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Abstract: In this paper, we have studied a different fault tolerant control (FTC) strategies for a three-phase induction motor (3p-IM).
Further we introduce Backstepping controller (BC) and Input-output linearization controller (IOLC). To provide a direct comparison
between these FTCs approaches, the performances are evaluated using the control of 3p-IM under failures, variable speed, and variable
parameters. A comparison between the two control strategies is proposed to prove the most robust one. The simulation results show
the robustness and good performance of the fault tolerant control with Input-output linearization controller compared to one with
Backstepping controller. The FTC with IOLC is more stable and robust against failures, load torque perturbation and speed reversion.

Keywords: Three-phase induction motor (3p-IM), Fault Tolerant Control (FTC), Input-output linearization controller, Backstepping
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1 Introduction

With the development of power electronics technology and control technology, three-phase induction motor has been
widely applied in various industrial sectors and airline industry [1]. Due to its compact size, cost and reliability. 3p-IMs
are subjected to various faults, such as stator short circuits, broken bars or rings, eccentricity, sensor and actuator
faults,...etc. As it is the case in ([2,3]).

In recent years, fault-tolerant control (FTC) has begun to concern a wider range of industrial applications such as
aerospace, automotive, nuclear power, manufacturing, etc. [4-6]. The passive FTC approach considers fault as a special
kind of uncertainties, and consequently controllers are fixed and designed to be robust against a class of presumed faults.
The remainder of this paper is organized as follows. Section 2 describes the mathematical faulty model of induction
motor. In Section 3 and Section 4 the objective and design philosophy passive based FTCs strategies are described.
Simulation results describe similarities and differences between them are summarized in Section 5. Finally, the
conclusions are drawn in Section 6.

2 Mathematic faulty model of IM and problem formulation

The dynamic model of an induction motor in the stator reference frame can be described as:

ẋ = Ax+Bu (1)
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where B is a constant matrix and A is a nonlinear matrix. x = [x1x2x3x4]
T =

[
isα isβ Φrα Φrβ

]T
u =

[
u1 u2

]T
=
[

vsα vsβ

]T (2)

The objective of this section is to provide a robust PFTC fault design for the induction motor system affected by sensor
faults and unknown bounded disturbances.

Let us consider the IM model given by the equations (1) and affected by sensor faults as [7]:

ẋ = Ax+Bu+D f F (3)

where F ∈R is the sensor fault vector. Matrix D f is of appropriate dimension.D f =

[
1 0 0 0
0 1 0 0

] T

F = [F1 F2]
T

(4)

The presence of electrical and/or mechanical faults generates asymmetry of the IM yielding some slot harmonics in the
stator winding: {

x1→ x1 +Fh1

x2→ x2 +Fh2
(5)

where: 
Fh1 = ∑

n f
i Aisin(ωit +ϕi)

Fh2 = ∑
n f
i Aicos(ωit +ϕi)

ωi = 2π fi +2π fa = 2π( fi + fa)

(6)

with: n f is faults number, fi is the characteristic frequency of the fault and fais the fundamental frequency.

3 Passive FTC based backstepping controller

Backstepping control is an efficient method for nonlinear system [8]. This approach is presented in the form of steps for
the determination of the control law given by the stator voltages of the IM [9-11]. The backstepping technique has been
widely used in the design of speed controllers for induction motors [12-14].

3.1 Speed controller design methodology

The controller for the speed state can be designed in three steps.

Step 1. To solve speed tracking problem, the state tracking error variable can be defined as:{
e1 = ωre f−ωr

e2 = xre f − xr
(7)
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where ωre f and xre f are respectively rotor speed and rotor flux reference, ωr is the actual rotor speed, xr is the actual
rotor flux. For stabilizing the speed component, the derivative of (7) is given by:{

ė1 = ω̇re f − ρ

J (x2x3− x1x4)+
TL
J

ė2 = ẋre f +2Trxr−2MT r(x1x3 + x2x4)
(8)

Step 2. Choose the following candidate Lyapunov function as:

V1 =
1
2
(e1

2 + e2
2) (9)

Step 3. The time derivative of Lyapunov function (9) can be obtained as:

V̇1 = (e1ė1 + e2ė2) (10)

