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Abstract: The main purpose of this research paper is to discuss properties of L-closed spaces in topology and propose further properties
concerning this concept. In addition, we explored the relationships between L-closed spaces and other topological spaces.
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1 Introduction

In 1983, Hdeib and Pareek [6] introduced a new topological space called L-closed space in which each Lindelöf subset
of a topological space (X ,τ) is closed. Lots of results concerning the new notion are obtained and they posed two
queries, the first query is: “Does there exists a regular L-closed space which are not a P-spaces?”

The second one is: “In an L-closed space, every countable subset is closed, when is the inverse true?”. In 1985, two
mathematicians Henriksen and Woods [17] presented their answers to the queries within the Tychonoff spaces.

In this paper, we will denote a topological space (X,τ) by X , R and N denote the set of all real and natural numbers
respectively. Moreover, τcoc, τdis, τu, τs, τco f , τ l and τr, will denote cocountable, discrete, usual, Sorgenfrey, cofinite,
left ray, and right ray opologies. Finally, the closure and interior of a set in a space say U will be denoted by clU and intU
respectively.

2 Preliminaries

Studying compact and Lindelöf topological spaces requires a deep understand of the nature of their covers, Fletcher and
other topologists [5] displayed the definitions of open cover where a cover (indexed family) C = {Uα : α ∈ Λ} of a
non-empty space X is a collection of subsets whose union is X .

Lots of topologists focused on the importance of covers in determining the nature and the type of a space, for instance,
Fletcher [5], Hoyle, Patty and Kim [9] proved that the product of pairwise compact spaces is not a pairwise compact
space.

Lindelöf spaces, introduced by Alexandroff and Urysohn in 1929, have a highly expressive role in topology, it
generalizes compact spaces.
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The most familiar concepts in topology are ”Separation axioms” that define topological classes and distinguish disjoint
sets and distinct points [2]. Such classes of spaces are given the names T1, T2, T3, and T4 as an abbreviation of a German
word ”Trennung” which means separation. After there, system of numbering was extended to include T0, T2Â½, T3Â½ (or
Tπ ), T5, and T6 [3].

3 L-closed Spaces

In a space X , if every countable subset is closed, consequently every countable subset of such space is discrete, and every
compact subset is finite [6], consequently every subset of L-closed space X is closed and every subspace of an L-closed
space is also L-closed.

Each Housdorff space is L-closed space and if ∀x in a space X has an L-closed neighborhood say W where ∃ W a
Lindelöf subset of X containing x. Now, a regular space X . In regular spaces in which ∀x has an L-closed neighborhood,
a space will be L-closed. Moreover, a regular L-closed space is normal [14]. Now, a regular space X that can be
represented as a countable union of subspaces and each of such subspaces has L-closeness property has itself
L-closeness property.
In a hereditarily Lindelöf space X , X is L-closed if and only if it is countable and discrete. The sum

⊕
α∈Λ Xα where

Xα 6= φ for some α∈Λ has L-closeness property if and only if each space Xα has the L-closeness property and Λ is a
countable set. Furthermore, a subset A⊂

⊕
α∈Λ Xα X is L-closed⇐⇒ A∩Xα is L-closed in Xα , α∈Λ .

A space X is L4-space [8] if ∀A a Lindelöf subset of X, ∃F a Lindelöf Fσ -subset of X 3 A⊆F⊆A. Typically, each
L-closed space is L4-space and as a consequence we have that in each L-closed space, every Lindelöf Fσ -subset is
closed. Now, if every Lindelöf subset of X is a Fσ -subset, then X is T1 and each closed countable subset of X will be
discrete.

A space X is L1 [8] if every Lindelöf Fσ -subset of X is closed. Depending on this definition, an L-closed space is
L1space. The property of being pairwise L1-space is hereditarily property with respect to Fσ -subsets.

A space X is L3 [8] if every Lindelöf subset of X is an Fσ -set. From this definition, we conclude that the property of
being a L3-space is a hereditarily property and that X is L-closed⇐⇒ it is L1 and L3.

4 Product properties of L-closed spaces

Proposition 1. Let (X,τ) and (Y ,σ ) be two spaces such that Y is an L-closed space. If f:(X,τ) →(Y ,σ ) is a continuous
onto function, then (X,τ) is an L-closed space.

Proof. If f:(X ,τ)→(Y ,σ ) is a continuous onto function. Let (Y ,σ ) be an L-closed space, let F be a Lindelöf subset of X ,
then f(F) is Lindelöf since f is a continuous function.

But (Y ,σ ) is an L-closed space, thus f(F) is a closed subset of Y , and F=f −1(f(F)) is a closed subset of X because f is a
one to one function. Therefore, (X ,τ) is an L-closed space. Now, any L-closed topological space is homeomorphic to
itself.

Proposition 2. Let (X,τ) and (Y ,σ ) be two spaces such that (X,τ) is Lindelöf, (Y ,σ ) is L-closed, if f: (X,τ)→ (Y ,σ ) is an
onto continuous function, then f is homeomorphism.
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Proof. We claim that f is a closed function. Let Ũ be a closed family in X such that C∈ Ũ , so C is a closed proper subset
of X . Since X is Lindelöf, then C is a Lindelöf subset of X , hence f(C) is Lindelöf because f is continuous [10]. But (Y ,σ )
is an L-closed space, so f(C) is a closed subset of Y.

