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Abstract: In this paper, we will establish some oscillation criteria for for advanced differential equations on time scale

u∆ (t)−η (t)u(λ (t)) = 0, for t ∈ [t0,∞)∩T,

on a time scales, where supT= ∞ This study aims to present some new sufficient conditions for the oscillatory of solutions to a class
of first-order advanced differential equation on time scale.
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1 Introduction

In this article, we consider the advanced differential equation on time scale of the form

u∆ (t)−η (t)u(λ (t)) = 0, for t ∈ [t0,∞)∩T, (1)

on a time scale T, since we are interested in oscillation, we assume throughout this paper that the given time scale T is
unbounded above and is a time scale interval of the form It0 = [t0,∞)∩T, with t0 ∈ T. The functions η ∈ C

(
It0 , [0,∞)

)
and λ ∈ C

(
It0 , It0

)
, such as η ̸= 0 on any interval of the form It0 , λ (t)> t, for t ∈ It0 and limt→∞ λ (t) = ∞.

By a solution of (1) we mean a nontrivial real-valued function u ∈ C 1 (ITu ,R) , Tu ∈ It0 which satisfies (1) on ITu . The
solutions vanishing in some neighbourhood of infinity will be excluded from our consideration. A solution u of (1) is
said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is nonoscillatory. Equation
(1) is called oscillatory if all its solutions are oscillatory. The theory of time scales was introduced by Hilger [1] in order
to unify, extend, and generalize ideas from discrete calculus, quantum calculus, and continuous calculus to arbitrary time
scale calculus. The books on the subjects of time scale, that is, measure chain, by Bohner and Peterson [2,3], summarize
and organize much of time scale calculus. The theory of oscillations is an important branch of the applied theory of
dynamic equations related to the study of oscillatory phenomena in technology, natural and social sciences.

In recent years, there has been much research activity concerning the oscillation of solutions of various dynamic
equations on time scales.

Today there has been an increasing interest in obtaining sufficient conditions for oscillation and non oscillation of solutions
of advanced type differential equations, we refer the reader to the articles [19]-[26] and the references cited therein. So far,
there are any results on oscillatory of (1). Hence the aim of this paper is to give some oscillation criteria for this equation.
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2 Preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R. For t ∈ T, we define the forward jump
operator σ : T → T by σ(t) = inf{s ∈ T : s > t} and the backward jump operator ρ : T → T by
ρ(t) := sup{s ∈ T : s < t}. Then, one defines the graininess function µ : T → [0,+∞[ by µ(t) = σ(t)− t. If σ(t) > t,
then we say that t is right-scattered; if ρ(t) < t, then t is left-scattered. Moreover, if t < supT and σ(t) = t, then t is
called right-dense; if t > infT and ρ(t) = t, then t is called left-dense. If T has a left-scattered maximum m, then we
define Tκ = T\{m}; otherwise Tκ = T. If u : T→ R, then uσ : T→ R is given by uσ (t) = u(σ(t)) for all t ∈ T.

Let u : T→ R be a real valued function on a time scale T. Then, for t ∈ Tk, we define u∆ (t) to be the number, if one
exists, such that for all ε > 0, there is a neighborhood V of t such that for all s ∈ V ,∣∣∣uσ (t)−u(s)−u∆ (t)(σ (t)− s)

∣∣∣≤ ε |σ (t)− s| .

We say that u is delta differentiable on T provided u∆ (t) exists for all t ∈ Tk. We will make use of the following product
and quotient rules for the derivative of the product uv and the quotient

u
v

(where vvσ ̸= 0) of two differentiable function u
and v

(uv)∆ = u∆ vσ +uv∆ , and
(u

v

)∆

=
u∆ v−uv∆

vvσ
.

A function f : T→ R will be called rd-continuous provided it is continuous at each right-dense point and has a left-sided
limit at each point, we write f ∈ Crd (T) = Crd (T,R) .

For a, b ∈ T, and for a differentiable function f , the Cauchy integral of f ∆ is defined by

∫ b

a
f ∆ (t)∆ t = f (b)− f (a) .

An integration by parts formula reads

∫ b

a
f (t)g∆ (t)∆ t = [ f (t)g(t)]ba −

∫ b

a
f ∆ (t)gσ (t)∆ t.

and the improper integrals are defined in the usual way by

∫
∞

a
f (t)∆ t = lim

b→∞

∫ b

a
f (t)∆ t.