= e1

(
ω̇re f −

ρ

J
(x2x3− x1x4)+

TL

J

)
+ e2(ẋre f +2Trxr−2TrM(x1x3 + x2x4)

Thus, the tracking objectives will be satisfied if we choose: x1re f =− J
ρx4

(
k1e1 + ω̇re f +

TL
J

)
+ 1

2TrMx3
(k2e2 + ẋr +2Trxr)

x2re f =
J

ρx3

(
k1e1 + ω̇re f +

TL
J

)
+ 1

2TrMx4
(k2e2 + ẋr +2Trxr)

(11)

Therefore, (10) can be rewritten as:
V̇1 =

(
−k1e1

2− k2e2
2)< 0 (12)

where k1 and k2 are positive design constants that determine the closed loop dynamics.
According to (12), the controls x1re f and x2re f in (11) are asymptotically stabilizing.

3.2 Current controller design methodology

Step 1. In this step, we define other errors e3 and e4 in the components of the stator currents and their references.{
e3 = x2re f − x2

e4 = x1re f − x1
(13)

So the dynamics of e1 and e2 can be obtained as:{
ė1 =−k1e1− ρ

J (e4x4− e3x3)

ė2 =−k2e2 +2MTr (e4x3− e3x4)
(14)

The derivative errors dynamics in (13) are given by:{
ė3 = ẋ2re f −δ1−b2u2

ė4 = ẋ1re f −δ2−b1u1
(15)

with: {
δ1 =−a1x2−a3ωrx3 +a3Trx4

δ2 =−a1x1−a3Trx3 +a3ωrx4
(16)
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Step 2. In this step we define the control laws, while final Lyapunov function based on all the errors of the speed, the rotor
flux and the stator currents, such as:

V2 =
1
2
(e1

2 + e2
2 + e3

2 + e4
2) (17)

Step 3. The time derivative of V2 is given by:

V̇2 = (e1ė1 + e2ė2 + e3ė3 + e4ė4) (18)

According to (13) and (14), this equation can be rewritten as follows:

V̇2 =−k1e1
2− k2e2

2 + e3(ẋ2re f −δ1−b2u2−2MTrx4 +
ρ

J
x3e1)+ e4(ẋ1re f −δ2−b1u1 +2MTrx3e2−

ρ

J
x4e1) (19)

where u1 and u2 are the actual control variables. If the stabilizing control law is defined as:
u1 =

1
b1

(
ẋ1re f + k4e4−δ2 +2MTrx3e2− ρ

J x4e1
)

u2 =
1
b2

(
ẋ2re f + k3e3−δ1 +2MTrx4e2 +

ρ

J x3e1
)

k3 > 0, k4 > 0
(20)

Then, (15) can be expressed as: {
ė3 =−k3e3− ρ

J x3e1−2MTrx4e2

ė4 =−k4e4 +
ρ

J x4e1−2MTrx3e2
(21)

The choice of k3 and k4 as positive parameters can made V̇2 < 0, which indicates the tracking error will converge
asymptotically to zero. The objective of BC for IM is completed.

4 Passive FTC based input-output linearization controller

For the induction motor case, by choosing the output functions as the flux square and rotor speed respectively as showing
bellow:

y =

[
y1

y2

]
=

[
h1

h2

]
=

[
ϕrα

2 +ϕrβ
2 = ϕr = xr

ω

]
(22)

Therefore, the output dynamics could be easily written as follows:

y1 :

{
ḣ1 (x) = L f h1 (x) = 2a5Lm f1−2a5xr

ḧ1 (x) = L2
f h1 (x)+LGα

L f h1 (x)u1 +L Gβ
L f h1 (x)u2

(23)

with: 
L2

f h1 (x) = 2a4a5Lm f 3− (2a1a4 +6a4a5) f1 +2a4ω f2 +
(

4
Tr

a5 +2a2a4

)
xr

LGα
L f h1 (x) = 2a2 Lrx3

L Gβ
L f h1 (x) = 2a2 Lrx4

(24)

y2 :

