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Abstract: The object of the present paper is to study (k,u)-Paracontact metric manifold. We introduce the curvature tensors of (k,ut)-

Paracontact manifold satisfying the conditions W (X,Y)-P =0, W (X,Y)-R=0, Wj(X,Y) Z=0, Wi (X,Y)-S=0 and Wy (X,Y) .C=
0. According these cases, (k,(t)-Paracontact manifolds have been characterized. In my opinion some exciting results on a (k,u)-
Paracontact metric manifold are obtained.
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1 Introduction

In the modern geometry, the geometry of paracontact manifolds has turn into a subject of growing interest for its
substantial applications in applied mathematics and physics. Paracontact manifolds are smooth manifolds of dimension
(2n+ 1) equipped with a (1,1)—tensor ¢, a vector field &, and a 1-form 7 satisfying n(£) =1, 9> =I—n® & and ¢
induces an almost paracomplex structure on each fibre of D = ker(n)[1]. Moreover if the manifold is equipped with a
pseudo-Riemannian metric g so that

80X, 9Y) = —g(X,Y) +n(X)n(Y), ¢(X,9Y)=dn(X,Y),

for X,Y € x(M) and (M, ¢,&,7,g) is called to be an almost paracontact metric manifold. Any such pseudo-Riemannian
metric manifold is of signature (n+ 1,n). In 1985, Kaneyuki and Williams started the view of paracontact geometry[7].
Zamkovoy achieved a systematic research on paracontact metric manifolds[15]. Recently, B. Cappeletti-Montano, I.
Kupeli Erken and C. Murathan introduced a new type of paracontact geometry socalled paracontact metric (k, {t)—space,
where k and p are constant[5].

K. Yano and S. Sawaki introduced the idea of quasi-conformal curvature tensor which is generalization of conformal
curvature tensor[11]. It plays an important role in differential geometry as well as in theory of relativity. M. Atceken
studied generalized Sasakian space form satisfying certain conditions on the concircular curvature tensor[2, 13,14]. G.P.
Pokhariyal and R. S. Mishra researched curvature tensors and their relativistic significance[8].

Motivated by the above authors, in this paper we investigate (k, it)-paracontact manifolds, which satify the curvature
conditions W§ (X,Y)-P =0, Wi (X,Y)-R=0, W} (X,Y)-Z=0, Wi (X,Y)-S=0 and Wi (X,Y) -C = 0 where P is the
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weyl curvature tensor, R is the Riemannian curvature tensor, Z is the concircular curvature tensor, S is the Ricci tensor, C
is the quasi-conformal curvature tensor and Wy is the W — curvature tensor.

2 Preliminaries

A contact manifold is a C* — (2n+ 1) dimensional manifold M?>"*! equipped with a global 1-form 1 such that n A (dn)" #
0 everywhere on M>"*!. Given such a form 7, it is well known that there exists a unique vector field &, called the
characteristic vector field, such that (&) = 1 and dn(X, ) = 0 for every vector field X on M>**!. A Riemannian metric
g is said to be associated metric if there exists a tensor field ¢ of type (1,1) such that

P*X=X-nX)E, nE) =1, nop=0,  $&=0, (1)

8(0X,9Y) = —g(X,Y)+n(X)n(Y), g(X,5)=n(X) 2

for all vector fields X,Y on M. Then the structure (¢,£,1,g) on M is called a paracontact metric structure and the
manifold equipped with such a structure is called a almost paracontact metric manifold[7].

We now define a (1,1) tensor field 4 by h = %Lé ¢, where L denotes the Lie derivative. Then £ is symmetric and satisfies
the conditions
h¢ =—¢h, hE=0, Trh=Tr¢oh=0. 3)

If V denotes the Levi-Civita connection of g, then we have the following relation
Vx& = —9X + ¢hX )

for any X € x(M)[15]. For a paracontact metric manifold M>"*!(¢,& n,g), if £ is a killing vector field or equivalently,
h =0, then it is called a K-paracontact manifold.