For more on the calculus on time scales, we refer the reader to the books [2,3].

3 Oscillation results

To derive main results in this section, we need the following lemma.

Definition 1. Let us define a sequence of functions by the recurrence relation

wn+1 (t) :=
∫

λ (t)

t
η (s)exp(wn (t))∆s, for t ∈ It0 , (2)

with

w0 (t) :=
∫

λ (t)

t
η (s)∆s, for t ∈ It0 . (3)

Lemma 1. If u is an positive solution of (1), then the sequence {wn (t) : n ∈ N} converges.
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Proof. Let u be an eventually positive solution of (1). From (1), we have u∆ (t)≥ 0, for t ∈ It0 , by Pöotzsche’s chain rule
[2, Theorem 1.90], we see that

(ln(u(t)))∆ = u∆ (t)
∫ 1

0
(hu(t)+(1−h)uσ (t))−1 dh ≥ u∆ (t)

u(t)
, for t ∈ It0 ,

so, we get

ln
(

u(λ (t))
u(x)

)
≥

∫
λ (t)

t

u∆ (s)
u(s)

∆s =
∫

λ (t)

t
η (s)

u(λ (s))
u(s)

∆s >
∫

λ (t)

t
η (s)∆s = w0 (t) , for t ∈ It0 .

This means,
u(λ (t))

u(t)
≥ exp(w0 (t)) , for t ∈ It0 .

Multiplying the left-hand side by η (t), we get

η (t)u(λ (t))
u(t)

≥ η (t)exp(w0 (t)) , for t ∈ It1 .

It follows from (??) and the above inequality, we obtain

ln
(

u(λ (t))
u(t)

)
≥

∫
λ (t)

t
η (s)exp(w0 (s))∆s := w1 (t) , for t ∈ It0 .

By induction, we can see that if

ln
(

u(λ (t))
u(t)

)
≥ wn (t) , for t ∈ It0 .

In the same way, we find that the inequality is true for n+ 1. By (2) and the above inequality, we conclude that the
sequence {wn (t) : n ∈ N} is increasing and increased, then {wn (t) : n ∈ N} is converges.

Lemma 2.The sequence {wn (t) : n ∈ N} defined by (2), converges if and only if

∫
λ (t)

t
η (s)∆s ≤ 1

e
, for all t ∈ It0 . (4)

Proof.Sufficient: Suppose that (3) is true. Then

w0 (t)≤
1
e
= a0, for all t ∈ It0 ,

Then, we get

w1 (t)≤
∫

λ (t)

t
η (s)exp(w0 (t))∆s ≤ a0 exp(a0) = a.

By induction, we can see that if
wn (t)≤ a0 exp(an)< 1.

In view of Lemma [19, Lemma 2.1], {wn (t) : n ∈ N} converges.
Necessary: Suppose that {wn (t) : n ∈ N} converges. then there is a positive real function denoted w(t), such as w(t) =
lim
n→∞

wn (t), by (2), we find that the function w is satisfied

w(t) =
∫

λ (t)

t
η (s)exp(w(t))∆s, for t ∈ It0 .
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The above equality, we conclude that the function w is increased on [t0,∞). Let ψ (t) = exp(w(t))≥ 1, for t ∈ It0 , we have

ψ (t) = exp
(∫

λ (t)

t
η (s)ψ (s)∆s

)
, for t ∈ It0 .

It follows from ψ is increased on [t0,∞) and the above equality, we obtain

exp
(

ψ (t)
∫

λ (t)

t
η (s)∆s

)
≤ exp

(∫
λ (t)

t
η (s)ψ (s)∆s

)
= ψ (t) , for t ∈ It0 .

Then, ∫
λ (t)

t
η (s)∆s ≤ ln(ψ (t))

ψ (t)
, for t ∈ It0 . (5)

On the other hand, we have

max
{

ln(x)
x

: x ≥ 1
}
=

1
e
.

By (5) and the above inequality, we have

∫
λ (t)

t
η (s)∆s ≤ 1

e
, for t ∈ It0 .

This completes the proof.

Remark.If u is an positive solution of (1), then inequality (4) is satisfied.

Now, we establish some sufficient conditions which guarantee that every solution u of (1) oscillates on [t0,∞).