{
ḣ2 (x) = L f h2 (x) =

pLm
JLr

f2− Cr
J

ḧ2 (x) = L2
f h2 (x)+L Gα

L f h2 (x)u1 +L Gβ
L f h2 (x)u2

(25)
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with: 
L2

f h2 (x) =
pLm
JLr

ω f1− pLm
JLr

(a1 +a5) f2− pLm
2

JLr
2

ω

σLs
xr

LGα
L f h2 (x) =− pLm

JLr
1

σLs
x4

L Gβ
L f h2 (x) =

pLm
JLr

1
σLs

x3

(26)

where: f1 = x1x3 + x2x4, f2 = x2x3− x1x4,
f

3

= x1
2 + x2

2,a1 =
−Rt
σLs

,a2 =
Lm

σLsLrTr
, a3 =

Lm
σLsLr

, a4 =
Lm
Tr

,a5 =
1
Tr

Although the system dynamics order is five, the output dynamics have the order of four which implies the presence of an
internal dynamics and the corresponding stability could be easily proven.

Using input-output feedback linearization, only the derivatives of the outputs are considered, we obtain:[
ḧ1

ḧ2

]
=

[
L2

f h1(x)
L2

f h2(x)

]
+E(x)

[
u1

u2

]
(27)

with:

E (x) =

[
L Gα

L f h1 (x) L Gβ
L f h1 (x)

L Gα
L f h2 (x) L Gβ

L f h2 (x)

]
=

[
2a2Lrx3 2a2Lrx4

− pLm
JLr

1
σLs

x4
pLm
JLr

1
σLs

x3

]
(28)

Det [E (x)] = 2 a2Lr
σLs

xr. If xr 6= 0, the matrix E (x) is non-singular. By defining v as the new control input for linear system
of:

v =

[
v1

v2

]
=

[
L2

f h1 (x)
L2

f h2 (x)

]
+E(x)

[
u1

u2

]
(29)

Main control equation can be defined as:[
u1

u2

]
= E(x)−1

([
−L2

f h1 (x)
−L2

f h2 (x)

]
+

[
v1

v2

])
(30)

As a result, the system control effort would be simplified to:

v1 = ḧ1 =
d2xr

dt2 = kϕ1
(
xre f − xr

)
+ kϕ2

(
dxre f

dt
− dxr

dt

)
+

d2xre f

dt2 (31)

v2 = ḧ2 =
d2ω

dt2 = kω1
(
ωre f −ω

)
+ kω2

(
dωre f

dt
− dω

dt

)
+

d2ωre f

dt2 (32)

The gains kϕ1, kϕ2, kω1 and kω2 are chosen by identification with a second order system by using the pole placement
method.

5 Simulation results

In this section, some numerical simulations have been performed to validate the proposed FTC scheme (see. Figure.1).The
induction motor parameters are given in the appendix. The closed-loop simulation results are reported in Figures below
under both healthy and faulty conditions. On the other hand variations of 50% of the stator resistance (Rs) and rotor
resistance (Rr) between the time t = 3 s and t = 4 s with variable speed reference are introduced. After the faults occurred
at t = 1.5 s. Two levels of simulation results will be presented here: firstly, Figure (2) show that the simulation results of
PFTC based on Backstepping control, secondly, Figure (3) show that the simulation results of PFTC based on Input-output
linearization controller.
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Fig. 1: Block diagram of the proposed passive fault tolerant

Fig. 2: PFTC strategy using Backstepping control: (a) Motor speed, (b) Stator Current, (c) Motor Torque (load torque is
applied at t = 0.5 s and the actuator faults occurred at t = 1.5 s).
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Fig. 3: PFTC strategy using Input-output linearization controller: (a) Motor speed, (b) Stator Current, (c) Motor Torque
(load torque is applied at t = 0.5 s and the actuator faults occurred at t = 1.5 s).

6 Conclusion

This paper dealt with a comparative study of fault tolerant control strategies, namely PFTC, Backstepping Controller
(BC) and Input-output linearization controller (IOLC), for an induction motor. The study indicates that each approach
has its own advantages and limitations. A passive FTCs approach is more flexible to deal with different types of faults,
including failure scenarios beyond the design basis faults. For the PFTC, based IOLC simulation results demonstrate a
good performance in the presence of fault. The global system drive is stable and robust against load perturbation, speed
reversion, parameter variations and fault rejection. On conclusion, we can say that the PFTC based IOLC is more superior
to PFTC based BC.
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