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Abstract: In this paper, we consider an effective technique based on wavelet collation method for solving time fractional Chafee-
Infante equation. We transform the fractional differential equation to an algebraic equations system by using wavelet operational
matrices of fractional integrals. We give an illustrative example to show the applicability and effectiveness of the method. We compare
the exact and wavelet solutions in a table and figure. The results show that the method easily applicable to fractional differential
equations
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1 Introduction

Fractional calculus has various application fields in natural science and engineering. Many processes in engineering,
physics, mathematical biology, fluid mechanics, electrochemistry, and other fields may be modelled using fractional order
differential equations (FODE). Obtaining the analytical solutions of most FODE can not be possible via existing analytical
methods. To solve fractional order differential equations, various numerical techniques such as wavelet method [1,2,3],
the finite difference method [4], variational iteration method [5], finite element method [6] have been developed.
In this paper, we solve numerically time fractional Chafee-Infante (CI) equation using Bernoulli wavelets. Time fractional
CI equation is given as follows:

(Dα
t u)(x, t)−uxx(x, t) = σu(x, t)

(
1−u2(x, t)

)
= 0, (1)

where σ is a constant that adjusts the relative balance of the nonlinear and diffusion term. When α = 1, eq. 1 is transformed
to a classical CI equation [7,8,9]. The analytical solution of the classical CI equation was given as follows in the reference
[9]

u(x, t) =
λ

ce
√

σ
2 x− 3σt

2 +λ

. (2)

2 Preliminaries

An N-set of block pulse functions is given as follows [10]:

bi(x) =
{

1, i−1
N a ≤ x < i

N a
0, otherwise

(3)
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α order Riemann-Liouville fractional integral is defined [11]:

(Iα u)(t) =

{
1

Γ (α)

∫ t
0(t − j)α−1u( j)d j, α ∈ R+

u(t), α = 0
(4)

where Γ (.) is the gamma function. α order Caputo fractional derivative is given by [12]:

(Dα
t u)(t) =


1

Γ (n−α)

∫ t
0

1
(t− j)(α−n+1)

dnu( j)
d jn d j, n−1 < α ≤ n,

dnu( j)
d jn , α = n,

(5)

in which α, t > 0 and n ∈ N.

Remark. The following relation between fractional derivative and fractional integral will be used:

(Iα Dα
t u)(t) = u(t)−

n−1

∑
j=0

u( j) (0+
) t j

j!
, t > 0,n−1 < α ⩽ n. (6)

2.1 Bernoulli wavelets

Bernoulli wavelets ψn,m(t) = ψ(k, n̂,m, t) is defined on the interval [0,1) as follows [13]:

ψn,m(t) =

{
2

k−1
2 β̃m

(
2k−1t − n̂

)
, n̂

2k−1 ⩽ t < n̂+1
2k−1 ,

0, otherwise
(7)

where n̂ = n−1, (n = 1,2,3, . . . ,2k−1), k is a positive integer, m is the order of Bernoulli polynomials:

β̃m(t) =


1, m = 0

1√
(−1)m−1(m)2

(2m)! α2m

βm(t), m > 0

where m = 0,1,2, . . . ,M−1 and n = 1,2, . . . ,2k−1. Here, βm(t) is Bernoulli polynomials that can be given by:

βm(t) =
m

∑
i=0

(
m
i

)
αm−it i,

where αi, are Bernoulli numbers that are given by:

t
et −1

=
∞

∑
i=0

αi
t i

i!
,

A function g(t) ∈ L2[0,1] can be given by Bernoulli wavelets as:

g(t) =
∞

∑
n=1

∞

∑
m=0

gnmψn,m(t), (8)

where gnm = ⟨g(t),ψn,m(t)⟩ and ⟨·, ·⟩ symbolizes the inner product. For simplicity, the series can be truncated as follows:

g(t) =
2(k−1)