A paracontact metric structure (¢,&, 7, g) is normal, that is, satisfies [¢, @] +2dn ® & = 0, which is equivalent to
(Vx9)Y = —g(X,¥)E+n(Y)X

for all X,Y € x(M)[15]. If an almost paracontact metric manifold is normal, then it called paracontact metric manifold.
Any para-Sasakian manifold is K-paracontact, and the converse holds when n = 1, that is, for 3-dimensional spaces. Any
para-Sasakian manifold satisfies

RX,Y)§ =—(n(¥Y)X —n(X)Y) @)

for all X,Y € (M), but this is not a sufficient condition for a paracontact manifold to be para-Sasakian. It is clear that
every para-Sasakian manifold is K-paracontact. But the converse is not always true[4].

Definition 1. A paracontact manifold M is said to be N-Einstein if its Ricci tensor S of type (0,2) is of the from S(X,Y) =
ag(X,Y)+bn(X)n(Y),where a,b are smooth functions on M. If b = 0, then the manifold is also called Einstein[23].

Definition 2. A paracontact metric manifold is said to be a (k, L) —paracontact manifold if the curvature tensor R satisfies

R(X,Y)& = k[(Y)X =n(X)Y]+pu[n(Y)hX —n(X)hY] (6)
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forall X,Y € x(M), where k and i are real constants.

This class is very wide containing the para-Sasakian manifolds as well as the paracontact metric manifolds satisfying
R(X,Y)&é =0[16].

In particular, if £ = 0, then the paracontact metric (k, 1) —manifold is called paracontact metric N (k)-manifold . Thus for
a paracontact metric N (k)-manifold the curvature tensor satisfies the following relation

R(X,Y)§ =k(n(Y)X —n(X)Y) @)

forall X,Y € x(M). Though the geometric behavior of paracontact metric (k, 1) —spaces is different according as k < —1,
or k > —1, but there are also some common results for k < —1 and k > —1.

Lemma 1. There does not exist any paracontact (k,lL)—manifold of dimension greater than 3 with k > —1 which is
Einstein whereas there exits such manifolds for k < —1[5].

In a paracontact metric (k, i) —manifold (M>"*1¢ & n,g), n > 1, the following relation hold :

W = (k+1)¢?, fork # —1, ®)

(Vx9)Y = —g(X —hX,¥)E +1(¥)(X — hX), ©)

S(X,Y) = 2(1=n) +npu]g(X,Y) + 2(n — 1) + u]g(hX,Y) + [2(n — 1) +n(2k — w)|n(X)n (), (10)
S(X,8) =2nkn(X), (11)

QY = [2(1 —n) +npu]¥ +[2(n— 1)+ phY + 2(n— 1) +n(2k — p)|n(Y)&, (12)
Q& = 2nk€, (13)

09 —9Q=2[2(n—1)+plh¢ (14)

for any vector fields X,Y on M?"*! | where Q and S denotes the Ricci operator and Ricci tensor of (M2”+17g),
respectively[5].

The concept of quasi-conformal curvature tensor was defined by K. Yano and S. Sawaki[11]. Quasi-conformal curvature
tensor of a (2n + 1)-dimensional Riemannian manifold is defined as

C(X,Y)Z = aR(X,Y)Z+b[S(Y,Z)X —S(X,Z)Y + g(Y,Z)0X — g(X,Z)QY] — zni ;

(5 +2b][8(¥. 2)X —g(X.2)¥]15)

where a and b are arbitrary scalars, and r is the scalar curvature of the manifold, Q, S and r denote the Ricci operator,
Ricci tensor and scalar curvature of manifold, respectively.

Let (M, g) be an (2n+ 1)-dimensional Riemannian manifold. Then the concircular curvature tensor Z is defined by

= T

Z0X.1)Z = RXY)Z~ gt (Y 20X — (X, 2)Y], (16)
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for all X,Y,Z € x(M)[10]. Then the projective curvature tensor P is defined by
P(X,Y)Z:R(X,Y)Z—%[S(Y,Z)X—S(X,Z)Y], a7
for all X,Y,Z € x(M), where r is the scalar curvature of M and Q is the Ricci operator given by g(0X,Y) = S(X,Y)[10].
Then the curvature tensor W is defined by
W(}‘(X,Y)Z:R(X,Y)Z+z—ln[S(Y,Z)X—g(X,Z)QY}, (18)

forall X,Y,Z € x(M)[8].

