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1 Introduction and preliminaries

The most interesting and important things that the change of the meaning and definition of distance used in Euclidean
geometry for the last 2000 years, came possible by the use of taxicab geometry. The points are the same, the lines are the
same, and the angles are measured in the same way. However, the distance function is different. A family of distances,
dπn, that includes Taxicab, Chinese-Checker and Iso-taxi distances, These distances have been studied by some authors
[2, 3, 4, 5, 6, 7, 10, 11, 13, 14], as special cases introduced and the group of isometries of the plane with dπn−metric is
the semi-direct product of D2n and T (2) was shown in [1].

Iso-taxicab geometry is a non-Euclidean geometry defined by K. O. Sowell in 1989. In this geometry presented by
Sowell three distance functions arise depending upon the relative positions of the points A and B. There are three axes at
the origin; the x-axis, the y-axis and the y′-axis. The iso-taxicab trigonometric functions in iso-taxicab plane with three
axes were given in [7, 8, 12].

Iso-taxicab functions were defined in terms of dπn-distances on the plane R2
π3. It was shown that how to obtain what a

point on iso-taxicab plane correspond to a point on R2
π3. The classification of the lines of the plane R2

π3 and the shortest
distance from a point to a line was obtain on R2

π3. The area formula of triangles were given on R2
π3. In generally, it was

mentioned about the plane R2
π3 trigonometry, then unit circle was defined on R2

π3 and correspondingly trigonometric
functions, iso-taxicab Pythagorean identity and trigonometric reduction formulas in R2

π3 were given. The measures of
angles and reference angle were defined on R2

π3. It was obtained that the change of the length of the line segment under
rotations on R2

π3. The measures of angles were introduced by inner-product in [9].

The definition of dπn−distances family is given as follows;
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Definition 1. (see 1) Let A = (x1,y1) and B = (x2,y2) be any two points in R2, a family of dπn−distances is defined by;

dπn(A,B) = 1
sin π

n

(∣∣∣sin kπ

n − sin (k−1)π
n

∣∣∣ |x1 − x2|+
∣∣∣cos (k−1)π

n − cos kπ

n

∣∣∣ |y1 − y2|
)1 ≤ k ≤

[ n−1
2

]
, k ∈ Z, if tan (k−1)π

n ≤
∣∣∣ y2−y1

x2−x1

∣∣∣≤ tan kπ

n

k =
[ n+1

2

]
, if tan [ n−1

2 ]π
n ≤

∣∣∣ y2−y1
x2−x1

∣∣∣< ∞ or x1 = x2

The plane R2 with the dπn−distance is denoted by R2
πn. For n = 3 and accordingly k = 1, k = 2 , we obtain the formula of

dπ3−distance between the points A and B according to the inclination in the plane R2
π3:

dπ3(A,B) =

 |x1 − x2|+ 1√
3
|y1 − y2| , 0 ≤

∣∣∣ y2−y1
x2−x1

∣∣∣≤√
3

2√
3
|y1 − y2| ,

√
3 ≤

∣∣∣ y2−y1
x2−x1

∣∣∣< ∞ or x1 = x2

The plane R2
π3 is constructed by simply replacing the Euclidean distance function dE by the distance function dπ3 of the

plane R2
π3. Therefore it seems to study the plane R2

π3 analogues of the topics which include the concept of distance in
the plane R2. In this paper, we will explain division points, directed lengths, the ratio of directed lengths and Menelaus’
Theorem, Ceva’s Theorem depending on these concepts.

2 Directed R2
π3−lengths and division point

Let X and Y be any two points on a directed straight line l. We define directed R2
π3−length of the line segment XY as

follows:

dπ3 [XY ] =

{
dπ3(X ,Y ), if XY and l have the same direction
−dπ3(X ,Y ), if XY and l have opposite direction

thus, dπ3 [XY ] =−dπ3 [Y X ]. Clearly, directed length in the plane R2
π3 can be defined in a similar way. That is

dE [XY ] =

{
dE(X ,Y ), if XY and l have the same direction
−dE(X ,Y ), if XY and l have opposite direction

If A,B,C are points on a same directed line and C is between points A and B, we denote this by ACB. If ACB, then C
divides the line segment AB internally and the ratio of the R2

π3−lengths is a positive real number. That is

dπ3 [AC]

dπ3 [CB]
= λ > 0

If ABC or CAB, then C divides AB externally and the ratio of the R2
π3−lengths is a negative real number. That is

dπ3 [AC]

dπ3 [CB]
= λ < 0.

