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Abstract: We study the boundedness of non regular pseudodifferential operators, with symbols belonging to certain vector-valued
Besov space, on Besov spaces with variable smoothness and integrabilty. These symbols include the classical Hörmander classes.
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1 Introduction

Pseudo-differential operators play an import role in Harmonic analysis and in nonlinear partial differential. The
boundedness these operators has been extensively addressed in several works. In Lebesgue spaces with symbols in the
Hörmander classes can be found in [5-8, 10-11, 20-22, 35, 41] and references therein. In another function spaces, such
that Besov spaces, Triebel-Lizorkin spaces, BMO spaces and Hardy spaces, see [23, 28-29, 32, 39-40].

In [9] J. Marschall introduced the class SBm
δ
(r,µ,v;N,λ ), which is defined by means of vector-valued Besov spaces, and

proved the boundedness of the corresponding pseudodifferential operators on Besov spaces and Triebel-Lizorkin spaces.

Boundedness of pseudodifferential operators, with symbols in the Hörmander classes, on weighted variable exponent
Lebesgue and Bessel potential spaces was studied by V.S. Rabinovich and S. Samko [30-31] and by A. Yu. Karlovich
and I. M. Spitkovsky in [8] (in variable Lebesgue space). Since Besov spaces can be written as a (real) interpolation
space between appropriate Bessel potential spaces, Almeida and Hasto [2] extend the results of V.S. Rabinovich and S.
Samko to Besov spaces with variable integrability Bs

p(·),q.

Our main result in this paper concerns the boundedness properties of the pseudodifferential operators on Besov spaces
with variable smoothness and integrability with symbols in the class SBm

δ
(r,µ,v;N,λ ).

2 Preliminaries

As usual, we denote by Rn the n-dimensional real Euclidean space, N the collection of all natural numbers and N0 = N∪
{0}. The letter Z stands for the set of all integer numbers. The expression f ≲ g means that f ≤ cg for some independent
constant c (and non-negative functions f and g), and f ≈ g means f ≲ g ≲ f . As usual for any x ∈ R, [x] stands for the
largest integer smaller than or equal to x.
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By supp f we denote the support of the function f , i.e., the closure of its non-zero set. If E ⊂ Rn is a measurable set,
then |E| stands for the (Lebesgue) measure of E and χE denotes its characteristic function.

The Hardy-Littlewood maximal operator M is defined on L1
loc by

M f (x) = sup
r>0

1
|B(x,r)|

∫
B(x,r)

| f (y)|dy

and Mτ f =
(
M | f |τ

)1/τ , 0 < τ < ∞. The symbol S (Rn) is used in place of the set of all Schwartz functions on Rn. We
denote by S ′(Rn) the dual space of all tempered distributions on Rn. The Fourier transform of a tempered distribution f
is denoted by F f while its inverse transform is denoted by F−1 f .

2.1 Variable exponents.

The variable exponents that we consider are always measurable functions p on Rn with range in [c,∞[ for some c > 0.
We denote the set of such functions by P0. The subset of variable exponents with range [1,∞[ is denoted by P . We use
the standard notation p− := ess-inf

x∈Rn
p(x), p+ := ess-sup

x∈Rn
p(x).

The variable exponent Lebesgue space Lp(·) is the class of all measurable functions f on Rn such that the modular

ρp(·)( f ) :=
∫
Rn

| f (x)
λ

|p(x) dx

is finite for some λ > 0. This is a quasi-Banach function space equipped with the quasi-norm

∥ f∥p(·) := inf
{

µ > 0 : ρp(·)

( 1
µ

f
)
≤ 1

}
.

If p(x) := p is constant, then Lp(·) = Lp is the classical Lebesgue space.

Let p,q ∈ P0. The mixed Lebesgue-sequence space ℓq(·)(Lp(·)) is defined on sequences of Lp(·)-functions by the modular

ρℓq(·)(Lp(·))(( fv)v) := ∑
v

inf
{

λv > 0 : ρp(·)

( fv

λ
1/q(·)
v

)
≤ 1

}
.