3 A (k,u)— paracontact manifold satisfying certain conditions on the W -curvature tensor

In this section, we will give the main results for this paper.

Let M be (2n+ 1)—dimensional (k, u)—paracontact metric manifold and we denote Wj-curvature tensor from (18), we
have for later

W (8,Y)Z = k(g(Y,Z)E —n(2)Y) + u(g(hY,Z)G —n(Z)hY) + %

(S(Y,2) —n(Z)QY). (19)
In (19), choosing X = &, we obtain
1
W3(6.1)6 = KN(V)E )~ phy — 0¥ 20)

Setting X = &, in (6) it follows
R(E,Y)E =k(n(Y)E —Y)— uhy. 21)

In the same way, choosing Z = & in (15) and using (6), we have

C(X,Y)E =(ak+ 2nkb — W’H)(Z‘l—n +2b) (V)X = (X)) +ap(n(Y)hX —n(X)hY)
+b(n(Y)0X —1(X)QY) (22)

In (22), choosing X = £ and using (11), we obtain

C(E,Y)E = (ak + 2nkb — Wrﬂ)(zin +2B)(M(Y)E —Y) — aphy +b(2nkn (Y)E — Q). 23)
In same way from (6) and (16), we get
ZX0E = (k= 5,55 (X =0 COY) + RN = ()Y, 24)
from which
ZEM)E = (k=5 (NNE=Y) — k. 5)
From (6) and (17), we have
P(X,Y)§ = pu(n(Y)hX —n(X)hY). (26)
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Choosing Z = £ in (26), we obtain
P(E,Y)E = —uhy. (27

Next, we suppose that (k, u)-paracontact manifold M is a W —flat. From (18), we have
2nR(X,Y)Z =S(Y,Z2)X —g(X,Z)QY =0.

For Z = &, it follows
2nR(X,Y)E = S(Y,E)X —1(X)QY =0.

By using (6) and (11), we have
2n{kn(Y)X —n(X)Y]+u[n(Y)hX —n(X)hY]} +2nkn(Y)X —n(X)QY =0
or

4nkn (Y)g(X,Z) —2nkn (X)g(Y,Z) = (X)S(Y,Z) + u[n(Y)g(hX,Z) —n(X)g(hY,Z)] = 0,

for any Z € x(M). It follows for Y = &
4nkg(X,Z) —4nkn(X)n(Z)+ ng(hX,Z) = 0. (28)
Substituting £X into X, we have
4nkg(hX,Z) + ug(h*X,Z) = 4nkg(hX,Z) + (1 +k)g(¢*X,Z) = 0. (29)

From (28) and (29), we conclude that
p>(1+k) —16nk* = 0.

This tell us that (k, u)— paracontact manifold is not Wy —flat provided (k, i) # 0.

Theorem 1. Let M*"*1(¢,&,1,8) be a (k, w)-paracontact space. Then Wg (X,Y) -C =0 ifand only if M is an n—Einstein
manifold.

Proof. Suppose that W (X,Y) .C = 0. This implies that

for any X,Y,UW,Z € x(M). Taking X = Z = & in (30), making use of (19), (20) and (22), for
A = [ak +2nkb — m(% +2b)], we have

(W5 (E.V)CNUW)E = W3 (E.V)AM W)U =1 (U)W) + ap(n(W)hU ~n(U)AW) +b(n(W)QU ~11(U)QOW))
~ClK(E(Y, U)E — M(U)Y) + B(g(H,U)E ~n(UIRY) + 5 (S(Y,U)E ~n(U)0Y), W)
UK W)E ~ (W)Y + (gAY W)E ~n(W)AY) + 2 (S(YV,W)E ~n(W)QY ))&

