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Abstract: In this study, a matrix method called the Euler collocation method is presented for numerically solving linear integro-
differential equations. Using the collocation points, this method transforms the integro-differential equation into a matrix equation,
which corresponds to a system of linear algebraic equations with unknown Euler coefficients. To illustrate the method, it is applied to
certain linear Fredholm, Volterra, and Fredholm-Volterra integro-differential equations and the results are compared other numerical
methods. In addition, the convergence of the solutions to the problems are examined. To obtain the matrix equations and solutions for
the selected problems, code has developed in MATLAB.
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1 Introduction

Integro - differential equations (IDEs) are usually used in the modeling of physical phenomena and play an important
role in the fields of science and engineering [1-6]. These equations are difficult to solve and so, numerical methods
are required such as Taylor collocation, Chebyshev collocation, Chebyshev-Lobatto collocation, Lagrange collocation,
Jacobi collocation, Laguerre collocation and Bessel polynomial methods etc [7-23]. In this study, we consider the m-th
order linear Volterra-Fredholm integro-differential equation in the form

m

∑
k=0

Pk(t)y(k)(t) = g(t)+λ1

b∫
a

K f (t,s)y(s)ds+λ2

t∫
a

Kv (t,s)y(s)ds (1)

with condition

m−1

∑
k=0

(
a jky(k) (a)+b jky(k) (b)

)
= µ j, j = 0,1, ...,m−1 (2)

where Pk (t), g(t), K f (t,s) and Kv (t,s) are functions defined on the interval a ≤ t ≤ b; a jk, b jk and µ j are appropriate
constants; y(t) is an unknown solution function to be determined. If λ2 = 0 , Eq.(1) becomes the Fredholm integro
differential equation. If λ1 = 0, it becomes the Volterra integro differential equation.
Our aim is to find an approximate solution of Eq.(1) expressed in the truncated Euler series form

y(t)∼= yN(t) =
N

∑
n=0

an En(t), a 6 t 6 b (3)

∗ Corresponding author e-mail: nurcan.savasaneril@deu.edu.tr © 2021 BISKA Bilisim Technology

 http://dx.doi.org/10.20852/ntmsci.2021.450
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where En(t) indicates the Euler-Taylor polynomials which are described as

2ext

et +1
=

∞

∑
n=0

En(x)
tn

n!
, |t|< π (4)

Euler polynomials are strictly connected with Bernoulli ones, and are used in the Taylor expansion in a neighborhood of
the origin of trigonometric and hyperbolic secant functions. Recursive computation of Euler polynomials can be obtained
by using the following formula [24];

En(t)+
n

∑
k=0

(
n
k

)
Ek(t) = 2tn, n = 1,2, . . . (5)

Also, Euler polynomials En(t) can be defined as polynomials of degree n≥ 0 satisfying the conditions

E ′m (t) = mEm−1 (t) , m > 1. (6)

By using Eq.(4), Eq.(5) or Eq.(6), the first Euler polynomials are described as

E0(t) = 1, E1(t) = t− 1
2
, E2(t) = t2− t, E3(t) = t3− 3

2
t2 +

1
4
,

E4(t) = t4−2t3 + t, E5(t) = t5− 5
2

t4 +
5
2

t2− 1
2
,

E6(t) = t6−3t5 +5t3−3t, E7(t) = t7− 7
2

t6 +
35
4

t4− 21
2

t2 +
17
8
,

2 Materials and Methods

2.1 Matrix Relations for Euler Polynomials

The linear Volterra-Fredholm integro-differential equation in Eq.(1) is considered to create the matrices of each term.
The desired solution y(t) defined by the truncated Euler series Eq.(3) of Eq.(1) is modified to extract the matrix form, for
n = 0,1,2, . . . ,N as

y(t)∼= yN (t) = E(t)A (7)

where

E(t) = [E0 (t) E1 (t) · · · EN (t)] , A = [a0 a1 · · · aN ]
T

On the other hand, using Euler polynomials and Taylor expansion, and by means of Eq.(5), the matrix relation between
standard base matrix and Euler base matrix is constructed as

TT (t) =
(
S−1)T ET (t)⇔ T(t) = E(t)

(
S−1)⇒ E(t) = T(t)S (8)

where

T(t) =
[
1 t · · · tN] ,
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(
S−1)T

=



1 0 0 · · · 0

1
2

(
1
0

)
1 0 · · · 0

1
2

(
2
0

)
1
2

(
2
1

)
1 · · · 0

...
...

...
. . .

...

