
NTMSCI 9 Special Issue, No. 1, 118-123 (2021) 118

New Trends in Mathematical Sciences
http://dx.doi.org/10.20852/ntmsci.2021.438

On degenerate truncated Frobenius-Euler polynomials

Ugur Duran1 and Mehmet Acikgoz2

1Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay, Turkey
2Faculty of Arts and Science, University of Gaziantep, Gaziantep, Turkey

Received: 13 June 2021, Accepted: 16 June 2021

Published online: 12 July2021.

Abstract: In this study, we consider the truncated degenerate Frobenius-Euler polynomials. Then we examine diverse properties and
formulas covering addition formulas, correlations and derivation property. Then, we derive some interesting implicit summation
formulas.
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1 Introduction

Along this paper, the usual notations N , N0, R and C , are referred to the set of all natural numbers, the set of all
non-negative integers, the set of all real numbers and the set of all complex numbers, respectively.

The truncated form of the exponential polynomials en (t) are the first (n+1) terms of the Taylor series for et (cf. [2]) at
t = 0, that is,

en (t) =
n

∑
k=0

tk

k!
. (1)

One can see [2] to get the detailed information about en (t).

For λ ∈ C , the λ -falling factorial (t)n,λ is defined by (t)n,λ = t(t − λ )(t − 2λ ) · · ·(t − (n− 1)λ ) for n ∈ N with
(t)0,λ = 1, cf. [1,3,5-8]. In the case λ = 1, the λ -falling factorial becomes to the usual falling factorial given by
(t)n,1 := (t)n = t(t−1) · · ·(t−n+1) with (t)0,1 = 1.

Let λ ∈R/{0}. The degenerate form of the exponential function et
λ
(t) is defined by (cf. [1,3,5-8])

eω

λ
(t) = (1+λ t)

ω

λ and e1
λ
(t) := eλ (t) . (2)

We note that limλ→0eω

λ
(t) = eωt . From (2), we attain

eω

λ
(t) =

∞

∑
n=0

(ω)n,λ
tn

n!
. (3)
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Proof. The ∆λ difference operator of a function is defined by (see [3])

∆λ f (x) =
1
λ
( f (x+λ )− f (x)), α 6= 0. (4)

The degenerate truncated form of the exponential polynomials (also called the Detr-exponential polynomials) are
considereed as the first (n+1) terms of the Mac Laurin series expansion of eλ (t) in (3) (cf. [3]):

en,λ (t) =
n

∑
k=0

(1)k,λ
tk

k!
. (5)

Also, when λ → 0, the polynomials en,λ (t) (5) become the polynomials en (t) in (1). To get more detailed information
about the Detr-exponential polynomials and their properties, see [3].

The Stirling numbers S2 (n,k) and polynomials S2 (n,k : ω) of the second kind are given as follows (cf. [1,3,6-9]):

∞

∑
n=0

S2 (n,k)
tn

n!
=

(et −1)k

k!
and

∞

∑
n=0

S2 (n,k : ω)
tn

n!
=

(et −1)k

k!
etω . (6)

The degenerate form of the Stirling polynomials of the second kind are given below (cf. [1,3,6,7]):

∞

∑
n=0

S2,λ (n,k : ω)
tn

n!
=

(eλ (t)−1)k

k!
eω

λ
(t) . (7)

The degenerate truncated form of the Stirling polynomials of the second kind are given as follows (cf. [3]):

∞

∑
n=0

S2,m;λ (n,k : ω)
tn

n!
=

(
eλ (t)−1− em−1,λ (t)

)k

k!
eω

λ
(t) . (8)

2 On degenerate truncated Frobenius-Euler polynomials

In this section, we introduce the truncated degenerate Frobenius-Euler polynomials and investigated multifarious
correlations and formulas including summation formulas, derivation rules and correlation with the degenerate Stirling
numbers of the second kind.

Let u(6= 1) ∈ C is an algebraic number. The classical Frobenius-Euler Hn (u,x) polynomials (cf. [4,8,9]) are given as
follows:

∞

∑
n=0

Hn (u,x)
tn

n!
=

1−u
et −u

ext ,

The usual degenerate Frobenius-Euler Hn,λ (u,x) polynomials are defined as follows (cf. [8]):

∞

∑
n=0

Hn,λ (u,x)
tn

n!
=

1−u
eλ (t)−u

ex
λ
(t) .

We now introduce the degenerate truncated forms of the Frobenius-Euler polynomials as follows.

Definition 1. Let x be an independent variable. The degenerate truncated Frobenius-Euler polynomials are defined by
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the following exponential generating function:

∞

∑
n=0

Hm,n,λ (u,x)
tn

n!
=

(1−u) tm

m! (1)m,λ

eλ (t)−u− em−1,λ (t)
ex

λ
(t) . (9)

We choose to call the Detr-Frobenius-Euler polynomials besides the degenerate truncated Frobenius-Euler polynomials.

When x = 0 in Definition 1, the Detr-Frobenius-Euler polynomials Hm,n,λ (u,x) reduce to the corresponding numbers
called the Detr-Frobenius-Euler numbers denoted by Hm,n,λ (u):

∞

∑
n=0

Hm,n,λ (u)
tn

n!
=

(1−u) tm

m! (1)m,λ

eλ (t)−u− em−1,λ (t)
. (10)

We now perform to derive some properties of the aforementioned polynomials and we first give the following correlation.

