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Unimodular matrix on shallow water wave theory.
Unimodularity through matrix method
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Abstract: The matrix method used in many studies of wave theory, for easy calculations, is described and used in the shallow water
breaking theory. We deal with shallow water wave breaking and the method of unimodular matrix. Introducing a class of nonlinear
water waves, the solution in the stratification regions using matrix method through unimodularity is given.

In this paper we present the stratification approximated by n-layers. Our method firstly involves a 2x2 matrix. Taking the production
of n 2x2 matrices we choose the layers with linear variation. The main part of our work covers the fact that energy conservation law is
satisfied. For this the unimodularity of the matrices is used. The models are tested against experiments concerning periodic wave
transformation. The density and the speed of waves vary exponentially with depth. We conclude with experiments and some important
conclusions.
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1 Introduction

The shallow water wave is studied as a sinusoidal wave of wavelength L, height H and period T, propagating on water
with undisturbed depth h. We study more specifically the propagation of nonlinear water waves. For this we calculate the
approximation of the structure stratification by a set of layers in uniform way using for this matrices to connect the water
region across the layers (see 2-4). We use 2 x 2 matrix to calculate the reflection and braking of water waves as a
summary of the variation methods used in incident waves [7]). We formulate the problem using the real elements of
matrix, saving the time of computations. To guarantee energy conservation we use the unimodularity of the matrices as
we must see in this paper.

The comparison between theory and experiments represents the opportunity to reveal the experimental constraints
(Farhat [8], Porter and Newman [9]). These subjects are of great interest for engineers, mathematicians and physicist, as
well as the theoretical assumptions make models different from reality.

2 Main theory

2.1 Surface wave theory

We consider an irrotational flow, with velocity u, which can be expressed as: u=∇φ , where φ represents a scalar potential.
If we consider mass conservation, the scalar potential satisfies Laplace’s equation: ∇φ = 0. It is a reasonable starting point
for shallow water waves, which are greatly influenced by viscosity, surface tension or turbulence. Such a theory is based
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on some basic assumptions that establish the foundation of the following development. Let us consider a surface of the
water.

S(x,y, t) = z−η(x,y, t) = 0 (1)

Then, considering that the surface S moves with the water and always contains the same particles, we can express the zero
exchange of particles by means of the material derivative:

DS
Dt

=

(
∂S
∂ t

+u∇S
)
= 0 (2)

2.2 The propagation of the shallow water waves problem

Our interesting problem is the propagation of the shallow water waves in a coastal region with some obstacles inside it. The
velocity potential function ϕ and the surface displacement η should satisfy the Laplace equation (volume conservation):(

∂ 2

∂x2 +
∂ 2

∂ z2

)
ϕ = 0 (3)

and the free surface boundary conditions expressed in the following equations:

∂ϕ

∂ z
=

∂η

∂ t
+

∂ϕ

∂x
∂η

∂x
, z = η

∂ϕ

∂ t
+

[(
∂ϕ

∂x

)2

+

(
∂ϕ

∂ z

)2
]
, (4)

3 The Mathematical models of surface waves

3.1 The linearized equation of the velocity potential function φ

. In this article, we mention the model developed by Massel [11], the mathematical models of surface waves that gives
results for nonlinear conditions. We mention the fact that the application was study by Ohyama [12]. Among the earliest
models, which solve the linearized equations, one can mention Mei and Black [13], who presents a variation of
formulation of Miles [14]. Thus, we propose a model of nonlinear propagation expressed as a nonlinear wave equation.
The unimodular matrix method is used to obtain responses of approximation solution on braking water waves equation.

In addition, a nonlinear source term in the right hand yields a non-homogeneous partial differential equation.(
∂ 2ϕ

∂ t2 +β
∂ϕ

∂ t
− c2(x)

∂ 2ϕ

∂x2

)
= α (x)

∂

∂ t

(
∂ϕ

∂x

)
(5)

where β is constant and α(x) and c(x) are piecewise functions representing the nonlinearity and the phase velocity,
respectively. We develop the wave function ϕ using the linearized equation, which is expressed as follows:(

∇
2
ϕ − 1

c2
∂ 2ϕ

∂ t2 − 1
ρ

∇ϕ∇ρ

)
= 0 (6)