The (quasi)-norm is defined from this as usual:

∥( fv)v∥ℓq(·)(Lp(·)) := inf
{

µ > 0 : ρℓq(·)(Lp(·))

( 1
µ
{ fv}v

)
≤ 1

}
. (1)

If q+ < ∞, then we can replace (1) by the simpler expression ρℓq(·)(Lp(·))(( fv)v) := ∑
v

∥∥∥| fv|q(·)
∥∥∥ p(·)

q(·)
. Furthermore, if p and q

are constants, then ℓq(·)(Lp(·)) = ℓq(Lp). The case p := ∞ can be included by replacing the last modular by
ρℓq(·)(L∞)(( fv)v) := ∑

v

∥∥ | fv|q(·)
∥∥

∞
.

We say that g : Rn → R is locally log-Hölder continuous, abbreviated g ∈Clog
loc , if there exists clog(g)> 0 such that

|g(x)−g(y)| ≤
clog(g)

log(e+1/ |x− y|)
(2)
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for all x,y ∈Rn. We say that g satisfies the log-Hölder decay condition, if there exists g∞ ∈R and a constant clog > 0 such
that

|g(x)−g∞| ≤
clog

log(e+ |x|)

for all x ∈Rn. The constants clog(g) and clog are called the locally log-Hölder constant and the log-Hölder decay constant,
respectively. We note that all functions g ∈Clog

loc always belong to L∞.

We say that g is globally-log-Hölder continuous, abbreviated g ∈Clog, if it is locally log-Hölder continuous and satisfies
the log-Hölder decay condition. We define the following class of variable exponents

P log :=
{

p ∈ P :
1
p
∈Clog

}
,

were introduced in [7,Section 2]. We define 1/p∞ := lim|x|→∞ 1/p(x) and we use the convention 1
∞
= 0. Note that although

1
p is bounded, the variable exponent p itself can be unbounded. It was shown in [6], Theorem 4.3.8 that M : Lp(·) → Lp(·)

is bounded if p ∈ P log and p− > 1, see also [7], Theorem 1.2. Also if p ∈ P log, then the convolution with a radially
decreasing L1-function is bounded on Lp(·): ∥ϕ ∗ f∥p(·) ≤ c∥ϕ∥1∥ f∥p(·). We also refer to the papers [3] and [4], where
various results on maximal function in variable Lebesgue spaces were obtained. Recall that ηv,m(x) := 2nv(1+2v |x|)−m,
for any x ∈ Rn, v ∈ N0 and m > 0. Note that ηv,m ∈ L1 when m > n and that ∥ηv,m∥1 = cm is independent of v.

2.2 Variable Besov spaces

In this subsection we present the Fourier analytical definition of the spaces Bs(·)
p(·),q(·) and recall their basic properties. We

first need the concept of a smooth dyadic resolution of unity. Let Ψ be a function in S ′(Rn) satisfying Ψ(x) = 1 for |x| ≤ 1
andΨ(x)= 0 for |x| ≥ 2. We put Fϕ0(x)=Ψ(x), Fϕ1(x)=Ψ(x)−Ψ(2x) and Fϕv(x)=Fϕ1(2−vx) for v= 2,3, ....
Then {Fϕv}v∈N0 is a smooth dyadic resolution of unity, ∑

∞
v=0 Fϕv(x) = 1 for all x ∈Rn. Thus we obtain the Littlewood-

Paley decomposition

f =
∞

∑
v=0

ϕv ∗ f

of all f ∈ S ′(Rn) (convergence in S ′(Rn)).

We are now in a position to state the definition of the spaces Bs(·)
p(·),q(·).

Definition 1.Let {Fϕv}v∈N0
be as resolution of unity. For s : Rn →R and p,q ∈P0, the Besov space Bs(·)

p(·),q(·) consists of
all distributions f ∈ S ′(Rn) such that

∥ f∥
Bs(·)

p(·),q(·)
=
∥∥∥(2vs(·)

ϕv ∗ f )v

∥∥∥
ℓq(·)(Lp(·))

< ∞. (3)

For any p,q ∈ P log
0 and s ∈Clog

loc , the space Bs(·)
p(·),q(·) does not depend on the chosen smooth dyadic resolution of unity

{Fϕv}v∈N0 (in the sense of equivalent quasi-norms) and

S (Rn) ↪→ Bs(·)
p(·),q(·) ↪→ S ′(Rn).