In both cases C is called the division point which divide the line segment AB in ratio λ .

Clearly, C ̸= B. C = A ⇔ λ = 0 and (C is at infinity ⇔ λ =−1).

Let C and C′ be two points such that C divides a given line segment AB internally and C′ divides AB externally in the
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same proportion though with opposite signs. Thus, the ratio of the directed lengths,

dπ3 [AC]

dπ3 [CB]
=−dπ3 [AC′]

dπ3 [C′B]
= λ

is the same positive number λ .

Theorem 1. Let P1 = (x1,y1) and P2 = (x2,y2) be any distinct points in the plane R2
π3. If θ = (x,y) is a point on the line

passing through P1 and P2, then
dπ3 [P1θ ]

dπ3 [θP2]
=

dE [P1θ ]

dE [θP2]
.

That is; the ratios of directed lengths in the plane Euclidean and the plane R2
π3 are the same.

Proof. The proof of the theorem will be shown in two stages by considering the inclination of the line passing through P1

and P2 in the plane R2
π3. Let the slope of line be m;

(i) For 0 ≤ |m| ≤
√

3;

If θ = P1 then both ratios are equal to 0. If θ is at infinity then both ratios are equal to −1. Therefore without loss of
generality, let P1 ̸= θ ̸= P2. It is enough to show that

|x1 − x|+ 1√
3
|y1 − y|

|x− x2|+ 1√
3
|y− y2|

=

√
(x1 − x)2 +(y1 − y)2√
(x− x2)

2 +(y− y2)
2
. (1)

Squaring both sides of the equation (1) one obtains; or simply

|x1 − x| |y1 − y|− 2
3 |y1 − y|2

|x− x2| |y− y2|− 2
3 |y− y2|2

=
(x1 − x)2 +(y1 − y)2

(x− x2)2 +(y− y2)2 . (2)

Examining the left side of the equation (2) one obtains

|x1 − x| |y1 − y|− 2
3 |y1 − y|2

|x− x2| |y− y2|− 2
3 |y− y2|2

=
(x1 − x)(y1 − y)− 2

3 (y1 − y)2

(x− x2)(y− y2)− 2
3 (y− y2)2

(3)

for all positions of θ on P1P2. Using the equation (3) in the equation (2) one obtains

(x1 − x)(y1 − y)− 2
3 (y1 − y)2(x− x2)

2 +(y− y2)
2

=
(
(x− x2)(y− y2)− 2

3 (y− y2)
2
)(

(x1 − x)2 +(y1 − y)2
)
.

(4)

If x1 = x2 then x = x1 = x2 and equation (4) is obvious. If x1 ̸= x2 then

y =
(x2 − x)y1 − (x1 − x)y2

x2 − x1

since θ is on the line P1P2. Now, using this value of y in the first bracket of the equation (4) we get the equation (4) is
satisfied.

(ii) For
√

3 ≤ |m| ≤ ∞;

If θ = P1 then both ratios are equal to 0. If θ is at infinity then both ratios are equal to −1. Therefore without loss of
generality, let P1 ̸= θ ̸= P2. It is enough to show that is
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2√
3
|y1 − y|

2√
3
|y− y2|

=

√
(x1 − x)2 +(y1 − y)2√
(x− x2)

2 +(y− y2)
2
. (5)

Squaring both sides of the equation (5) one obtains;

|y1 − y|2

|y− y2|2
=

(x1 − x)2 +(y1 − y)2

(x− x2)
2 +(y− y2)

2

or another way
|y1 − y|2

[
(x− x2)