Thus, we have [ϕ1] = 0 and [ ∂

∂x ϕ1] = 0 at x = 0. Taking the proposed solution developed by Massel [5], according to the
boundary conditions at the infinity as:

ϕ1 = αei(kx − ω t) −αRe−i(kx + ω t) ,x<0 (7)
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ϕ1 = αTei(kx−ω t),x>0 (8)

In the zx plane, solution of the above equation (6) has the form;

ϕ(z,x, t) = ei(Kx−ωt)
ϕ(z) (9)

where ω is the angular frequency of the wave and K is the x component of the wave vector, which is a constant of the
motion. For a rectangular stratification region between uniform media a and b, note that the constant K, as the braking
wave number is: K = ω

c sinΦ , where Φ is the angle of breaking waves (incidence at points a and b). From (5) and (6), the
equation for ϕ(z) is

ρ
d
dz

(
1
ρ

dϕ

dz

)
+q2

ϕ= 0 (10)

where q is the normal component of the water wave vector (q2 (z)=ω2

c2 −K2). Note that q = ω

c cosΦ . The dispersion
relation between ω and K will be referred as the function K = D(ω) defined in terms of the forms of the rectangular
region in media a and b.

The dispersion relation between ω and K will be referred as the function k = D (ω). The breaking wavenumbers obtained
for the multiplies of the frequencies, will be denoted by:

D(nω) =

{
kn, x < 0

ln , x > 0 ,

}
n = 1, 2, ... (11)

The second-order differential equation for ϕ (z) may be written as a pair of coupled first-order differential equations of
ϕη and its derivative divided by the density(

1
ρ

dϕη

dz

)
= D,

(
ρ

dD
dz

)
=−q2

ϕη (12)

3.2 Method of solutions using unimodular matrix

Let see now the problem of stratification by a set of n-homogeneous layers.

Here ρ and q take the constant values ρn and qn in region zn < z < zn + 1 and the braking wave number is: K = ω

c sinΦ ,
where Φ is the angle of breaking waves. So, the solutions of (13) in the n-th layer are

ϕ (z)=ϕncosqn (z− zn)+qnDnsinqn(z− zn)

D(z)=Dncosqn (z− zn)+qnϕnsinqn(z− zn)
(13)

Using the fact that ϕn and Dn are continuous at z = zn, the continuity at zn+1 gives

ϕn+1 (z)=ϕncosqn (zn+1 − zn)+qnDnsinqn(zn+1 − zn)

Dn+1 (z)=Dncosqn (zn+1 − zn)+qnϕnsinqn(zn+1 − zn)
(14)

Thus, the vector formed from Φn+1 and Dn+1 is expressed by a matrix to the vector formed from Φn and Dn:(
ϕn+1

Dn+1

)
=

(
cosqn (zn+1 − zn) qnsinqn(z− zn)

−qnsinqn (z− zn) cosqn (zn+1 − zn)

)(
ϕn

Dn

)
(15)

This is an unimodular matrix as the its determinant is an unit. The matrix is real for real qn.

© 2022 BISKA Bilisim Technology

www.ntmsci.com


28 S. Hajrulla et al.: Unimodular matrix on shallow water wave theory.Unimodularity through matrix method

The approximation in which an arbitrary stratification is represented by a set of homogeneous layers leads to unimodular
matrices such as the one in (15).

4 Numerical methods on the matrices determining the approximations

4.1 Approximation based on constant unchanged properties of water waves

We discus for a large number of matrices. We chose the parameters that determine the conditions of the problem: The
corresponding matrices M1 and M2 obtained from eq. 3.11 are as follows:(

cosqn (zn+1 − zn) qnsinqn(z− zn)

−qnsinqn (z− zn) cosqn (zn+1 − zn)

)(
ϕn

Dn

)
= Mn

(
ϕn

Dn

)
(16)

We have seen how to approximate matrices Mn that give ϕ n+1 D n+1 in terms of ϕ n D n in the n-layer. Let discus the
problem in the region [a, b] boundaries z1 and zn + 1 of the stratification represented by n-layers. Under an obstacle
emerged in that region, we have the values of ϕ and D at z1 and zn + 1 are given

ϕ1 = αei(kx − ω t) +αRe−i(kx + ω t) ,α = qaz1,x < 0

D1 = αei(kx − ω t) +αRe−i(kx + ω t) ,α = qaz1,x > 0
(17)

