On degenerate truncated Frobenius-Euler polynomials

Ugur Duran ${ }^{1}$ and Mehmet Acikgoz ${ }^{2}$
${ }^{1}$ Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay, Turkey
${ }^{2}$ Faculty of Arts and Science, University of Gaziantep, Gaziantep, Turkey

Received: 13 June 2021, Accepted: 16 June 2021
Published online: 12 July2021.

Abstract

In this study, we consider the truncated degenerate Frobenius-Euler polynomials. Then we examine diverse properties and formulas covering addition formulas, correlations and derivation property. Then, we derive some interesting implicit summation formulas.

Keywords: Degenerate exponential function, truncated exponential function, Frobenius-Euler polynomials, exponential generating function.

1 Introduction

Along this paper, the usual notations $\mathscr{N}, \mathscr{N}_{0}, \mathscr{R}$ and \mathscr{C}, are referred to the set of all natural numbers, the set of all non-negative integers, the set of all real numbers and the set of all complex numbers, respectively.

The truncated form of the exponential polynomials $e_{n}(t)$ are the first $(n+1)$ terms of the Taylor series for $e^{t}(c f$. [2]) at $t=0$, that is,

$$
\begin{equation*}
e_{n}(t)=\sum_{k=0}^{n} \frac{t^{k}}{k!} \tag{1}
\end{equation*}
$$

One can see [2] to get the detailed information about $e_{n}(t)$.

For $\lambda \in \mathscr{C}$, the λ-falling factorial $(t)_{n, \lambda}$ is defined by $(t)_{n, \lambda}=t(t-\lambda)(t-2 \lambda) \cdots(t-(n-1) \lambda)$ for $n \in \mathscr{N}$ with $(t)_{0, \lambda}=1, c f$. [1,3,5-8]. In the case $\lambda=1$, the λ-falling factorial becomes to the usual falling factorial given by $(t)_{n, 1}:=(t)_{n}=t(t-1) \cdots(t-n+1)$ with $(t)_{0,1}=1$.

Let $\lambda \in \mathscr{R} /\{0\}$. The degenerate form of the exponential function $e_{\lambda}^{t}(t)$ is defined by (cf. [1,3,5-8])

$$
\begin{equation*}
e_{\lambda}^{\omega}(t)=(1+\lambda t)^{\frac{\omega}{\lambda}} \text { and } e_{\lambda}^{1}(t):=e_{\lambda}(t) \tag{2}
\end{equation*}
$$

We note that $\lim _{\lambda \rightarrow 0} e_{\lambda}^{\omega}(t)=e^{\omega t}$. From (2), we attain

$$
\begin{equation*}
e_{\lambda}^{\omega}(t)=\sum_{n=0}^{\infty}(\omega)_{n, \lambda} \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

Proof. The Δ_{λ} difference operator of a function is defined by (see [3])

$$
\begin{equation*}
\Delta_{\lambda} f(x)=\frac{1}{\lambda}(f(x+\lambda)-f(x)), \quad \alpha \neq 0 . \tag{4}
\end{equation*}
$$

The degenerate truncated form of the exponential polynomials (also called the Detr-exponential polynomials) are considereed as the first $(n+1)$ terms of the Mac Laurin series expansion of $e_{\lambda}(t)$ in (3) (cf. [3]):

$$
\begin{equation*}
e_{n, \lambda}(t)=\sum_{k=0}^{n}(1)_{k, \lambda} \frac{t^{k}}{k!} . \tag{5}
\end{equation*}
$$

Also, when $\lambda \rightarrow 0$, the polynomials $e_{n, \lambda}(t)$ (5) become the polynomials $e_{n}(t)$ in (1). To get more detailed information about the Detr-exponential polynomials and their properties, see [3].