1
2

(
N
0

)
1
2

(
N
1

)
1
2

(
N
2

)
· · · 1


(N+1)×(N+1)

The relation between the matrix E(t) and its derivatives is

E′ (t) = T′ (t)S = T(t)BS

where

B =



0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 0 N
0 0 0 0 0


B0 =



1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · 1



y(k) (t) = E(k) (t)A = T(t)BkSA, k = 0,1,2, . . . . (9)

Besides, the matrix form of the kernel function K f (t,s) and Kv (t,s) in Eq.(1) is computed as follows

K f (t,s) = T(t)K f T(s)T

Kv (t,s) = T(t)KvT(s)T
(10)

where K f = Kv = K = [kmn] , m,n = 0,1, ...,N

kmn =
1

m!n!
.
∂ m+nK(0,0)

∂ tm∂ sn

b∫
a

K f (t,s)y(s)ds = T(t)K f Q f SA

t∫
a

Kv (t,s)y(s)ds = T(t)KvQv (t)SA

(11)

where

Q f =
[
q f

mn
]
=

b∫
a

TT (s)T(s)ds,

Qv (t) = [qv
mn (t)] =

t∫
a

TT (s)T(s)ds,
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q f
mn =

bm+n+1−am+n+1

m+n+1

qv
mn (t) =

tm+n+1−am+n+1

m+n+1

 m,n = 0,1, . . . ,N

By substituting the matrix relations Eq. (9) and Eq. (11) into Eq.(1) and then by using the collocation points

ti = a+
b−a

N
i, i = 0,1, . . . ,N.

The system of matrix equations are obtained as follows:

m

∑
k=0

Pk (ti)T(ti)BkSA = g(ti)+λ1T(ti)K f Q f SA+λ2T(ti)KvQv (ti)SA

m

∑
k=0

PkTBkSA = G+TK f Q f SA+TKvQvSA (12)

where

Pk =


Pk (t0) 0 · · · 0

0 Pk (t1) 0
...

... · · ·
. . . 0

0 · · · 0 Pk (tN)

 , T =


T(t0)
T(t1)

...
T(tN)

 ,

G =


g(t0)
g(t1)

...
g(tN)

 , T =


T(t0) 0 · · · 0

0 T(t1) 0
...

... · · ·
. . . 0

0 · · · 0 T(tN)

 ,

K =


K 0 · · · 0

0 K 0
...

... · · ·
. . . 0

0 · · · 0 K

 , Q(t) =


Q(t0)
Q(t1)

...
Q(tN)

 ,

or briefly
WA = G ⇔ [W : G] (13)

where

W =
m

∑
k=0

PkTBkS− (TK f Q f +TKvQv)S

Besides, we can find for the condition Eq.(2), by using the relation Eq.(9),

m−1

∑
k=0

(
a jkT(a)BkS+b jkT(b)BkS

)
A = [µ j] or

[
U : A

]
(14)
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where

U =


u00 u01 · · · u0N

u10 u11 · · · u1N
... · · ·

. . .
...

u(r−1)0 · · · · · · u(r−1)N


Consequently, any one row of Eq.(13) by the row matrix Eq.(14) is replaced, hence the desired augmented matrix or the
resulted matrix equation comes out as

W̃ A = G̃ ⇒
[

W̃ : G̃
]

(15)

which suits to the system of linear algebraic equations with the Euler coefficients an. The solution of this system provides
the matrix A and the solution of Eq.(1) - Eq.(2) is

yN(t) = E(t)A = T(t)SA

2.2 Residual Error Analysis

We define the residual function using the linear part of Eq.(1) for the present method as [25-27]

RN (t) = L [yN (t)]−g(t) (16)

where

L [yN (t)] =
m

∑
k=0

Pk(t)y(k)(t)−λ1

b∫
a

K f (t,s)y(s)ds−λ2

t∫
a

Kv (t,s)y(s)ds

3 Numerical Examples

In this section, some numerical examples of the problem Eq.(1) are given to illustrate the accuracy and effectiveness
properties of the method.

Example 3.1. Let us first consider the first order Fredholm integro differential

y′ (t) = y(t)+
1− et+1

t +1
+

1∫
0

etsy(s)ds, 0 6 t,s 6 1

with the initial condition y(0) = 1 [28,29].