∑
n=1

M−1

∑
m=0

gnmψn,m(t) =GGG⊺
ΨΨΨ(t), (9)
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where the superscript ⊺ represents the transpose, GGG and ΨΨΨ(t) are N = 2k−1M matrices as:

GGG =
[
g10,g11, . . . ,g1M−1,g20,g21, . . . ,g2M−1, . . . ,g2k−10,g2k−11, . . . ,g2k−1M−1

]⊺
,

ΨΨΨ(t) =
[
ψ10,ψ11, . . . ,ψ1M−1,ψ20,ψ21, . . . ,ψ2M−1, . . . ,ψ2k−10,ψ2k−11, . . . ,ψ2k−1M−1

]⊺
.

The wavelet transform of the function g(t) can be given by:

g(t) =
N

∑
i=1

giψi(x) =GGG⊺
ΨΨΨ(t). (10)

In here, i = m+M(n− 1)+ 1 and N = 2k−1M,GGG = [g1,g2, . . . ,gN ]
⊺ , ΨΨΨ(t) = [ψ1,ψ2, . . . ,ψN ]

⊺ . For i = 1,2, . . .N, the
collocation points xi and ti are found by:

xi =
2i−1

2N
, ti =

2i−1
2N

, (i = 1,2, . . . ,N). (11)

Bernoulli wavelet matrix ΦΦΦN×N is:

ΦΦΦN×N =

[
ΨΨΨ

(
1

2N

)
,ΨΨΨ

(
3

2N

)
, . . . ,ΨΨΨ

(
2N −1

2N

)]
. (12)

A function u(x, t) ∈ L2([0,1]× [0,1]) can be expanded by Bernoulli wavelets as:

u(x, t) =
N

∑
i=1

N

∑
j=1

ui jψi(x)ψ j(t) =ΨΨΨ
⊺(x)UUUΨΨΨ(t), (13)

where the elements ui j of the matrix UUU are:

ui j =
〈
ψi(x),

〈
u(x, t),ψ j(t)

〉〉
. (14)

The n− times operational matrix Pn of integration of ΨΨΨ(t) is written by:∫ t

0
. . .

∫ t

0
ΨΨΨ(t)ds . . .ds︸ ︷︷ ︸

n− times

≃PPPn
ΨΨΨ(t). (15)

The fractional integration of the vector ΨΨΨ(t) is approximated as [14]:

(Iα
ΨΨΨ)(t)≃PPPα

ΨΨΨ(t), (16)

where PPPα is named the Bernoulli wavelet operational matrix of fractional integration. PPPα is defined as:

PPPα ∼=PPPα
N×N =ΦΦΦPPPα

BΦΦΦ
−1, (17)

where PPPα
B , the BPFs operational matrix of integration, is given by:

PPPα
B =

1
Nα

1
Γ (α +2)


1 ϒ1 ϒ2 · · · ϒN−1

0 1 ϒ1 . . . ϒN−2

0 0 1 . . . ϒN−3
...

...
...

. . .
...

0 0 0 . . . 1

 , (18)
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where ϒk = (k+1)α+1 −2kα+1 +(k−1)α+1 and ΦΦΦ is the wavelet matrix eq. 12.

3 Solution algorithm

Let’ s suppose that
∂ α+2u(x, t)

∂ tα ∂x2 =ΨΨΨ
⊺(x)UUUΨΨΨ(t), (19)

where U = [ui j]N×N is an unknown matrix to be found later. Integrating the eq. 19 α times w.r.t. t and considering the
initial condition, we have:

uxx(x, t) =ΨΨΨ
⊺(x)UUUPPPα

ΨΨΨ(t)+U ′′
0 (x). (20)

Integrating the eq. 19 two times w.r.t. x, one get:

(Dα
t u)(x, t) =ΨΨΨ

⊺(x)
(
PPP2)⊺UUUΨΨΨ(t)+

∂ α u(x, t)
∂ tα

∣∣∣∣
x=0

+ x
∂

∂x

(
∂ α u(x, t)