3 Boundedness of pseudodifferential operators

For a function a : Rn ×Rn → C, we write

a j (x,ξ ) = F−1
y→x (ϕ j (y)Fa(y,ξ )) .
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Let 0 < µ ≤ ∞, 1 ≤ λ ≤ ∞, r ≥ n
µ

and N > n
λ

. The space Br
µ,v(B

N
λ ,∞) consists of all distributions a ∈ S ′(Rn ×Rn) such

that
∥a∥Br

µ,v(BN
λ ,∞

) =
∥∥∥{2 jr ∥∥a j (x, ·)

∥∥
BN

λ ,∞

}
j

∥∥∥
ℓv(Lµ )

< ∞.

Notice that these spaces are just the spaces SBr̄
p̄,q̄ with r̄ = (N,r), p̄ = (λ ,µ) and q̄ = (∞,v), see [?] for further properties

of these function spaces. Let m,r,N ∈ R, 0 ≤ δ ≤ 1, 0 < µ ≤ ∞, r > n
µ

and N > n
λ

. We say that a symbol a belongs to
SBm

δ
(r,µ,v;N,λ ) if

sup
k

2−km
∥∥∥∥∥∥a

(
x,2k·

)
ϕk

(
2k·

)∥∥∥
BN

λ ,∞

∥∥∥
L∞(dx)

< ∞

sup
k

2−k(m+δ r)
∥∥∥a

(
x,2k·

)
ϕk

(
2k·

)∥∥∥
Br

µ,v(BN
λ ,∞

)
< ∞,

which, introduced by J. Marschall [9] and [10]. Choosing µ = v = N = λ = ∞, these symbols include the classical
Hörmander classes Sm

1,δ . Moreover the class SBm
0 (r,µ,v;∞,1) equal the class S′(B(1,...,1),r

µ,v )m of M. Yamazaki [11]. Notice
that

SBm
δ
(r,µ,v;N,λ ) ↪→ SBm

δ1
(r1,µ1,v;N,λ ) , (4)

if 0 < µ < µ1 ≤ ∞, 0 < v ≤ ∞, r− n
µ
= r1 − n

µ1
and δ r = δ1r1, see [10, Lemma 10].

A pseudo-differential operator with symbol a ∈ SBm
δ
(r,µ;N,λ ) is defined by

a(x,D) f (x) =
1

(2π)n

∫
eixξ a(x,ξ )F f (ξ )dξ ,

where f ∈ S (Rn). Besov estimates, with fixed exponents, for such operators were given by J. Marschall [10].
The following lemma is from A. Almeida and P. Hästö [1, Lemma 4.7] (we use it, since the maximal operator is in general
not bounded on ℓq(·)(Lp(·)), see [1, Example 4.1]).

Lemma 1. Let p ∈P log, q ∈P log
0 with 0 < q− ≤ q+ < ∞ and p− > 1. For m > n+clog(1/q), there exists c > 0 such that

∥(ηv,m ∗ fv)v∥ℓq(·)(Lp(·)) ≤ c∥( fv)v∥ℓq(·)(Lp(·)) .

The the next three lemmas are used in the proof of our result, see [10] for the constant exponents.

Lemma 2. Let A,B > 0, p, q ∈ P log
0 and s ∈Clog

loc such that q+ < ∞. Let { fk}k∈N0
be a sequence of functions such that

suppF f0 ⊆ {ξ ∈ Rn : |ξ | ≤ A}

and
suppF fk ⊆

{
ξ ∈ Rn : B2k+1 ≤ |ξ | ≤ A2k+1

}
.

Then it holds that: ∥∥∥ ∞

∑
k=0

fk

∥∥∥
Bs(·)

p(·),q(·)
≲
∥∥∥(2ks(·) fk)k

∥∥∥
ℓq(·)(Lp(·))

.