P0 (t) =−1, P1 (t) = 1, g(t) =
1− et+1

t +1
, λ1 = 1, λ2 = 0, K f (t,s) = ets

Following the procedure in Section2, we find the solution of our problem for different values of N as follows:

y2(t) = 0.60906t2 +0.96948t +1

© 2021 BISKA Bilisim Technology

www.ntmsci.com


26 D. Elmacı and N. B. Savaşaneril: Euler polynomials method for solving linear integro differential equations

y4(t) = 0.05947t4 +0.15469t3 +0.50165t2 +0.99900t +1

y6(t) = 0.00207t6 +0.00752t5 +0.04213t4 +0.16653t3 +0.5t2 +0.99999t +1

y8(t) = 0.00004t8 +0.00018t7 +0.00141t6 +0, .00832t5 +0.04167t4 +0.16667t3 +0.5t2 + t +1

The numerical results of this example are tabulated for N = 2,4,6,8 in Table 1 and in Table 2. And also, the results
obtained by our method are compared with the results of Taylor polynomials given in [28], Hybrid Fourier (HF) and
block-pulse functions and Fourier functions given in [29]. As can be seen from the tables, the result obtained by the
present method is almost the same as the results of the exact solution. The present method is also effective and
convenient. The absolute errors in the numerical solution of Example 3.1 are seen in Fig. 1. The error decreases when the
integer N is increased.

Table 1: Comparisons of absolute errors for N= 2, 4, 6 in Example 3.1.

t
Present

method

|e2(t)|

Taylor

polynomials

|e2(t)|

Present

method

|e4(t)|

Taylor

polynomials

|e4(t)|

Present

method

|e6(t)|

Taylor

polynomials

|e6(t)|

0.05 0.00128 0.01261 4.72e-05 0.01261 5.74e-07 0.00012

0.15 0.00271 0.04148 0.00014 0.04148 1.88e-06 0.00041

0.25 0.00359 0.07615 0.00027 0.07615 3.48e-06 0.00073

0.35 0.00514 0.11782 0.00044 0.11782 5.36e-06 0.00111

0.45 0.00871 0.16784 0.00064 0.16784 7.54e-06 0.00155

0.55 0.01580 0.22772 0.00088 0.22772 1.01e-05 0.00206

0.65 0.02805 0.29912 0.00115 0.29912 1.33e-05 0.00265

0.75 0.04730 0.38384 0.00150 0.38384 1.73e-05 0.00331

0.85 0.07555 0.48391 0.00201 0.48391 2.28e-05 0.00406

0.95 0.11503 0.60155 0.00285 0.60155 3.15e-05 0.00490

CPU time 1.020 s 1.009 s 1.016 s

Example 3.2. Let us consider the first order Volterra integro differential

y′ (t)+ y(t) =
t∫

0

es−t y(s)ds, 0 6 t,s 6 1

with the initial condition y(0) = 1 [30,31].
Following the procedure in Section2, we find the solution of our problem for different values of N as follows:

y3(t) =−0.36788t3 +0.91590t2− t +1

y7(t) =−0.00555t7 +0.03599t6−0.12774t5 +0.33124t4−0.66625t3 +0.99996t2− t +1

© 2021 BISKA Bilisim Technology
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Table 2: Comparisons of absolute errors for N= 8 in Example 3.1.

t
Exact solution

y(t) = et

HF and block-pulse

functions

Fourier

functions

Taylor

polynomials |e8(t)|
Present method

|e8(t)|

0.05 1.05127 8.90362e-06 0.17111 2.20047e-05 4.35243e-09

0.15 1.16183 5.75727e-06 0.07984 3.53323e-05 1.43054e-08

0.25 1.28403 2.45833e-05 0.06642 6.35704e-05 2.61028e-08

0.35 1.41907 1.24514e-05 0.06212 1.01215e-04 3.99067e-08

0.45 1.56831 2.18549e-06 0.06039 1.54963e-04 5.60546e-08

0.55 1.73325 6.98213e-06 0.05985 2.31844e-04 7.49678e-08

0.65 1.91554 9.17099e-06 0.06047 3.39093e-04 9.75358e-08

0.75 2.11700 2.99834e-05 0.06329 4.83948e-04 1.26045e-07

0.85 2.33965 1.31481e-05 0.07424 6.73161e-04 1.66217e-07

0.95 2.58571 1.03407e-05 0.16035 9.12919e-04 2.33085e-07

CPU time 1.075 s

Fig. 1: The absolute errors of Example 3.1 for 2≤ N ≤ 8.