ϕn+1 = βei(kx − ω t) +βRe−i(kx + ω t) ,β = qazn+1,x < 0

D1 = βei(kx − ω t) +βRe−i(kx + ω t) ,β = qazn+1,x > 0
(18)

(
ϕn+1

Dn+1

)
= Mn

(
ϕn

Dn

)
= MnMn−1

(
ϕn−1

Dn−1

)
= · · ·= M1

(
ϕ1

D1

)
(19)

Here M = MnMn−1Mn−2......M2M1 a production matrix as a sequence product of n-layer’s matrix. If mi j is the element of
2x2 matrix, then (

ϕn+1

Dn+1

)
=

(
m11 m12

m21 m22

)(
ϕn

Dn

)
(20)

Solving for the reflection and transmission amplitudes r and t we find

r = e2iα qaqbm12 +m21 + iqam22 − iqbm11

qaqbm12 −m21 + iqam22 = iqbm11

t = ei(α−β ) 2iqa(m11m22 −m12m21)

qaqbm12 −m21 + iqam22 = iqbm11

(21)

Using now the unimodular matrix as M = m11m22 −m12m21 above, we sure that a conservation law and a reciprocity law
are both satisfied when the profile matrix is unimodular, that is det M= 1.

It is proved that unimodularity of M is necessary for energy conservation. If each layer matrix is unimodular, M will be
unimodular, since the determinant of a product of matrices is equal to the product of their determinants. Thus
unimodularity of the layer guarantees these laws, and is a desirable characteristic in any approximation scheme.

The continuity of ϕ and ∂ xϕ imposed in equations above is observable in figure 1, where the addition of the incident and
reflected wave in the left region match in amplitude and slope with the transmitted wave.
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Fig. 1: In x > 0 a transmitted wave.(Left). Real part of wave φ , solution of the linear problem. (Right)

Fig. 2: The depth is h = 2 cm, start at x = 0.6 m. Reflected wave (Left), transmitted wave. (Right)

4.2 Comparison of methods

Table of comparison of 5 matrix algorithms, all using 7 matrices. The letters C, L, and U stand for constant, linear, and
unirnodular.

Method Constant Linear unimodular C∞

Average error % 2.0 0.8 0.2 1.3
Average of det M - 1 2 10^{-3} 0 0

Table 1: Comparison of five matrix algorithms, all using seven matrices for constant, linear, and unirnodular

As another problem that we will discuss in the nearest article, we will discus for a large number of matrices. We leave
to construct a profile matrix for the production of n-layers matrices, solving the reflection and trasmission amplitudes of
shallow water waves.

5 Conclusion

In conclusion, we analyzed the importance of the unimodular matrices. At first, we note that the method is chosen to use
the unimodular matrix. Of this method we have comparable accuracy in the reflectance and are comparable in
programming simplicity.

However, other methods are considerably longer to execute since the sine and cosine matrix elements take an order of
magnitude longer to compute.

At first we note that the C and L methods give almost the same results when in all the C methods, the constant
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parameters for each layer were chosen to be the exact values at the middle of the layer. Thus the C, and L matrix
elements are almost the same.

Of the three methods that have det M=1 (to within the numerical precision available), U and C∞ have comparable
accuracy in the reflectance, and are comparable in programming simplicity. However, C, is considerably longer to
execute, since the sine and cosine matrix elements take an order of magnitude longer to compute.

The unimodular method based on linear variation) is our preference, because very simple matrix elements are required,
for example in order r to use a small programmable calculator. We note also that the matrix method can also be used in
the more usual numeric solution of the differential equation ([16]).

The great advantage of our technique is the possibility to measure a two-dimensional field η (x, y, z) with good temporal
resolution. At low frequencies and sufficiently small amplitude, the reflection can be reduced many times by means of
this mechanism.

It is proved that unimodularity of M is necessary for energy conservation. If each layer matrix is unimodular, M will be
unimodular since the determinant of a product of matrices is equal to the product of their determinants. Thus,
unimodularity of the layer guarantees these laws, and is a desirable characteristic in any approximation scheme.

In conclusion, we have formulated the problem in terms of a product of 2x2 layer matrices, shown that these matrices
should be unimodular for energy conservation and methods that use unimodularity are simple to program.
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