The Stirling numbers $S_{2}(n, k)$ and polynomials $S_{2}(n, k: \omega)$ of the second kind are given as follows ($\left.c f .[1,3,6-9]\right)$:

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{2}(n, k) \frac{t^{n}}{n!}=\frac{\left(e^{t}-1\right)^{k}}{k!} \text { and } \sum_{n=0}^{\infty} S_{2}(n, k: \omega) \frac{t^{n}}{n!}=\frac{\left(e^{t}-1\right)^{k}}{k!} e^{t \omega} \tag{6}
\end{equation*}
$$

The degenerate form of the Stirling polynomials of the second kind are given below (cf. [1,3,6,7]):

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{2, \lambda}(n, k: \omega) \frac{t^{n}}{n!}=\frac{\left(e_{\lambda}(t)-1\right)^{k}}{k!} e_{\lambda}^{\omega}(t) \tag{7}
\end{equation*}
$$

The degenerate truncated form of the Stirling polynomials of the second kind are given as follows (cf. [3]):

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{2, m ; \lambda}(n, k: \omega) \frac{t^{n}}{n!}=\frac{\left(e_{\lambda}(t)-1-e_{m-1, \lambda}(t)\right)^{k}}{k!} e_{\lambda}^{\omega}(t) \tag{8}
\end{equation*}
$$

2 On degenerate truncated Frobenius-Euler polynomials

In this section, we introduce the truncated degenerate Frobenius-Euler polynomials and investigated multifarious correlations and formulas including summation formulas, derivation rules and correlation with the degenerate Stirling numbers of the second kind.

Let $u(\neq 1) \in \mathscr{C}$ is an algebraic number. The classical Frobenius-Euler $H_{n}(u, x)$ polynomials ($\left.c f .[4,8,9]\right)$ are given as follows:

$$
\sum_{n=0}^{\infty} H_{n}(u, x) \frac{t^{n}}{n!}=\frac{1-u}{e^{t}-u} e^{x t}
$$

The usual degenerate Frobenius-Euler $H_{n, \lambda}(u, x)$ polynomials are defined as follows (cf. [8]):

$$
\sum_{n=0}^{\infty} H_{n, \lambda}(u, x) \frac{t^{n}}{n!}=\frac{1-u}{e_{\lambda}(t)-u} e_{\lambda}^{x}(t)
$$

We now introduce the degenerate truncated forms of the Frobenius-Euler polynomials as follows.

Definition 1. Let x be an independent variable. The degenerate truncated Frobenius-Euler polynomials are defined by
the following exponential generating function:

$$
\begin{equation*}
\sum_{n=0}^{\infty} H_{m, n, \lambda}(u, x) \frac{t^{n}}{n!}=\frac{(1-u) \frac{t^{m}}{m!}(1)_{m, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)} e_{\lambda}^{x}(t) \tag{9}
\end{equation*}
$$

We choose to call the Detr-Frobenius-Euler polynomials besides the degenerate truncated Frobenius-Euler polynomials.
When $x=0$ in Definition 1, the Detr-Frobenius-Euler polynomials $H_{m, n, \lambda}(u, x)$ reduce to the corresponding numbers called the Detr-Frobenius-Euler numbers denoted by $H_{m, n, \lambda}(u)$:

$$
\begin{equation*}
\sum_{n=0}^{\infty} H_{m, n, \lambda}(u) \frac{t^{n}}{n!}=\frac{(1-u) \frac{t^{m}}{m!}(1)_{m, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)} \tag{10}
\end{equation*}
$$

We now perform to derive some properties of the aforementioned polynomials and we first give the following correlation.

Theorem 1. The following summation formula holds:

$$
\begin{equation*}
H_{m, n, \lambda}(u, x)=\sum_{k=0}^{n}\binom{n}{k}(x)_{k, \lambda} H_{m, n-k, \lambda}(u) \tag{11}
\end{equation*}
$$

Proof. In view of the Definition 1 and using (10), we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} H_{m, n, \lambda}(u, x) \frac{t^{n}}{n!} & =\frac{(1-u) \frac{t^{m}}{m!}(1)_{m, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)} e_{\lambda}^{x}(t) \\
& =\sum_{n=0}^{\infty} H_{m, n, \lambda}(u) \frac{t^{n}}{n!} \sum_{n=0}^{\infty}(x)_{n, \lambda} \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{n}\binom{n}{k}(x)_{k, \lambda} H_{m, n-k, \lambda}(u) \frac{t^{n}}{n!}
\end{aligned}
$$

which completes the proof of the Theorem 1. An addition formula is presented by the following theorem.

