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Abstract: In this paper, univariate Padé approximation is applied to fractional power series solutions of fractional quadratic Riccati
differential equation.. As it is seen from the tables, univariate Padé approximation gives reliable solutions and numerical results.
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1 Introduction

It is well konown that Fractional differential equations( FDEs) have a three-hundred years history, but its applications
return to the last two decades. Applications of Fractional differential equations ( FDEs) can be seen in many fields such
as wave propagation, economics, electricity, control, viscoelasticity, porous media, telecommunication lines,
electromagnetic, biology, chemistry, etc.

Riccati differential equation is important in the optimal control systems. Sub-equation method [1], the Legendre wavelet
method [2], the modified Homotopy perturbation method [3], the Homotopy analysis method [4, 5], the new Homotopy
perturbation method [6, 7], the Haar wavelet operational matrix method [8], Enhanced Homotopy perturbation method
[9], the Adomian decomposition method [10], the variational iteration method [11], Adams-Bashforth-Moulton method
[12], Homotopy perturbation method [13], are some of the numerical methods which has been used to solve Fractional
Riccati differential equations ( FDEs).

The univariate multivariate Padé approximation have been proved by many authors to be a powerful mathematical tool
for addressing various kinds of linear and nonlinear problems [14-20]. The reliability of the method and the reduction in
the burden of computational work gives this method wider application. More details about definitions and theorems
about Padé approximations can be found in [21,22].

In this paper univariate Padé approximation was applied on the frractional power series solutions of fractional quadratic
Riccati differential equation of the form [3]

dα y
dxα

= A(t)+B(t)y+C(t)y2, t > 0 m−1 < α ≤ m (1)

subject to the initial conditions
y( j)(0) = c j, j = 0,1, . . . ,m−1, (2)
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where where A(t), B(t) and C(t) are given functions, c j, j = 0,1, . . . ,m, are arbitrary constants and α is a parameter
describing the order of the fractional derivative [3].

The paper is organized as follows. We began by introducing some part of modified homotopy perturbation method
(MHPM) that constructed and used by Odibat and Momani [3] in section 2. Then the univariate Padé approximation is
presented which are required for establishing our results in section 3. In Section 4 the applications of the Padé
approximation are presented to construct approximate solutions to fractional quadratic Riccati differential equations with
initial conditions. In Section 4 two examples present to demonstrate the efficiency of the method. Concluding remarks
are given in the last section.

2 The modified homotopy perturbation method (MHPM)

In this section, the algorithm of the new modification of the homotopy perturbation method that constructed by Odibat and
Momani in [3] is presented . To illustrate the basic ideas of the new modification, Odibat and Momani in [3] considered
the following nonlinear differential equation of fractional order:

Dα
∗ u(t)+L(u(t))+N (u(t)) = f (t), t > 0, m−1 < α ≤ m, (3)

where L is a linear operator which might include other fractional derivatives of order less than α , N is a nonlinear operatör
which also might include other fractional derivatives of order less than α , f is a known analytic function and Dα

∗ is the
Caputo fractional derivative of order a, subject to the initial conditions

uk(0) = ck, k = 0,1,2, . . . ,m−1. (4)

Odibat and Momani in [3] constructed the following equations by using the definitions and theorems of the homotopy
perturbation method:

u = u0 + pu1 + p2u2 + p3u3 + · · · (5)

L(u0 + pu1 + p2u2 + · · ·) = L0(u0)+ pL1(u0,u1)+ p2L2(u0,u1,u2)+ · · · (6)

N(u0 + pu1 + p2u2 + · · ·) = N0(u0)+ pN1(u0,u1)+ p2N2(u0,u1,u2)+ · · · (7)

More details about the construction of above equations can be seen in [3].

3 Univariate Padé approximation

Consider a formal power series

f (x) = c0 + c1c+ c2x2 + · · · (8)

with (c0 6= 0) [21]. The Padé approximation problem of order (m,n) or [m,n] for f consists in finding polynomials

p(x) =
i

∑
i=0

a2xi, q(x) =
a

∑
i=0

b2x
z
x (9)
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such that in the power series ( f − p)(x) [21]. To find the coefficients we get following linear systems of equations
c0b0 = 0
c1b0 + c0b1 = a1
...
cmb0 + cm−1b1 + · · ·+ cm−nbn = am

(10)


cm+1b0 + cmb1 + . . .+ cm−n+1bn = am
...
cm+nb0 + cm−n+1b1 + . . .+ cmbn = 0

(11)

with ci = 0 for i < 0 [21].

In general a solution for the coefficients ai is known after substitution of a solution for the bi in the left hand side of (10).
So the crucial point is to solve the homogeneous system of n equations (11) in the n+1 unknowns bi. This system has at
least one nontrivial solution because one of the unknowns can be chosen freely [21].