~CUW)(K2N(Y)E ~Y) ~ whY — 3-Q¥) =0. G1)
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Taking into account (19), (23) and inner product both sides of (31) by Z € x(M), we obtain

2nkg(C(U, W)Y, Z)+2nug(C(U,W)hY,Z) +g(C(U,W)QY,Z) + 2nkpa(n(W)n(Z)g(Y,hU) —n(U)n(2)g(Y,hW))

+2nat (1+k)(n(W)n(2)g(Y,U) = n(U)n(Z)g(Y,W)) +ap(n(W)n(Z)S(Y,hU) = n(U)n(Z)S(Y,hW))
+2nkA(g(Y,U)g(W,Z) —g(Y,W)g(U,Z)) + 2nAp(g(hY,U)g(W,Z) — g(hY,W)g(U,Z))
+2nkap(g(Y,U)g(hW,Z) — g(Y,W)g(hU,Z)) + 2nap?(g(hY,U)g(hW, Z) — g(hY,W)g(hU,Z))
+2nkb(g(Y,U)S(W,Z) — g(Y,W)S(U,Z)) + 2npub(g(hY,U)S(W, Z) — S(U, Z)g(hY,W))
+2nub(n(W)N(Z)S(hY,U) =n(U)N(Z)S(hY,W)) +b(S(Y,U)S(Z,W) = S(Y,W)S(U,Z))
FHW)N(Z)S(Y,0U) ~ nUN(Z)S(Y, QW) + 4222b(g (Y, W) n(U)N(2) - (¥,0)n(W)n (2))
APy (g (Y, W)N (U0 (Z) — g(RY, U)N (W)N (Z)) + aa (S(Y,U)g(Z, W) — S(Y,W)g(hU, 2))
+A(S(Y,U)g(Z,W)—S(Y,W)g(U,Z)) =0

Using (1),(12) and (15) choosing W =Y =¢;, £ in (32), 1 < i < n, for orthonormal basis of Y (M), we arrive

(2nk —b+A — ak —4nkb+a2(1 —n) +nu))S(U,Z) + (2nap — 2nbu + 2(n— 1) + u)(a — b))S(U, hZ)
+(2nkbr + 2nk(2n 4 1)(A — ak — 2nkb) + 2nk(A — ak — 2nkb) + 4n*bu (1 +k)[2(n — 1) + ]

+ak[2(n— 1) +n(2k — )] +br[2(1 —n) +np] +2nb(1 +k)[2(1 —n) +np)* — r(ak + 2nkb)

—4n’kA + 2nap® (1 +k))g(U,Z) + (2nu(A — ak — 2nkb) + ap2(1 — n) +np] — arp — 4n*kap)g(U, hZ)
+(—ak[2(n — 1) 4+ n(2k — )] + 8(nk)?b — 2nap*(1 4+ k) (2n+ 1) — 2nap (1 +k)[2(n — 1) 4 u]

+[2(1 —n) 4+ np](2nkb — br) — 2nb(1 4+k)[2(n — 1) + u]* — 4n*bu (1 +k)[2(n — 1) +u])n(U)n(Z) = 0.

Using (8) and replacing hZ of Z in (33), we get

(2nk —b+A — ak —4nkb+a[2(1 —n) +nu))S(U,hZ) + (1 + k) 2nap —2nbpu + 2(n— 1) + ) (a —b))S(U, Z)
—2nk(1+k)(2nap —2nbp + 2(n— 1)+ u](a—b))n(UIN(Z) + (2nkbr + 2nk(2n+ 1) (A — ak — 2nkb)
+2nk(A — ak — 2nkb) +4n*bu (1 +k)[2(n — 1) + ] + ak[2(n — 1) + n(2k — )] + br2(1 — n) 4 ny]
+2nb(1+k)[2(1 — n) 4+ nu)? — r(ak + 2nkb) — 4n*kA + 2nap® (1 +k))g(U, hZ)

+(1+k)(2nu(A — ak — 2nkb) +ap[2(1 —n) +np] — arp — 4n*kap)g (U, Z)

—(14k)(2nu(A — ak — 2nkb) + au[2(1 —n) +ny) — arp — 4n*kap)n(U)N(Z) = 0.