Proposition 3. If a continuous function from a Lindelöf Hausdorff space to an L-closed space is closed, then every
continuous onto function is homeomorphism.

Proposition 4. Being L-closed space is a topological property.

Proof. Let (X ,τ) be an L-closed space and (Y ,σ ) be any space, let h:(X ,τ)→ (Y ,σ ) be homeomorphism. If A is a Lindelöf
subset of X , then h(A) is Lindelöf because h is continuous. If X is an L-closed space and A is closed, then h(A) is closed
because h is a closed function. Thus Y is an L-closed space.

Proposition 5. Let (X,τ) and (Y ,σ ) be two spaces such that X is L-closed. If f:(X,τ)→ (Y ,σ ) is any function and {(x,f(x)):
x∈X} is a Lindelöf subset of X×Y, then f is continuous.

Proof. Let πx and πy be two projection functions. If π ′x=πx|f , π ′x and πy are continuous surjective functions. If
˜A ={(x,f(x)): x∈X}. Since ˜A is Lindelöf, any closed subset of f is Lindelöf , so π ′x is a closed projection function, i.e if

A⊆f is a closed subset, so A is a Lindelöf subset of X because X is L-closed space. Now, f is defined on X , so π ′x is a onto
function. Using this fact and the fact that π ′x is a closed projection function, we get that open set v⊆f we have π ′x(v) is
open in X .

Hence f =πy◦(π ′x)−1 is p-continuous.

Proposition 6. If the topological spaces (X,τ) and (Y ,σ ) are L-closed such that either X or Y is regular, then X ×Y is an
L-closed space.

Proof. If (X ,τ) and (Y ,σ ) are L-closed spaces and let Y be regular. If F is a Lindelöf subset of X × Y. Let (x0,y0) ∈cl(F)-
F , so (x0,y0) /∈[({x0}× Y ]∩ F and ({x0}×Y )∩F is a closed subset of X ×Y because Y is an L-closed space. Y is
regular, so ∃H an open subset containing y0 such that (X ×clH)∩[({x0}× Y)∩ F ]=φ , so the projection function πx((X×
cl2H)∩(({x0}×Y)∩F) is a closed subset of X because πx is continuous [2]. X-[ πx(X×cl2H)∩F)× (Y∩(X×H))] is an
open neighborhood of (x0,y0) disjoint from F , hence a subset F is closed in X × Y.

Proposition 7. The product of finite number of p-regular pairwise L-closed spaces is pairwise L-closed.

Proof. Let { (Xk,τ
k): k=1,2,. . . ,n} be a family of finitely many regular L-closed spaces. Let X=∏k∈N Xk. By the induction

on k, for k=2 the result is given by 3.2.1. Suppose that this is true for k=n, we claim that it is true for k=n+1. (X1×
X2×. . .×Xn) × Xn+1 is homeomorphic to X1×X2×. . .×Xn× Xn+1 and (X1×X2×. . .×Xn) × Xn+1 is L-closed space
by the assumption and using the fact that the product of two regular L-closed spaces. Hence X is L-closed [9].

From the previous prepositions we conclude that the finite product of L-closed regular spaces is L-closed, however infinite
product of L-closed regular spaces needs not to be L-closed [12] as the following example shows, for example, if we
consider that X= {0,1} is endowed with two topologies that are discrete, then X is regular L-closed [5]. Nevertheless, the
countable product Y=∏α∈Λ Xα is compact and infinite. Thus, a space Y cannot be L-closed.

Proposition 8. Suppose that for the two spaces (X,τ) which is an L-closed space and (Y,σ ) is a Lindelöf space, so the
projection function πx:X×Y→X is Lindelöf.

Proof. Consider a Lindelöf subset F of X, then F is closed since X is an L-closed space. In addtion, a subset F is L-closed,
hence it is P-subset and πx|F×Y is closed where (πx|F×Y )−1(X) is Lindelöf [13].
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Proposition 9. A space (X,τ) is a P-space if and only if for each Lindelöf space (Y,σ ), the projection function πx: X×
Y→ X is closed.

Proof.⇒) By Kuratowski’s Theorem concerning compact topological spaces [16]. If a subset F of X is a closed and X is
a P-space, if a point y/∈πx(F×Y), y∈V where V is an open subset of Y, then ( X×V)∩F=φ because X×{y}⊆( X× Y)\F
[1]. Hence, πx(F×Y) )∩V=φ , that is, a subset πx(F) of X is closed [15].

Contrarily, each non-P-space is as follows, whenever πx is closed, a space Y has to be countably compact, thus X is
non-P-space and this fact isobtained by Hanai, 1962.

Example 1. Consider the topological spaces (X,τ) and (R,σ ) where X is a P-space and R is Lindelöf . The projection
function πx:X×R→X is not closed eventhough R is Lindelöf [10].
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