Theorem 2. The following relationship is valid.

$$
\begin{equation*}
H_{m, n, \lambda}\left(u, x_{1}+x_{2}\right)=\sum_{l=0}^{n}\binom{n}{l}\left(x_{2}\right)_{n-l, \lambda} H_{m, l, \lambda}\left(u, x_{1}\right) \tag{12}
\end{equation*}
$$

Proof. They are similar to Theorem 1. So, we omit them.
Corollary 1. The following explicit relation holds:

$$
\begin{equation*}
H_{m, n, \lambda}(u, x+1)=\sum_{l=0}^{n}\binom{n}{l}(1)_{n-l, \lambda} H_{m, l, \lambda}(u, x) \tag{13}
\end{equation*}
$$

Theorem 3. The difference operator formula for the Detr-Frobenius-Euler polynomials

$$
\begin{equation*}
\Delta_{\lambda} E_{m, n, \lambda}(x)=n E_{m, n-1, \lambda}(x) \tag{14}
\end{equation*}
$$

holds for $m, n \in \mathscr{N}_{0}$.

Proof. By applying difference operator Δ_{λ} (4) to both sides of the formula (9), we attain

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \Delta_{\lambda} H_{m, n, \lambda}(u, x) \frac{t^{n}}{n!}=\frac{(1-u) \frac{t^{m}}{m!}(1)_{m, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)} \Delta_{\lambda} e_{\lambda}^{x}(t) \\
& =\frac{(1-u) \frac{t^{m}}{m!}(1)_{m, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)} e_{\lambda}^{x}(t) t=\sum_{n=0}^{\infty} H_{m, n, \lambda}(u, x) \frac{t^{n+1}}{n!},
\end{aligned}
$$

which gives the claimed difference property in (14).

The Detr-Frobenius-Euler polynomials satisfy the following derivative property.

Theorem 4. We have

$$
\begin{equation*}
\frac{d}{d x} H_{m, n ; \lambda}(u, x)=n!\sum_{p=1}^{\infty} H_{m, n-p ; \lambda}(u, x) \frac{(-1)^{p+1}}{(n-p)!p} \lambda^{p-1} \tag{15}
\end{equation*}
$$

Proof. By applying the derivative operator $d / d x$ with respect to x to both sides of the formula (9), we then derive

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{d}{d x} H_{m, n ; \lambda}(u, x) \frac{t^{n}}{n!} & =\frac{(1-u) \frac{t^{m}}{m!}(1)_{m, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)} \frac{d}{d x}(1+\lambda t)^{\frac{x}{\lambda}} \\
& =\frac{(1-u) \frac{t^{m}}{m!}(1)_{m, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)}(1+\lambda t)^{\frac{x}{\lambda}} \ln (1+\lambda t)^{\frac{1}{\lambda}} \\
& =\sum_{n=0}^{\infty} H_{m, n ; \lambda}(u, x) \frac{t^{n}}{n!} \sum_{u=1}^{\infty} \frac{(-1)^{u+1}}{u} \lambda^{u-1} t^{u}
\end{aligned}
$$

which gives the assertion in (15).
A summation identity for $H_{m, n ; \lambda}(u, x)$ is presented in the following theorem.
Theorem 5. The following recurrence formula

$$
\begin{equation*}
H_{m+1, n, \lambda}(u, x)=n \frac{1-m \lambda}{m+1} H_{m, n-1 ; \lambda}(u, x)+\frac{1}{1-u} \sum_{k=0}^{n}\binom{n}{k} H_{m, n-k ; \lambda}(u) H_{m+1, k ; \lambda}(u, x) \tag{16}
\end{equation*}
$$

is valid for $n, m \in \mathscr{N}_{0}$.
Proof. From Definition 1, we can write

$$
\begin{aligned}
& (1-u) \frac{t^{m+1}}{(m+1)!}(1)_{m+1, \lambda} e_{\lambda}^{x}(t)=\left(e_{\lambda}(t)-u-e_{m, \lambda}(t)\right) \sum_{n=0}^{\infty} H_{m+1, n, \lambda}(u, x) \frac{t^{n}}{n!} \\
& =\left(e_{\lambda}(t)-u-e_{m-1, \lambda}(t)\right) \sum_{n=0}^{\infty} H_{m+1, n, \lambda}(u, x) \frac{t^{n}}{n!}(1)_{m, \lambda} \frac{t^{m}}{m!}-\sum_{n=0}^{\infty} H_{m+1, n, \lambda}(u, x) \frac{t^{n}}{n!}
\end{aligned}
$$