Theorem 1. The following summation formula holds:

Hm,n,λ (u,x) =
n

∑
k=0

(
n
k

)
(x)k,λ Hm,n−k,λ (u) . (11)

Proof. In view of the Definition 1 and using (10), we get

∞

∑
n=0

Hm,n,λ (u,x)
tn

n!
=

(1−u) tm

m! (1)m,λ

eλ (t)−u− em−1,λ (t)
ex

λ
(t)

=
∞

∑
n=0

Hm,n,λ (u)
tn

n!

∞

∑
n=0

(x)n,λ
tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
(x)k,λ Hm,n−k,λ (u)

tn

n!
,

which completes the proof of the Theorem 1. An addition formula is presented by the following theorem.

Theorem 2. The following relationship is valid.

Hm,n,λ (u,x1 + x2) =
n

∑
l=0

(
n
l

)
(x2)n−l,λ Hm,l,λ (u,x1) . (12)

Proof. They are similar to Theorem 1. So, we omit them.

Corollary 1. The following explicit relation holds:

Hm,n,λ (u,x+1) =
n

∑
l=0

(
n
l

)
(1)n−l,λ Hm,l,λ (u,x) . (13)

Theorem 3. The difference operator formula for the Detr-Frobenius-Euler polynomials

∆λ Em,n,λ (x) = nEm,n−1,λ (x) (14)
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holds for m,n ∈N0.

Proof. By applying difference operator ∆λ (4) to both sides of the formula (9), we attain

∞

∑
n=0

∆λ Hm,n,λ (u,x)
tn

n!
=

(1−u) tm

m! (1)m,λ

eλ (t)−u− em−1,λ (t)
∆λ ex

λ
(t)

=
(1−u) tm

m! (1)m,λ

eλ (t)−u− em−1,λ (t)
ex

λ
(t) t =

∞

∑
n=0

Hm,n,λ (u,x)
tn+1

n!
,

which gives the claimed difference property in (14).

The Detr-Frobenius-Euler polynomials satisfy the following derivative property.

Theorem 4. We have
d
dx

Hm,n;λ (u,x) = n!
∞

∑
p=1

Hm,n−p;λ (u,x)
(−1)p+1

(n− p)!p
λ

p−1. (15)

Proof. By applying the derivative operator d/dx with respect to x to both sides of the formula (9), we then derive

∞

∑
n=0

d
dx

Hm,n;λ (u,x)
tn

n!
=

(1−u) tm

m! (1)m,λ

eλ (t)−u− em−1,λ (t)
d
dx

(1+λ t)
x
λ

=
(1−u) tm

m! (1)m,λ

eλ (t)−u− em−1,λ (t)
(1+λ t)

x
λ ln(1+λ t)

1
λ

=
∞

∑
n=0

Hm,n;λ (u,x)
tn

n!

∞

∑
u=1

(−1)u+1

u
λ

u−1tu

which gives the assertion in (15).

A summation identity for Hm,n;λ (u,x) is presented in the following theorem.

Theorem 5. The following recurrence formula

Hm+1,n,λ (u,x) = n
1−mλ

m+1
Hm,n−1;λ (u,x)+

1
1−u

n

∑
k=0

(
n
k

)
Hm,n−k;λ (u)Hm+1,k;λ (u,x) (16)

is valid for n,m ∈N0.

Proof. From Definition 1, we can write

(1−u)
tm+1

(m+1)!
(1)m+1,λ ex

λ
(t) =

(
eλ (t)−u− em,λ (t)

) ∞

∑
n=0

Hm+1,n,λ (u,x)
tn

n!

=
(
eλ (t)−u− em−1,λ (t)

) ∞

∑
n=0

Hm+1,n,λ (u,x)
tn

n!
(1)m,λ

tm

m!
−

∞

∑
n=0

Hm+1,n,λ (u,x)
tn

n!

Hence, we observe that
(1−u) tm+1

(m+1)! (1)m+1,λ

eλ (t)−u− em−1,λ (t)
ex

λ
(t) =

∞

∑
n=0

Hm+1,n,λ (u,x)
tn

n!
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− 1
1−u

(1−u)(1)m,λ
tm

m!

eλ (t)−1− em−1,λ (t)

∞

∑
n=0

Hm+1,n,λ (u,x)
tn

n!

which means the asserted result (16). We also provide a relationship as follows.

Theorem 6. The following identity

Hm,n,λ (u,x) =
n

∑
k=0

n

∑
l=0

(
n
l

)
Hm,n−l,λ (u)S2;λ (l,k :−k)(x)(k) (17)

is valid for n,m ∈N0.

Proof. By the Definition 1 and utilizing the formulae and (10), we attain

∞

∑
n=0

Hm,n,λ (u,x)
tn

n!
=

(1−u) tm

m! (1)m,λ

eλ (t)−u− em−1,λ (t)

(
e−1

λ
(t)−1+1

)x

=
(1−u) tm

m! (1)m,λ

eλ (t)−u− em−1,λ (t)

∞

∑
k=0

(
x+ k−1

k

)(
1− e−1

λ
(t)
)k

=
(1−u) tm

m! (1)m,λ

eλ (t)−u− em−1,λ (t)

∞

∑
k=0

(
x+ k−1

k

)
(eλ (t)−1)k

k!
e−k

λ
(t)k!

=
∞

∑
k=0

(x)(k)
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Hm,n−l,λ (u)S2;λ (l,k :−k)

)
tn

n!
,

which gives the assertion (17).
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