The numerical results of this example are tabulated for N = 3,7 in Table 3. In addition, the results obtained by our method
are compared with the results of Standard collocation (SCM), Chebyshev Gauss Lobatto collocation (CGLCM) methods
given in [30], Finite difference method (FDM) and Homotopi perturbasyon method (HPM) given in [31]. As can be seen
from the tables, the result obtained by the present method is almost the same as the results of the exact solution. The
present method is also effective and convenient. The absolute errors in the numerical solution of Example 3.2 are seen in
Fig. 2. The error decreases when the integer N is increased.
The first five values of the residual error function are shown in Fig. 3. It can be concluded that, the residual error decreases
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Table 3: Comparisons of absolute errors for N = 3,7 in Example 3.2.

t
Exact solution

y(t) = e−t cosh t

Present

method

|e3(t)|

Present

method

|e7(t)|

SCM

|e7(t)|
CGLCM

|e7(t)|
FDM

|e12(t)|
HPM

|e10(t)|

0.0000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.0833 0.923269 0.000426 8.414e-08 1.846e-05 1.793e-05 0.017692 2.822e-05

0.1667 0.858242 0.001194 9.981e-08 3.370e-05 9.948e-05 0.002145 2.388e-05

0.3333 0.756726 0.001901 6.849e-08 9.368e-06 2.378e-05 0.004541 1.711e-05

0.4167 0.717285 0.001567 7.543e-08 2.205e-05 6.132e-06 0.020633 1.448e-05

0.5000 0.683940 0.000950 6.699e-08 7.323e-06 8.835e-05 0.007136 3.143e-10

0.5833 0.655712 0.000397 6.591e-08 3.581e-06 0.000142 0.011048 1.038e-05

0.6667 0.631790 0.000400 1.124e-07 1.494e-05 0.000110 0.008200 8.786e-06

0.7500 0.611565 0.001570 2.042e-07 5.648e-06 3.471e-05 0.003413 1.326e-09

0.8333 0.594444 0.004621 3.793e-07 8.925e-07 8.169e-05 0.008170 6.295e-06

0.9167 0.579935 0.010359 1.205e-06 1.056e-05 0.000137 0.002889 5.334e-06

1.0000 0.567668 0.019646 5.014e-06 4.798e-06 0.000162 0.003272 9.482e-09

CPU time 0.984 s 1.021 s

Fig. 2: Absolute errors of Example 3.2 for 3≤ N ≤ 7.

as N values are increasing.
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Fig. 3: The residual errors of Example 3.2 for 3≤ N ≤ 7.

Example 3.3. Let us consider the fourth order Volterra integro differential

y(4) (t) = t(1+ et)+3et + y(t)−
t∫

0

y(s)ds 0 6 t,s 6 1

with the conditions y(0) = 1, y(1) = 1+ e, y′′(0) = 2, y′′(1) = 3e [32].
Solutions of our problem for different values of N as follows:

y5(t) = 0.04685t5 +0.16667t4 +0.53630t3 + t2 +0.96847t +1

y8(t) = 0.00026t8 +0.00133t7 +0.00836t6 +0.04166t5 +0.16667t4 +0.50004t3 + t2 +0.99996t +1

y10(t)= 3.843∗10−6t10+2.321∗10−5t9+0.00020t8+0.00139t7+0.00833t6+0.04167t5+0.16667t4+0.5t3+t2+t+1

The numerical results of this example are tabulated for N = 5,8,10 in Table 4. In addition, the results obtained by our
method are compared with the results of modified Homotopi perturbasyon method (MHPM) given in [32]. As can be seen
from the tables, the result obtained by the present method is almost the same as the results of the exact solution. The
present method is also very effective and convenient. The absolute errors in the numerical solution of Example 3.3 are
seen in Fig. 4. The error decreases when the integer N is increased.
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Table 4: Comparisons of absolute errors for N = 5,8,10 in Example 3.3.

t
Exact solution

y(t) = 1+ tet

Present method

|e5(t)|
MHPM

|e5(t)|
Present method

|e8(t)|
Present method

|e10(t)|

0 1.0000000000 0.000000 2.000e-09 0.000000 0.000000

0.1 1.1105170918 0.003117 0.016954 4.122e-06 1.741e-08

0.2 1.2442805516 0.006015 0.032409 7.983e-06 3.383e-08

0.3 1.4049576423 0.008474 0.045011 1.132e-05 4.797e-08

0.4 1.5967298791 0.010274 0.053608 1.388e-05 5.896e-08

0.5 1.8243606354 0.011210 0.057319 1.540e-05 6.555e-08

0.6 2.0932712802 0.011108 0.055595 1.563e-05 6.683e-08

0.7 2.4096268952 0.009860 0.048307 1.430e-05 6.153e-08

0.8 2.7804327428 0.007457 0.035833 1.122e-05 4.889e-08

0.9 3.2136428000 0.004047 0.019160 6.307e-06 2.794e-08

CPU time 1.049 s 1.052 s 1.062 s

Fig. 4: Absolute errors of Example 3.3 for 5≤ N ≤ 10.