Theorem 1.For all sufficiently large t1 ∈ It0 , such as

∫
λ (t)

t
η (s)∆s >

1
e

, for t ∈ It1 . (6)

Then any solution of (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution u on [t0,∞). Since −u is also a solution of (1), we can confine our
discussion only to the case where the solution u is eventually positive solution of (1). We may assume without loss of
generality that there exists t1 ∈ It0 , such that

u(t)> 0 and u(λ (t))> 0, for all t ∈ It1 .

This means the following equation (1) has a positive solution u on It1 .

u∆ (t)−η (t)u(λ (t)) = 0, for t ∈ It1

By Lemma 1 and Lemma 2, we obtain ∫
λ (t)

t
η (s)∆s ≤ 1

e
, for t ∈ It1 .

which contradicts (6). This completes the proof.

As a Theorem of the previous result, we deduce the following corollaries.

Corollary 1. If

liminf
t→∞

∫
λ (t)

t
η (s)∆s >

1
e
.
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Then any solution of (1) is oscillatory.

Corollary 2. If

limsup
t→∞

∫
λ (t)

t
η (s)∆s > 1.

Then any solution of (1) is oscillatory.

4 Application

In this section, we give applications and examples to illustrate our main result. Next, we consider the advanced differential
equation on time scale of the form

u∆ (t)+q(t)uσ (t)−η (t)u(λ (t)) = 0, for t ∈ It0 , (7)

and
u∆ (t)−q(t)u(t)−η (t)u(λ (t)) = 0, for t ∈ It0 , (8)

with, the functions q ∈ C
(
It0 , [0,∞)

)
.

Theorem 2. For all sufficiently large t1 ∈ It0 , such as

∫
λ (t)

t
η (s)e⊖q (s, t0)e⊖q (τ (s) , t0)∆s >

1
e

, for t ∈ It1 , (9)

Then any solution of (7) is oscillatory.

Proof. By equation (7), we find

[u(t)eq (t, t0)]
∆ = η (t)e⊖q (t, t0)u(λ (t)) , for t ∈ It0 .

Let v(t) = u(t)eq (t, t0), for t ∈ It0 , we have

v∆ (t) = η (t)e⊖q (t, t0)e⊖q (τ (t) , t0)v(λ (t)) , for t ∈ It0 ,

we conclude that the latter’s equation is the same as the equation (1). And from it we conclude if it is achieved (9), then
any solution of (7) is oscillatory.

Theorem 3. For all sufficiently large t1 ∈ It0 , such as

∫
λ (t)

t
η (s)

eq (λ (s) , t0)
eσ

q (s, t0)
∆s >

1
e

, for t ∈ It1 , (10)

Then any solution of (8) is oscillatory.

Proof. Let u be an eventually positive solution of (8), then[
u(t)

eq (t, t0)

]∆

=
η (t)

eq (t, t0)eσ
q (t, t0)

u(λ (t)) , for t ∈ It0 .

Let v(t) =
u(t)

eq (t, t0)
, for t ∈ It0 , we have

v∆ (t) = η (t)
eq (λ (t) , t0)

eq (t, t0)
u(λ (t)) , for t ∈ It0 ,
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we conclude that the latter’s equation is the same as the equation (1). And from it we conclude if it is achieved (10), then
any solution of (8) is oscillatory.

Next, we give an example to illustrate our main result.

Example 1. Consider the delay differential equation

x∆ (t)− (t +1)x(t +1) = 0, for all t ∈ N. (11)

Here, T= N, η (t) = t +1, and λ (t) = t +1 > t, for all t ∈ N. On the other hand, we have

∫
λ (t)

t
η (s)∆s =

∫ t+1

t
(s+1)∆s = t +1 >

1
e
, for all t ∈ N.

Thus, (6) holds. By Theorem 1, equation (11) is oscillatory.

Example 2. Consider the delay differential equation

x∆ (t)− tx(2t) = 0, for all t ∈ 2N. (12)

Here, T=2N, η (t) = t, and λ (t) = 2t > t, for all t ∈ 2N. Then

∫
λ (t)

t
η (s)∆s =

∫ 2t

t
s∆s = 2t2 ≥ 1 = λ , for all t ∈ 2N.

Thus, (6) holds. By Theorem 1, equation (12) is oscillatory.

5 Conclusion

In this paper, we use the recursive sequence we have constructed to establish some new oscillation results of first-order
linear dynamic equations with damping. Our results not only unify the oscillation of differential equations but also improve
the differential equations established in [19].
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