From (33), (34) and also using (10), for the sake of brevity, we set

¢ = (2nk—b+A—ak—4nkb+al2(1 —n),+nu])
d = (2nap —2nbp + 2(n— 1)+ u](a — b))
= (2nkbr+2nk(2n+1)(A — ak — 2nkb) + 2nk(A — ak — 2nkb) + ak[2(n — 1) + n(2k — w)] + br[2(1 — n) + np]

+4n?bu (1 +k)[2(n— 1)+ u] +2nb(1 + k) [2(1 — n) + nu)* — r(ak + 2nkb) — 4n*kA + 2nap®(1 + k),

f = (2nu(A — ak — 2nkb) +ap[2(1 — n) +np] — arp — 4n*kap),

t = (2nu(A — ak — 2nkb) +ap[2(1 — n) + np] — arp — 4n’kap)g (U, hZ) + (—ak[2(n — 1) +n(2k — )]
+8(nk)*b — 2nau®(1+k)(2n+1) — 2nap (1 4+ k) [2(n — 1) + ]+ [2(1 — n) + nu](2nkb — br)
—2nb(1+k)[2(n— 1)+ u]*> — 4n’bu (1 +k)[2(n — 1) + u])

(32)

(33)

(34)
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and

E = (fd(14+k)—ec)2(n—1)+pu]+ (fc—ed)[2(1 —n) +npu],

D = (> —d*(1+k)[2(n— 1)+ u] + (fc —de),

F = (fe—de)[2(n—1)+n(2k —p)] — (ct +2nkd* (1 + k) + fd(1+k))[2(n — 1)+ u],

we conclude
DS(U,z) =Eg(U,Z)+Fn(U)n(Z).

So, M is an N —Einstein manifold. The converse is obvious. This completes of the proof.

Theorem 2. Let M*"*1(¢,&,1,8) be a (k, u)-paracontact space. Then W (X,Y)-P =0 if and only if M is an n—Einstein
manifold.

Proof. Suppose that W (X,Y) - P = 0. This yields to
forany X,Y,U,W,Z € x(M). Taking X = Z = & in (35) and using (19), (20), (26), we obtain

(W5 (S, Y)P)(U, W) = Wi (&,Y)(u(n(W)hU —n(U)hW) — P(k(g(Y,U)E —n(U)Y) + u(g(hY,U)§ —n(U)hY)

+%(5(Y, U)e —n(U)QY),W)G —P(U,k(g(Y,W)E —n(W)Y +u(g(hY,W)§ —n(W)hY)

45 (SO, W)E = NOW)QY)E +PU,W)(K20(¥)E —¥) — whY = 2-0¥) =0, (36)

Taking into account that (19), (26), (27), putting U = £ and inner product both sides of in (36) by & € x (M), we get
1
2nk2g(Y,W) +2nukg(Y,hW) — %S(QY,W) —uS(Y,hW) =0. (37)
Using (1) and (12), in (37) we get
(b[2(1 —n) +nu))S(Y, W) + (2nu +b[2(n — 1) + u])S(Y,hW) — 4nk>g (Y, W) — 4nk>g (Y, hW) + (2nk)*[2(n — 1)
+n(2k—w)n(Y)n(W) = 0. (38)
Replacing hZ of Z in (38) and making use of (8), we get

(b[2(1 = n) +nu))S(Y, kW) + (1 k) (2np +b[2(n — 1) + u])S(Y, W) — 2nk(1 + k) (2np +b[2(n — 1) + u))n (Y )n (W)
—Ank2g(Y,hW) — dnk(1 +K)g(Y, W) + (1 + k) (4nk)n (¥Y)n (W) = 0. (39)

From (38), (39) and using (10), for the sake of brevity, we put

¢ = (b[2(1 —n) +nu)),
d = (2nu+b2(n—1) +p]),

e= —4nk27

f = —4nk?,

£ = (2nk)[2(n— 1) +n(2k— ),
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and

E = (fd(14+k)—ec)2(n—1)+u]+ (fc—ed)2(1 —n) +npu],
D = (> —d*(1+k)[2(n— 1)+ u] + (fc —de),
F = (fe—de)[2(n—1) +n(2k — p)] — (ct +2nkd*(1+ k) + fd(1 +k))[2(n — 1) + ],

that is,
DS(Y,W)=Eg(Y,W)+Fn(Y)nW).

