
NTMSCI 9 Special Issue, No. 1, 50-55 (2021) 50

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2021.428

Bell-based Genocchi polynomials

Ugur Duran1 and Mehmet Acikgoz2

1Department of Basic Sciences, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay, Turkey
2Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, Gaziantep, Turkey

Received: 13 June 2021, Accepted: 16 June 2021
Published online: 5 July 2021.

Abstract: In this study, we introduce Bell-based Genocchi polynomials of order α and then derive multifarious correlations and
formulas including some implicit summation formulas and derivative properties.
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1 Introduction

Throughout this paper, the familiar symbols C, R, Z, N and N0 are referred to the set of all complex numbers, the set of
all real numbers, the set of all integers, the set of all natural numbers, and the set of all non-negative integers, respectively.
The Bernoulli polynomials B(α)

n (x) of order α and the Genocchi polynomials G(α)
n (x) of order α are defined as follows

(cf. [1], [2], [5]-[7]):
∞

∑
n=0

B(α)
n (x)

tn

n!
=

(
t

et −1

)α

ext (|t|< 2π) (1)

and
∞

∑
n=0

G(α)
n (x)

tn

n!
=

(
2t

et +1

)α

ext (|t|< π) . (2)

Letting x = 0 in (1) and (2), we get B(α)
n (0) := B(α)

n and G(α)
n (0) := G(α)

n known as the Bernoulli numbers of order α and
the Genocchi numbers of order α . When α = 1 in (1) and (2), not only the polynomials B(α)

n (x) and numbers B(α)
n

reduce to the classical Bernoulli polynomials Bn (x) and numbers Bn, but also the polynomials G(α)
n (x) and numbers

G(α)
n reduce to the familiar Genocchi polynomials Gn (x) and numbers Gn.

The Stirling polynomials S2 (n,k : x) and numbers S2 (n,k) of the second kind are given by the following exponential
generating functions (cf. [5], [6], [8]):

∞

∑
n=0

S2 (n,k : x)
tn

n!
=

(et −1)k

k!
etx and

∞

∑
n=0

S2 (n,k)
tn

n!
=

(et −1)k

k!
. (3)

The Stirling numbers of the second kind can also be derived by the following recurrence relation for n ∈ N0 (cf. [5], [6],
[8]):

xn =
n

∑
k=0

S2 (n,k)(x)k , (4)

where (x)n = x(x−1)(x−2) · · ·(x− (n−1)) for n ∈ N with (x)0 = 1.
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The bivariate Bell polynomials are defined as follows (cf. [5], [8], [9]):

∞

∑
n=0

Beln (x;y)
tn

n!
= ey(et−1)ext (5)

When x = 0, Beln (0;y) := Beln (y) called the classical Bell polynomials given by means of the following generating
function (cf. [3], [5], [6], [8]-[10]):

∞

∑
n=0

Beln (y)
tn

n!
= ey(et−1). (6)

The Bell numbers Beln are acquired by taking y = 1 in (6), that is Beln (0;1) = Beln (1) := Beln and are given by the
following exponential generating function (cf. [4]):

∞

∑
n=0

Beln
tn

n!
= e(e

t−1). (7)

The Bell polynomials have been intensely investigated and studied by several mathematicians, cf. [2]-[4], [9] and see
also the references cited therein.

The Bell-based Stirling polynomials of the second kind are defined as follows (cf. [5]):

∞

∑
n=0

BelS2 (n,k : x,y)
tn

n!
=

(et −1)k

k!
ext+y(et−1). (8)

For more detailed information about the properties of Bell-based Stirling polynomials of the second kind, see the reference
[5].

2 Bell-based Genocchi polynomials of order α

Recently, Duran et al. introduced the Bell-based Bernoulli polynomials of order α by the following exponential generating
function (cf. [5]):

∞

∑
n=0

BelB
(α)
n (x;y)

tn

n!
=

(
t

et −1

)α

ext+y(et−1) (9)

Diverse properties and relations of the Bell-based Bernoulli polynomials of order α have been examined in [5]. Also
recently, Khan et al. [8] defined Bell-based Euler polynomials and investigate some of their porperties. By the same
motivation, we now introduce the Bell-based Genocchi polynomials of order α as follows.

Definition 1. The Bell-based Genocchi polynomials of order α are introduced by the following exponential generating
function:

∞

∑
n=0

BelG
(α)
n (x;y)

tn

n!
=

(
2t

et +1

)α

ext+y(et−1) (10)

Some particular circumstances of BelG
(α)
n (x;y) are examined below.

Remark 1. In the special case x = 0 in (10), we acquire Bell-Genocchi polynomials BelG
(α)
n (y) of order α , which are

also new extensions of the Genocchi numbers of order α in (2), as follows:

∞

∑
n=0

BelG
(α)
n (y)

tn

n!
=

(
2t

et +1

)α

ey(et−1). (11)
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We also note that

BelG
(1)
n (x;y) := BelGn (x;y)

which we call the Bell-based Genocchi polynomials.