Lemma 3. Let A > 0, p,q ∈ P log
0 and s ∈Clog

loc such that 0 < q+ < ∞. Let s− > n(max{1,1/p−}−1). Let { fk}k∈N0
be a

sequence of functions such that suppF fk ⊆
{

ξ ∈ Rn : |ξ | ≤ A2k+1
}

. Then it holds that

∥∥ ∞

∑
k=0

fk

∥∥∥
Bs(·)

p(·),q(·)
≲
∥∥∥(2ks(·) fk)k

∥∥∥
ℓq(·)(Lp(·))

.
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Lemma 4. Let A > 0, p,q ∈ P log
0 such that 0 < q+ < ∞. Let { fk}k∈N0

be a sequence of functions such that

suppF fk ⊆
{

ξ ∈ Rn : |ξ | ≤ A2k+1
}
.

Let α = n(max{1,1/p−}−1). Then it holds that, for some constant c > 0,

∥∥∥ ∞

∑
k=0

fk

∥∥∥
Bα

p(·),∞
≲
∥∥∥(2kα fk)k

∥∥∥
ℓmin(1,p−)(Lp(·))

. (5)

Moreover if the right-hand side inequality in (5) is finite, then
{

∑
N
k=0 fk

}
N converges in S ′(Rn) to a distribution ∑

∞
k=0 fk

satisfying this inequality.

The following proposition plays a fundamental role.

Proposition 1. Let s ∈Clog
loc , p1, p2, q ∈ P log

0 , 0 < µ ≤ ∞ and 1 ≤ λ ≤ ∞ with 1
p1(·)

= 1
p2(·)

+ 1
µ

. Let a : Rn ×Rn → C be
a bounded and measurable symbol such that

suppa(x, ·)⊆ {ξ ∈ Rn : |ξ | ≤ c2k}.

If p−1 ≥ 1 or if 0 < p−1 < 1 and
suppF f ⊆ {ξ ∈ Rn : |ξ | ≤ c2k},

and if N > nmax
{ 1

2 ,
1
λ
, 1

p−2

}
+ clog (s)+ clog(

1
q ), then

∥∥∥2ks(·)
δ
− 1

q(·) a(x,D) f
∥∥∥

p1(·)
≲
∥∥∥∥∥∥a

(
·,2k·

)∥∥∥
BN

λ ,∞

∥∥∥
µ

∥∥∥2ks(·)
δ
− 1

q(·) f
∥∥∥

p2 (·)

for any k ∈ N0 and any δ ∈
[
2−k,1+2−k

]
, with the implicit constant not depending on k.

Now we are ready to formulate our main result.

Theorem 1. Let s ∈ Clog
loc , p, q ∈ P log

0 with 0 < q+ < ∞. Let a ∈ SBm
δ
(r,µ,v;N,λ ) be such that 0 < µ,v ≤ ∞, r > 0,

(1−δ )r ≥ n
µ

and 1 ≤ λ ≤ ∞. Let N > nmax
{ 1

2 ,
1
λ
, 1

p−
}
+ clog (s)+ clog(

1
q ).

(i) If

nmax
{

1,
1
µ
+

1
p−

}
−n− (1−δ )r < s−

and
s+ < r−nmax

{ 1
µ
− 1

p+
,0
}
,

then a(x,D) is a continuous linear mapping from Bs(·)+m
p(·),q(·) to Bs(·)

p(·),q(·).
(ii) If (1−δ )r > n

µ
, v ≤ q− < ∞. and

s := r−nmax
{ 1

µ− − 1
p+

,0
}
,

then a(x,D) is a continuous linear mapping from Bs+m
p(·),q(·) to Bs

p(·),q(·).

(iii) We suppose that 1
µ
+ 1

p− ≤ 1 or 0 < p+ ≤ 1 and 1
µ
+ 1

p− > 1. If (1−δ )r > n
µ

, 0 < q+ ≤ min{1, p−} and

s := nmax
{

1,
1
µ
+

1
p−

}
−n− (1−δ )r,
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then a(x,D) is a continuous linear mapping from Bs(·)+m
p(·),q(·) to Bs(·)

p(·),q(·).
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