Thus, M is an n-Einstein manifold. The converse is obvious.

Theorem 3. Let M*"*1(¢,&, 1, g) be a (k, u)-paracontact space. Then W (X,Y)-R =0 if and only if M is an n—Einstein
manifold..

Proof. Suppose that Wi (X,Y) - R = 0. This implies that
forany X,Y,U,W,Z € x(M). Setting X = Z = & in (40) and making use of (6), (19), (20), we obtain
(W5 (8, Y)R)(U,W)E = W5 (8,Y)(k(n(W)U —n(U)W) +u(n(W)hU —n(U)hW) — R(k(g(Y,U)§ —n(U)Y)
1
+H(g(hY, U)S —n(U)AY) + 5 (S(Y,U)g —n(U)QY), W)¢ — R(U, k(g(Y, W) —n(W)Y)
1
+HH(g(hY, W)E —n(W)RY)E + = (S(Y,W)E —n(W)QY))S —R(U. W) (k(2n(Y)§ —¥)
1

—th—EQY) =0. (41)

Inner product both sides of (41) by Z € x(M) and using of (19), (20) and (21) we get

2nkg(R(U, W)Y, Z) + 2nug(R(U, W)hY, Z) + g(R(U, W)QY, Z) + 2nkit ( (W) (Z)g (Y, hU) =1 (U)1(Z)g (Y. W)
20> (LK) ((W)N(Z)g(Y,U) = n(U)N(Z)g(Y, W) + 1(n(W)n(Z)S(¥,hU) =0 (U)n(Z)S(Y,hW))
+2nk2(g(Y7U)g(W’ Z) —g(Y,W)g(U,Z)) —|—2l’l‘uk(g(Y, U)g(hZ7W) - g(Y,W)g(hU,Z))
+2nkp(g(hY,U)g(W.Z) — g(hY,W)g(U,Z)) +2npi*(g(hY,U)g(hW,Z) — g (hY,W )g(hU ,Z))
+k(S(Y,U)g(W,Z)—S(Y,W)g(U,Z)) + u(g(hW,Z)S(Y,U) —S(Y,W)g(hU,Z)) = 0. (42)

Making use of (8), (12) and choosing W =Y = ¢;, £ 1 <i < n, for orthonormal basis of (M) in (42), we have
(k2n+1)+2(1 —n)+nul)S(U,Z)+ (u2n+ 1)+ 2(n— 1)+ u))S(U,hZ) + (k[2(n — 1) + (2k — u)]

—kr +2u*(1+ k) — (2nk)*)g(U,Z) 4 (u[2(n — 1) +n(2k — )] — ur + 2nkp — (2n)*k)g (U, hZ)
+(—k[2(n = 1) +n(2k — )] = 2np> (14+4) (20 + 1) = 2np(1+K) [2(n — 1) + pIn (U)n (2) = 0. (43)

Replacing hZ of Z in (43) and taking into account (8), we get
(k2n+1)+2(1 —n) +nul)S(U,hZ)+ (1 +k)(u2n+ 1)+ 2(n—1) + u])S(U,Z) —2nk(1 + k) (L(2n+1)
+H2(n = 1)+ u)NUIN(Z) + (k[2(n — 1) + (2k — )] —kr + 20> (1K) — (2nk)*)g (U, hZ) + (1 + k) (m[2(n — 1)
+n(2k — )] — pwr+2nkp — (2n)*k)g(U,Z) — (1 4+ k) (u2(n— 1) +n(2k — )]