Theorem 1. Each of the following summation formulae

BelG
(α)
n (x;y) =

n

∑
k=0

(
n
k

)
G(α)

k Beln−k (x;y) (12)

BelG
(α)
n (x;y) =

n

∑
k=0

(
n
k

)
G(α)

k (x)Beln−k (y) (13)

BelG
(α)
n (x;y) =

n

∑
k=0

(
n
k

)
BelG

(α)
k (y)xn−k (14)

hold for n ∈ N0.

Proof. By (10), we have

∞
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n=0
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=
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ext+y(et−1)

=

(
∞
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n

tn

n!
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∞

∑
n=0

Beln (x;y)
tn

n!

)

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
G(α)

k Beln−k (x;y)

)
tn

n!
,

which implies the desired result (12). The others are similar to (12). So, we omit them. We give some theorems without
their proofs which are similar to Theorem 1. So, we omit them.

Theorem 2. The following relationship

BelG
(α1+α2)
n (x1 + x2;y1 + y2) =

n

∑
k=0

(
n
k

)
BelG

(α1)
k (x1;y1) BelG

(α2)
n−k (x2;y2) (15)

is valid for n ∈ N0.

Theorem 3. The difference operator formulas for the Bell-based Genocchi polynomials

∂

∂x BelG
(α)
n (x;y) = n BelG

(α)
n−1 (x;y) (16)

and
∂

∂y BelG
(α)
n (x;y) = BelG

(α)
n (x+1;y)− BelG

(α)
n (x;y) . (17)

hold for n ∈ N.
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Theorem 4. The following summation formula

Beln (x;y) = BelGn+1 (x+1;y)+ BelGn+1 (x;y)
2(n+1)

(18)

holds for n ∈ N0.

Theorem 5. The following formula including the Bell-based Genocchi polynomials of higher-order and Stirling numbers
of the second kind

Beln (x;y) =
n!

(n+ k)!
2−k

k

∑
l=0

(
k
l

)
BelG

(k)
n+k (x+ l;y) (19)

is valid for n ∈ N0 and k ∈ N.

Theorem 6. The following correlation

BelG
(α)
n (x;y) =

n

∑
l=0

∞

∑
k=0

(
n
l

)
(x)k S2 (l,k) BelG

(α)
n−l (y) (20)

holds for non-negative integers n.

Proof. By means of Definition 1 and, using (3) and (11), we obtain

∞

∑
n=0

BelG
(α)
n (x;y)

tn

n!
=

(2t)α

(et +1)α ey(et−1) (et −1+1
)x

=
(2t)α

(et +1)α ey(et−1)
∞

∑
k=0

(x)k
(et −1)k

k!

which gives the asserted result (20).

Theorem 7. The following summation formula

2k

k!

k

∑
l=0

(
k
l

)
(−1)l

BelG
(l)
n (x1 + x2;y1 + y2) =

n!
(n+ k)!

n+k

∑
l=0

(
n+ k

l

)
BelG

(k)
l (x2;y2) BelS2 (n+ k− l,k : x1,y1) (21)

holds for non-negative integers k and n with n≥ k.

Proof. The proof is similar to that of Theorem 13 in reference [5]. So, we omit it.

The following series manipulation formula holds (cf. [5]):

∞

∑
N=0

f (N)
(x+ y)N

N!
=

∞

∑
n,m=0

f (n+m)
xn

n!
ym

m!
. (22)

Theorem 8. The following implicit summation formula holds:

BelG
(α)
k+l (x;y) =

k,l

∑
n,m=0

(
k
n

)(
l
m

)
(x− z)n+m

BelG
(α)
k+l−n−m (z;y) . (23)

Proof. Upon setting t by t + u in (10), we derive(
2t

et+u +1

)α

ey(et+u−1) = e−z(t+u)
∞

∑
k,l=0

BelG
(α)
k+l (z;y)

tk

k!
ul

l!
.
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Also, changing z by x in the last equation, and using (22), we get

e−x(t+u)
∞

∑
k,l=0

BelG
(α)
k+l (x;y)

tk

k!
ul

l!
=

(
2t

et+u +1

)α

ey(et+u−1)

By the last two equations, we obtain

∞

∑
k,l=0

BelG
(α)
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tk

k!
ul

l!
= e(x−z)(t+u)

∞

∑
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(α)
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tk

k!
ul

l!
,

which yields

∞

∑
k,l=0

BelG
(α)
k+l (x;y)

tk

k!
ul

l!
=

∞

∑
n,m=0

(x− z)n+m tn

n!
um

m!

∞

∑
k,l=0

BelG
(α)
k+l (z;y)

tk

k!
ul

l!

=
∞

∑
k,l=0

k,l

∑
n,m=0

(x− z)n+m
BelG

(α)
k+l−n−m (z;y)

n!m!(k− l)!(l−m)!
tkul ,

which implies the asserted result (23).

Theorem 9. The following symmetric identity holds for a,b ∈ R and n≥ 0:

n

∑
k=0

(
n
k

)
BelG

(α)
n−k (bx;y) BelG

(α)
k (ax;y)an−2k =

n

∑
k=0

(
n
k

)
BelG

(α)
k (bx;y) BelG

(α)
n−k (ax;y)bn−2k. (24)

Proof. The proof is based on the expression

ϒ =

(
22t2

(eat +1)(ebt +1)

)α

e2abxt+y(eat−1)+y(ebt−1).

and is similar to that of Theorem 15 in reference [5].
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