (τ))dτ,

∫ T

0
g(s, τ, xp (τ))dτ

)}
ds

+
∫ t

0
S (t− s)CQ̃−1

[
x1−S (T )

{
x0 +F (0, vp (0))−h(xp)

}
+F (T, vp (T ))−

∫ T

0
AS (T − s)F (s, vp (s))ds

−
∫ T

0
S (T − s)

{
G(s, up (s))+H

(
s, xp (s) ,

∫ s

0
k (s, τ, xp (τ))dτ,

∫ T

0
g(s, τ, xp (τ))dτ

)}]
(s)ds

∥∥∥∥
≤M

{
‖x0‖+L3 p+L

′
3+‖A−β Aβ F(0, vp(0))‖

}
+
∥∥∥A−β Aβ F (t, vp (t))

∥∥∥
+

∥∥∥∥∫ t

0
A1−β S (t− s)Aβ F (s, vp (s)) ds

∥∥∥∥+M
∫ T

0
gp (s)ds+M

∫ T

0
qr (s)ds

+M1M
∫ t

0

[
‖x1‖+M

{
‖x0‖+L3 p+L

′
3+‖A−β Aβ F(0, vp(0))‖

}
+
∥∥∥A−β Aβ F (T, vp (T ))

∥∥∥
+

∥∥∥∥∫ T

0
A1−β S (T − s)Aβ F (s, vp (s))ds

∥∥∥∥++M
∫ T

0
gp (s)ds+M

∫ T

0
qr (s)ds

]
ds

≤M
[
‖x0‖+L3 p+L

′
3

]
+M0L2 (p+1)(M+1)+

C1−β L2 (p+1)T β

β
+M

∫ T

0
gp (s)ds+M

∫ T

0
qr (s)ds

+MM1

[
‖x1‖+M

{
‖x0‖+M0L2 (p+1)+L3 p+L

′
3

}
+M0L2 (p+1)+

∫ T

0

C1−β L2 (p+1)

(T − s)1−β
ds

+M
∫ T

0
gp (s)ds+M

∫ T

0
qr (s)ds

]
T.

(35)

Dividing into both sides by p and taking the lower limit as p→ ∞, we get

1≤ML3 +M0L2M+M0L2 +
C1−β L2T β

β
+Mγ1 +Mγ2

+MM1T

(
M0L2M+L3M+M0L2 +

C1−β L2T β

β
+Mγ1 +Mγ2

)

⇒ 1≤ (1+MM1T )

(
ML3 +M0L2M+M0L2 +

C1−β L2T β

β
+Mγ1 +Mγ2

)
.

(36)

However, this contradicts (32). Hence for positive integer p, ϕDp ⊆ Dp.
In order to apply Sadovskii’s fixed point theorem, we decompose ϕ as ϕ = ϕ1+ϕ2, where the operators ϕ1, ϕ2 are defined
on Dp, by

(ϕ1x)(t) = S (t)F (0, v(0))−F (t, v(t))+
∫ t

0
AS (t− s)F (s, v(s))ds,

(ϕ2x)(t) = S (t) [x0−h(x)]+
∫ t

0
S (t− s)G(s, u(s))ds +

∫ t

0
S (t− s)

[
H
(

s, x(s) ,
∫ t

0
k (t, τ, x(τ))dτ,

∫ T

0
g(t, τ, x(τ))dτ

)]
ds

+
∫ t

0
S (t− s)CQ̃−1

[
x1−S (T ){x0 +F (0, v(0))−h(x)}+F (T, v(T ))−

∫ T

0
AS (T − s)F (s, v(s))ds

−
∫ T

0
S (T − s)

(
G(s, u(s))+H

(
s, x(s) ,

∫ s

0
k (s, τ, x(τ))dτ,

∫ T

0
g(s, τ, x(τ))dτ

))
ds
]
(s)ds,

(37)
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for t ∈ J. We have already proved that ϕ1 verify a contraction condition. The proof that ϕ2 is a compact operator can
be completed by a similar manner as we have done it in Theorem 3.1, and hence it is omitted.

5 Conclusion

In this article, the existence of the mild solution for neutral functional mixed integrodifferential evolution equations with
nonlocal conditions in general Banach spaces is discussed. We have applied fractional power of operators and
Sadovskiiâs fixed point theorem to establish the result. An application is provided to illustrate the obtained result.
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