Example 3.4. Our last example second order Volterra-Fredholm integro differential

ty′′ (t)− ety′ (t)+ y(t) =−t cos t− 1
2

sin2 t− 1
2

π∫
0

scos ty(s)ds+
t∫

0

(et + sins)y(s)ds
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with the conditions y(0) = 1, y′
(

π

2

)
=−1 [33].

Solutions of our problem for different values of N as follows:

y3(t) = 0.17110t3−0.80992t2 +0.27795t +1

y6(t) =−0.00069t6−0.00259t5 +0.04578t4−0.00145t3−0.50533t2 +0.00683t +1

y10(t) =−2.194∗10−7t10−5.567∗10−8t9 +2.385∗10−5t8 +4.344∗10−6t7−0.00140t6 +9.567∗10−6t5

+0.04166t4 +5.075∗10−6t3−0.5t2 +0.00001t +1

The numerical results of this example are tabulated for N = 3,6,10 in Table 5. And also, the results obtained by our
method are compared with the results of Morgan Voyce collocation method given in [33]. As can be seen from the tables,
the result obtained by the present method is almost the same as the results of the exact solution. The present method is
also very effective and convenient. The residual errors in the numerical solution of Example 3.4 are seen in Fig. 5. The
error decreases when the integer N is increased.

Table 5: Comparisons of absolute errors for N= 3, 6, 10 in Example 3.4.

t
Exact

Solution

y(t) = cos t

Present method

|e3(t)|

Morgan

Voyce

|e3(t)|

Present method

|e6(t)|

Morgan

Voyce

|e6(t)|

Present method

|e10(t)|

Morgan

Voyce

|e10(t)|

0 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

0.2 0.9800665778 0.0444950629 0.0444950629 0.0011476339 0.0011476339 0.0000024196 0.0000024197

0.4 0.9210609940 0.0714813445 0.0714813446 0.0018690395 0.0018690395 0.0000039357 0.0000039357

0.6 0.8253356149 0.0868190967 0.0868190967 0.0022308663 0.0022308663 0.0000046993 0.0000046993

0.8 0.6967067093 0.0949046687 0.0949046687 0.0023262859 0.0023262859 0.0000048725 0.0000048725

1 0.5403023059 0.0988226498 0.0988226498 0.0022485875 0.0022485875 0.0000046275 0.0000046275

1.2 0.3623577545 0.1005503085 0.1005503084 0.0020854119 0.0020854119 0.0000041525 0.0000041525

1.4 0.1699671429 0.1012061748 0.1012061747 0.0019254715 0.0019254716 0.0000036747 0.0000036747

1.6 -0.0291995223 0.1013328604 0.1013328603 0.0018678491 0.0018678492 0.0000034957 0.0000034957

1.8 -0.2272020947 0.1012028370 0.1012028367 0.0020225975 0.0020225976 0.0000040304 0.0000040304

2 -0.4161468365 0.1011349847 0.1011349843 0.0024904512 0.0024904513 0.0000058315 0.0000058315

2.2 -0.5885011173 0.1018092913 0.1018092908 0.0033090306 0.0033090307 0.0000095145 0.0000095145

2.4 -0.7373937155 0.1045671532 0.1045671526 0.0043529901 0.0043529903 0.0000153163 0.0000153164

2.6 -0.8568887534 0.1116853109 0.1116853101 0.0051761429 0.0051761432 0.0000216347 0.0000216347

2.8 -0.9422223407 0.1266124921 0.1266124911 0.0047846353 0.0047846356 0.0000211950 0.0000211950

3 -0.9899924966 0.1541593341 0.1541593329 0.0013317420 0.0013317425 0.0000076252 0.0000076251

π -1.0000000000 0.1846715213 0.1846715219 0.0045871731 0.0045871576 0.0000723499 0.0000723486

CPU time 1.027 s 1.052 s 1.104 s

It can be concluded that, the residual error decreases as N values are increasing.
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Fig. 5: The residual errors of Example 3.4 for 3≤ N ≤ 10.

4 Conclusion

In this research, a collocation calculation model based on Euler polynomial for solutions of the linear integro-differential
equations is presented. Furthermore, the control of the solutions is performed with the utilization of defined techniques.
In addition, an error estimation is given with the residual error function. Comparison of the results obtained by the present
method with that obtained by other methods reveals that the present method is very effective and convenient. Another
advantage of the proposed technique is the utilization for testing reliability of the solutions of different problems. Tables
and figures indicate that as N increases the errors decrease more rapidly; hence for better results, using large number N is
recommended.
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[11] Yüzbaşı Ş., Karaçayır M., A Galerkin-like approach to solve high-order integrodifferential equations with weakly singular kernel,

Kuwait Journal of Science, vol. 43.2, 106?120, (2016).
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