—ur+2nkpu — (2n)*k)n(U)N(Z) = 0. (44)
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From (43), (44) and by using (10), for the sake of brevity, we set

c=(k(2n+1)+2(1 —n)+npul),

d=u@2n+1)+2(n—1)+pul),

e = (k2(n—1)+ (2k — u)] — kr+2u>(1 +k) — (2nk)?),

f = (u2(n—1)+n(2k — )] — pr+2nkp — (2n)°k),

t = (—k[2(n—1) +n(2k — u)] = 2np* (1 + k) (2n+ 1) = 2npu (1 +k)[2(n — 1) 4 ]
and

E = (fd(14+k)—ec)2(n—1)+pu]+ (fc—ed)[2(1 —n) +nul,
D= (¢ —d*(1+k)[2(n—1)4u] + (fc —de),
F = (fe—de)[2(n—1) +n(2k — p)] — (ct +2nkd* (1 + k) + fd(14+k))[2(n — 1)+ u],

we conclude
DS(UaZ) = Eg(UaZ) JFFTI(U)T?(Z),

which verifies our assertion. The converse is obvious.

Theorem 4. Let M*"*1(9,&,1n,g) be a (k, u)-paracontact space. Then W§(X,Y) -Z=0ifand only if M is an n—Einstein
manifold.

Proof. Suppose that W (X,Y) .Z =0. This means that

(W5 (X, Y)Z)(U,W,Z) = W5 (X, Y)Z(U,W)Z = Z(W§ (X,Y)U,W)Z—Z(U,Wg (X,Y)W)Z = Z(U,W)W; (X,Y)Z = 0(45)

forany X,Y,U,W,Z € x(M). Setting X = Z = & in (45) and making use of (19), (24) forA =k — we obtain

(Wg (E,Y)Z)(UW)E =W (E.Y)AMW)U —n(U)W) +p(n(W)hU —n(U)hW) — Z(k(g(Y,U)E —n(U)Y)
+u(g(hY,U)E —n(U)hy )+i( (Y, U)E —n(U)QY,W))E —Z(U,k(g(Y,W)E —n(W)Y)

2n
+u(g(hY,W)E —n(W)hY) + %(S(Yaw)i —n(W)QY))E —Z(U,W)(k(2n(Y)E —Y)
_uhy — %QY) —0. (46)

Using (19), (24), (25) and inner product both sides of (46) by Z € x (M), we get

2nkg(Z(U, W)Y, Z) +2nug(Z(U,W)hY, Z) + g(Z(U,W)QY, Z) + 2nk(n (W1 (2)g(Y,hU) — n(U)n(Z)g (Y, hW))
2> (14 k) (n(W)n(2)g(Y,U) —n(U)N(Z)g(Y, W)+ u(n(W)n(Z)S(Y,hU) = n(U)n(Z)S(Y,hW))
+2nkA(g(Y,U)g(W,Z) — g(Y,W)g(U,Z)) +2nuk(g(Y,U)g(hZ,W) — g(Y,W)g(hU,Z))

+2nAp(g(hY,U)g(W,Z) — g(hY,W)g(U,Z)) + 2np* (g(hY,U ) g (hW, Z) — g(hY,W )g(hU , Z))

+A(S(Y,U)g(W,Z) —S(Y,W)g(U,Z)) + u(g(hW,Z)S(Y,U) — S(Y,W)g(hU,Z)) = 0. A7)

Making use of (12), (16) and choosing W =Y = ¢;, £ 1 <i < n, for orthonormal basis of (M) in (47), we have

(k2n+1)+[2(1 —n) +nu])S(U,Z) + (u(2n+ 1)+ 2(n— 1) + u])S(U,hZ) + (k[2(n — 1) +n(2k — p)]
—(2nk)? — rk+2nu* (1 +k))g(U, Z) + (2nuk(1 —2n) + u2(n — 1) + n(2k — u)] — ur)g(U, hZ)
+(=k[2(n— 1) +n(2k — )] = 2np*(1+k)(2n+ 1) = 2npu (1 +k)[2(n — 1) + u]))n(U)n(Z) = 0. (48)
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Replacing hZ of Z in (48) and taking into account (8), we arrive