Hence, we observe that

$$
\frac{(1-u) \frac{t^{m+1}}{(m+1)!}(1)_{m+1, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)} e_{\lambda}^{x}(t)=\sum_{n=0}^{\infty} H_{m+1, n, \lambda}(u, x) \frac{t^{n}}{n!}
$$

$$
-\frac{1}{1-u} \frac{(1-u)(1)_{m, \lambda} \frac{t^{m}}{m!}}{e_{\lambda}(t)-1-e_{m-1, \lambda}(t)} \sum_{n=0}^{\infty} H_{m+1, n, \lambda}(u, x) \frac{t^{n}}{n!}
$$

which means the asserted result (16). We also provide a relationship as follows.

Theorem 6. The following identity

$$
\begin{equation*}
H_{m, n, \lambda}(u, x)=\sum_{k=0}^{n} \sum_{l=0}^{n}\binom{n}{l} H_{m, n-l, \lambda}(u) S_{2 ; \lambda}(l, k:-k)(x)^{(k)} \tag{17}
\end{equation*}
$$

is valid for $n, m \in \mathscr{N}_{0}$.
Proof. By the Definition 1 and utilizing the formulae and (10), we attain

$$
\begin{aligned}
\sum_{n=0}^{\infty} H_{m, n, \lambda}(u, x) \frac{t^{n}}{n!} & =\frac{(1-u) \frac{t^{m}}{m!}(1)_{m, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)}\left(e_{\lambda}^{-1}(t)-1+1\right)^{x} \\
& =\frac{(1-u) \frac{t^{m}}{m!}(1)_{m, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)} \sum_{k=0}^{\infty}\binom{x+k-1}{k}\left(1-e_{\lambda}^{-1}(t)\right)^{k} \\
& =\frac{(1-u) \frac{t^{m}}{m!}(1)_{m, \lambda}}{e_{\lambda}(t)-u-e_{m-1, \lambda}(t)} \sum_{k=0}^{\infty}\binom{x+k-1}{k} \frac{\left(e_{\lambda}(t)-1\right)^{k}}{k!} e_{\lambda}^{-k}(t) k! \\
& =\sum_{k=0}^{\infty}(x)^{(k)} \sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} H_{m, n-l, \lambda}(u) S_{2 ; \lambda}(l, k:-k)\right) \frac{t^{n}}{n!},
\end{aligned}
$$

which gives the assertion (17).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors have contributed to all parts of the article. All authors read and approved the final manuscript.

References

[1] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15 (1975) 51-88.
[2] G. Dattoli, C. Ceserano, D. Sacchetti, A note on truncated polynomials. Appl. Math. Comput. 134 (2003) 595-605.
[3] U. Duran, M. Acikgoz, On degenerate truncated special polynomials, Mathematics, 2020, 8(1), 144.
[4] T. Kim, B. Lee, Some identities of the Frobenius-Euler polynomials, Volume 2009 Article ID 639439, doi:10.1155/2009/639439.
[5] Kim, D. S.; Kim, T.; Lee, H. A note on degenerate Euler and Bernoulli polynomials of complex variable. Symmetry 2019, 11, 1168.
[6] T. Kim, Y. Yao, D.S. Kim, G.-W. Jang, Degenerate -Stirling numbers and -Bell polynomials. Russ. J. Math. Phys. 25 (2018) 44-58.
[7] T. Kim, A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 20 (2017) 319-331.
[8] T. Kim, H. I. Kwon, J.-J. Seo, On the degenerate Forbenius-Euler polynomials, arXiv:1507.04846v1 [math.NT].
[9] H. . Srivastava, S. Araci, W.A. Khan, M. Acikgoz, A note on the truncated-exponential based Apostol-type polynomials, Symmetry. 11 (2019) 538.
[10] B. Y. Yasar, M. A. Ozarslan, Frobenius-Euler and Frobenius-Genocchi polynomials and their differential equations, New Trends in Mathematical Sciences, 3(2) (2015) 172-180.