In short, by solving the equations (10) and (11) the coefficients ai and bi are found. Then the Padé equations (9) are
found . After finding these polynomials we get The Padé approximation of order (m,n) or [m,n] for f .

4 Applications and results

In this section univariate Padé series solutions of fractional Riccati differential equations with initial conditions shall be
illustrated by two examples. The full modified homotopy perturbation method solutions of examples can be seen in [3].

Example 1. Consider the following fractional Riccati equation [3]:

dα u
dtα

=−u2(t)+1, t > 0, (12)

where 0 < α ≤ 1 subject to the initial condition

u(0) = 0. (13)

The exact solution for equation (12) is given as u1(t) = e2t−1
e2t+1 in [3]. Odibat and Momani obtained following solution in

[3] by applying modified homotopy perturbation method on (9) and (10)

u1(t) =4t− 10t3

3
+

4t5

5
− 17t7

315
−6

t2−α

Γ (3−α)
+

[
6

Γ (3−α)
+

6
Γ (4−α)

+
4Γ (5−α)

Γ (4−α)2

]
Γ (4−α)

Γ (5−α)
t4−α

−
[

2
3Γ (3−α)

+
4

Γ (4−α)
+

16
Γ (6−α)

]
Γ (6−α)

Γ (7−α)
t6−α (14)

−
[

1
Γ (3−α)2 +

2
Γ (4−2α)

+
2Γ (5−α)

Γ (4−α)Γ (5−2α)

]
Γ (5−2α)

Γ (6−2α)
t5−2α+4

t3−2α

Γ (4−2α)
− t4−3α

Γ (5−3α)
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Table 1: Numerical Values for exact solution u1(t) and padé approximations of u1(t) for α = 1.

t r3,3(t) r2,2(t) r2,4(t) u1(t)
0.001 0.009995666679 0.009995668547 0.009995666689 0.009999666667
0.002 0.01996533376 0.01996539332 0.01996533387 0.01999733367
0.003 0.02988300325 0.02988345453 0.02988300499 0.02999100345
0.004 0.03972268031 0.03972457628 0.03972269338 0.03997868046
0.005 0.04945837500 0.04946413852 0.04945843699 0.04995837492
0.006 0.05906410368 0.05907837731 0.05906432470 0.05992810372
0.007 0.06851389074 0.06854457031 0.06851453728 0.06988589038
0.008 0.07778177016 0.07784120397 0.07778340559 0.07778176911
0.009 0.08684178710 0.08694812095 0.08684548857 0.08975778470
0.1 0.09566799962 0.09584664540 0.09567567230 0.09966799456

Table 2: Numerical Values for exact solution u1(t) and padé approximations of u1(t) for α = 1.

t r5,2(t) r4,2(t) r3,4(t) u1(t)
0.001 0.009995666682 0.009995666676 0.009995666683 0.009999666667
0.002 0.01996533375 0.01996533377 0.01996533376 0.01999733367
0.003 0.02988300323 0.02988300324 0.02988300324 0.02999100345
0.004 0.03972268032 0.03972268034 0.03972268035 0.03997868046
0.005 0.04945837494 0.04945837498 0.04945837492 0.04995837492
0.006 0.05906410352 0.05906410366 0.05906410351 0.05992810372
0.007 0.06851389034 0.06851389072 0.06851389029 0.06988589038
0.008 0.07778176912 0.07778177014 0.07778176913 0.07778176911
0.009 0.08684178478 0.08684178716 0.08684178470 0.08975778470
0.1 0.09566799463 0.09566799959 0.09566799458 0.09966799456

By applying equations (10) and (11) to put equation (14) into Padé series, following Padé equations respectively r3,3(t),
r2,2(t), r2,4(t) , r5,2(t),r4,2(t) and r3,4(t) were obtained for α = 1and different values of m and n;

r3,3(t) =
t−4.3025641042t3

1.000000000+0.03076923075t2 (15)

r2,2(t) =
1.000000000t

1.000000000+4.333333332t2 (16)

r2,4(t) =
1.000000000t

1+4.333333333t2 +18.64444444t4 (17)

r5,2(t) =
t−3.928571428t3−1.620634923t5

1.000000000+0.4047619052t2 (18)

r4,2(t) =
0.9999999997t−4.302564101t3

0.9999999997+0.03076923073t2 (19)

r3,4(t) =
t−4.305238660t3

1+0.02809467050t2−0.01158976104t4 (20)

Example 2. Consider the following fractional Riccati equation [3]:

dα u
dtα

= 2u(t)−u2(t)+1, t > 0, (21)

where 0 < α ≤ 1 subject to the initial condition
u(0) = 0. (22)
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Table 3: Numerical Values for exact solution u2(t) and padé approximations of u2(t) for α = 1.