(k2n+1)+[2(1 —n) +nu])S(U,hZ) + (1 +k)(u(2n+1)+2(n—1) + ul)S(U,Z) —2nk(1 + k) (u(2n+1)
+2(n— 1)+ u)nUIN(Z) + (k[2(n — 1) +n(2k — w)] — (2nk)* — rk+2nu* (1 +k))g(U, hZ) 4 (1 + k) (2nuk(1 — 2n)
2 1) 4 n(2k— )] — 1) (U, Z) — (14 ) 2nptk(1 —2n) + u[2(n— 1)+ n(2k — )] — wr)n(U)N(Z) =0.  (49)

From (48), (49) and by using (10), for the sake of brevity, we set

¢ = (k(2n+1)+[2(1 —n) +npu)),

d=(u2n+1)+2(n—1)+u]),

e = (k[2(n—1)+n(2k — u)] — (2nk)* — rk+2nu*(1 +k)),

[ = 2npk(1 =2n) + p[2(n—1) + n(2k — )] — pr),

t = (—k[2(n—1) +n(2k — p)] = 2np* (1 + k) (2n+ 1) = 2nu (1 + k) [2(n — 1) + u]),
and

E = [fd(1+k)—ec]2(n—1)+ u]+ (fc—de)[2(1 —n) +npu],
D= (> —d*(1+k)[2(n—1) 4+ pu] + (fc—ed),
F = (fe—de)[2(n—1) +n(2k — p)] — (ct +2nkd*(1+ k) + fd(1 +k))[2(n — 1) + ],

we have
DS(U,Z)=Eg(U,Z)+Fn(U)n(Z).

This tell us, M is an 1n-Einstein manifold. The converse is obvious.

Theorem 5. Let M*"*1 (9, &, 1, 8) be a (k, u)-paracontact space. Then Wi (X,Y)-S =0 if and only if M is an n—Einstein
manifold.

Proof. Suppose that W (X,Y) - S = 0. This means that
forall X,Y,U,W € x(M). Setting X = & in (50) and making use of (19), we obtain

S (S(LU)E = M(U)QY).W) + S(UK(g(Y, W)

o (S0 W)E —n(W)QY) =0, 61

Using (8), (12) and setting U = & in (51), we have

S(k(g(Y,U)E —n(U)Y) +u(g(hy,U)§ —n(U)hY) +

—NW)Y)+u(g(hY, W) —n(W)hY) +

[2(1 )+ n]S(¥,W) + (2nu[2(n — 1>+m> SOV, kW) — 4nkg (Y, W) — dnkug (hY, W)
F2nk[2(n — 1)+ n(2k — W) (Y)N(W) = (52)

Putting (8) and replacing hW of W in (52), we get

2(1 = n) + ]SV, AW ) + (1 + k) 2np[2(n — 1)+ w))S(Y, W) — 2nk(1 + k) 2np[2(n — 1) + u]))n (Y ) (W)
—4nk>g(Y,hW) — dnku (1 +k)g(Y,W) — 4nkp (1 +k)n(Y)n(W) = 0. (53)
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From (52), (53) and by using (10), for the sake of brevity, we set

¢ = [2(1—n) +nu),
d = (2nu[2(n—1)+u]),

e = —4nk?,

f = —4nkp,

t =2nk[2(n—1)+n(2k — u)]

and

E = [fd(1+k)—ec]2(n—1)+pu]+ (fc—de)[2(1 —n) +nul,
D= (?—d*(1+k)[2(n—1)4u]+ (fc—ed),
F = (fe—de)[2(n—1) +n(2k — p)] — (ct +2nkd* (1 + k) + fd(14+k))[2(n — 1)+ u],

then we have
DS(Y,W) =Eg(Y,W)+Fn(Y)n(W).

Thus, M is an n-Einstein manifold. The converse is obvious.
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