∂ tα

)∣∣∣∣
x=0

. (21)

Substituting x = 1 to the eq. 21, we get:

∂

∂x
(Dα

t u)(x, t)
∣∣∣∣
x=0

=
∂ αU2(t)

∂ tα
− ∂ αU1(t)

∂ tα
−ΨΨΨ

⊺(1)
(
PPP2)⊺UUUΨΨΨ(t). (22)

Substituting the eq. 22 to the eq. 21, we have:

(Dα
t u)(x, t) =ΨΨΨ

⊺(x)
(
PPP2)⊺UUUΨΨΨ(t)− xΨΨΨ⊺(1)

(
PPP2)⊺UUUΨΨΨ(t)+

∂ αU1(t)
∂ tα

+ x
∂ αU2(t)

∂ tα
− x

∂ αU1(t)
∂ tα

. (23)

Integrating the eq. 23 α times w.r.t. t, one attain:

u(x, t) = (ΨΨΨ⊺(x)− xΨΨΨ⊺(1))
(
PPP2)⊺UUUPPPα

ΨΨΨ(t)+U0(x)+U1(t)−U1(0)+ x
(
U2(t)−U2(0)−U1(t)+U1(0)

)
. (24)

Substituting the eq. 20, eq. 21, and eq. 24 to the eq. 1, and then substituting xi and ti to the new equation, one can obtain a
system of algebraic equation. Solving the system, one can determine the unknown matrix UUU . Substituting UUU to the eq. 24,
one get the solution of the main equation.
Example 1. Let’s deal with the eq. 1 for λ = 1,σ = 2,c = 1. So, we have:

(Dα
t u)(x, t)−uxx(x, t) = 2u(x, t)

(
1−u2(x, t)

)
= 0, (25)

the initial and boundary conditions are given, respectively:

u(x,0) =
1

ex +1
, (26)

and
u(0, t) =

1
e−3t +1

, u(1, t) =
1

e1−3t +1
. (27)

When α = 1, the analytic solution is u(x, t) = 1
ex−3t+1 in the reference [9]. For k = M = 2, using the wavelet collocation

method, we attain the results in the Table 1 and Fig. 1.
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(a) Both wavelet and exact solution. (b) The absolute error.

Figure 1: Comparison between wavelet and exact solution.

x t Wavelet Exact Absolute error
0.1125 0.1125 0.156222 0.156218 1.06066×10−3

0.1125 0.1375 0.173095 0.173106 1.06066×10−3

0.1125 0.1625 0.185210 0.185195 1.06066×10−3

0.1125 0.1875 0.192429 0.19241 1.06066×10−3

0.1375 0.1125 0.150038 0.150000 2.1854×10−3

0.1375 0.1375 0.167948 0.167918 2.1854×10−3

0.1375 0.1625 0.181849 0.181757 2.1854×10−3

0.1375 0.1875 0.190535 0.19047 2.1854×10−3

0.1625 0.1125 0.143856 0.143782 2.08518×10−3

0.1625 0.1375 0.162356 0.162246 2.08518×10−3

0.1625 0.1625 0.177902 0.177730 2.08518×10−3

0.1625 0.1875 0.188200 0.188080 2.08518×10−3

0.1875 0.1125 0.137877 0.137754 1.3947×10−3

0.1875 0.1375 0.156459 0.156218 1.3947×10−3

0.1875 0.1625 0.173362 0.173106 1.3947×10−3

0.1875 0.1875 0.185366 0.185195 1.3947×10−3

Table 1: Comparison between wavelet and exact solutions at the collocation points.

4 Conclusion

In this paper, we have successfully applied the Bernoulli wavelet collocation method to the fractional CI equation. We
have used Wolfram Mathematica to do the numerical computations and to draw figures. The obtained results imply that
the used technique is an effective one for fractional differential equations.
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