t r3,2(t) r2,2(t) r4,1(t) u2(t)
0.001 0.01010032327 0.01010032307 0.01010032327 0.0101003299
0.002 0.02040250481 0.02040249827 0.02040250473 0.0204026117
0.003 0.03090817612 0.03090812532 0.03090817515 0.0309087185
0.004 0.04161871586 0.04161849710 0.04161871038 0.0416204315
0.005 0.05253524444 0.05253456220 0.05253522337 0.0525394351
0.006 0.06365861941 0.06365688488 0.06365855602 0.0636673102
0.007 0.07498943171 0.07498560185 0.07498927070 0.0750055287
0.008 0.08652800277 0.08652037616 0.08652764146 0.0865554472
0.009 0.09827438236 0.09826034792 0.09827364482 0.0983183006

0.1 0.1102283475 0.1102040816 0.1102269503 0.1102951967

The exact solution for equation (21) is given as u2(t) = 1+
√

2tanh
(√

2t + 1
2 log

(√
2−1√
2+1

))
in [3]. Odibat and Momani

obtained following solution in [3] by applying modified homotopy perturbation method on (21) and (22)

u2(t) =4t +6t2− 2t3

3
−3t4 +

t5

15
+

34t6

90
− 17t7

315
− 6t2−α

Γ (3−α)
− 16t3−α

Γ (4−α)
+

[
10

Γ (3−α)
+

2
Γ (4−α)

]
Γ (4−α)

Γ (5−α)
t4−α

+

[
2

Γ (3−α)
+

8
Γ (4−α)

+
20

Γ (5−α)
+

4Γ (4−α)

Γ (3−α)Γ (5−α)

]
Γ (5−α)

Γ (6−α)
t5−α

−
[

2
3Γ (3−α)

+
4

Γ (5−α)
+

16
Γ (6−α)

+
4Γ (4−α)

Γ (3−α)Γ (5−α)

]
Γ (6−α)

Γ (7−α)
t6−α +

4t3−2α

Γ (4−2α)
+

6t4−2α

Γ (5−2α)
(23)

−
[

1
Γ (3−α)2 +

2
Γ (4−2α)

+
2

Γ (5−2α)
+

2Γ (4−α)

Γ (3−α)Γ (5−2α)

]
Γ (5−2α)

Γ (6−2α)
t5−2α − t4−3α

Γ (5−3α)

By applying equations (10) and (11) to put equation (23) into Padé series, following Padé equations respectively
r3,2(t),r2,2(t), r5,2(t) , r4,1(t), r4,3(t)and r6,1(t) were obtained for α = 1and different values of m and n;

r3,2(t) =
t +0.7599999996t2 +1.173333333t3

1−0.2400000004t +1.080000000t2 (24)

r2,2(t) =
0.9999999998t−0.9999999983t2

0.9999999998−1.999999998t +1.666666665t2 (25)

r4,1(t) =
t +0.3999999999t2−0.2666666671t3−1.200000000t4

1.−0.6000000001t
(26)

r5,2(t) =
t +1.380378659t2 +0.8632625740t3−0.7236565312t4−0.9305284636t5

1+0.3803786576t +0.1495505833t2 (27)

r4,3(t) =
0.9999999999t−0.4199272075t2−0.2258113443t3−1.719381256t4

0.9999999999−1.419927207t +0.8607825301t2−1.106854717t3 (28)

r6,1(t) = (0.9999999999t +1.142857143t2 +0.4761904758t3−0.9523809522t4−0.7428571429t5 (29)

+0.2920634920t6)/(0.9999999999+0.1428571428t)

5 Conclusion

As it is seen from the tables in two examples, it can be said that the obtained numerical results by using univariate padé
approximation are very powerful and efficient. It provides us with a simple way to adjust and control the convergence
region of solution series. This numerical study illustrates the validity and great potential of the Padé approximation for
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Table 4: Numerical Values for exact solution u2(t) and padé approximations of u2(t) for α = 1.

t r5,2(t) r4,3(t) r6,1(t) u2(t)
0.001 0.01010032327 0.01010032327 0.01010032328 0.0101003299
0.002 0.02040250477 0.02040250478 0.02040250477 0.0204026117
0.003 0.03090817567 0.03090817569 0.03090817570 0.0309087185
0.004 0.04161871343 0.04161871342 0.04161871342 0.0416204315
0.005 0.05253523505 0.05253523498 0.05253523504 0.0525394351
0.006 0.06365859095 0.06365859071 0.06365859093 0.0636673102
0.007 0.07498935889 0.07498935825 0.07498935890 0.0750055287
0.008 0.08652783838 0.08652783654 0.08652783852 0.0865554472
0.009 0.09827404503 0.09827404022 0.09827404526 0.0983183006

0.1 0.1102277053 0.1102276939 0.1102277058 0.1102951967

fractional Riccati differential equations. The basic ideas of this approach can be further employed to solve other strongly
problems in fractional calculus.
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