2 +(y− y2)
2
]

|y− y2|2
[
(x1 − x)2 +(y1 − y)2

] = 1

which is the equivalent to
|y1 − y|2 (x− x2)

2

|y− y2|2 (x1 − x)2 = 1

or simply
|y1 − y|2

|y− y2|2
=

(x1 − x)2

(x− x2)
2 . (6)

Examining the left side of the equation (6) one obtains

|y1 − y|2

|y− y2|2
=

(y1 − y)2

(y− y2)
2 (7)

for all positions of θ on P1P2. Using the equation (7) in the equation (6) one obtains

(y1 − y)(x− x2) = (y− y2)(x1 − x) . (8)

If x1 = x2 then x = x1 = x2 and the equation (8) is obvious. If x1 ̸= x2 then

y =
[(x2 − x)y1 − (x1 − x)y2]

(x2 − x1)

since θ is on the line P1P2. Now, using this value of y in the first bracket of the equation (8) we get(
y1 − [(x2−x)y1−(x1−x)y2]

(x2−x1)

)
(x− x2) =

(
[(x2−x)y1−(x1−x)y2]

(x2−x1)
− y2

)
(x1 − x)

(y2−y1)(x−x2)(x1−x)
(x2−x1)

= (y2−y1)(x−x2)(x1−x)
(x2−x1)

which shows that the equation (8) is satisfied.

The following corollary shows how one can find the coordinate of the division point which divides the line segment
joining two given points in a given ratio, in the plane R2

π3.

Corollary 1. Let P1 = (x1,y1) and P2 = (x2,y2) be two distinct points in the plane R2
π3. If θ = (x,y) divides the line

segment P1P2 in ratio λ then,

x =
x1 +λx2

1+λ
, y =

y1 +λy2

1+λ
; λ ∈ R,λ ̸=−1

as in the plane R2
π3.

© 2022 BISKA Bilisim Technology



NTMSCI 10, No. 1, 20-27 (2022) / www.ntmsci.com 24

Proof. Although the corollary follows from Theorem 2 we prefer to give a direct proof. The given formula is obvious
when λ = 0 or λ =−1. If λ ̸= 0,−1 and θ divides the line segment P1P2 in ratio λ we have∣∣∣∣dπ3 [P1θ ]

dπ3 [θP2]

∣∣∣∣= |λ | .

The proof of the theorem will be shown in two stages by considering the inclination of the line passing through P1 and P2

in the plane R2
π3. Let the slope of line be m;

(i) For 0 ≤ |m| ≤
√

3;
|x1 − x|+ 1√

3
|y1 − y|

|x− x2|+ 1√
3
|y− y2|

= |λ | (9)

Since P1 ̸= P2

|λ |= |λ |
(
|x1 − x2|+ 1√

3
|y1 − y2|

|x1 − x2|+ 1√
3
|y1 − y2|

)
=

|λx1 −λx2|+ 1√
3
|λy1 −λy2|

|x1 − x2|+ 1√
3
|y1 − y2|

.

Adding x1 − x1 and y1 − y1 to the first and second summands in the numerator and similarly λx2 −λx2 and λy2 −λy2 in
the denominator respectively, one obtains

|λ |=
|λx1 + x1 − x1 −λx2|+ 1√

3
|λy1 + y1 − y1 −λy2|

|x1 +λx2 −λx2 − x2|+ 1√
3
|y1 +λy2 −λy2 − y2|

.

Multiplying the numerator and denominator of the right side of the last statement by
1

1+λ
, one gets

|λ |=

∣∣∣x1 − x1+λx2
1+λ

∣∣∣+ ∣∣∣y1 − y1+λy2
1+λ

∣∣∣∣∣∣ x1+λx2
1+λ

− x2

∣∣∣+ ∣∣∣ y1+λy2
1+λ

− y2

∣∣∣ .
Comparing this result with the equation (9) we obtain

x =
x1 +λx2

1+λ
and y =

y1 +λy2

1+λ
.

(ii) For
√

3 ≤ |m| ≤ ∞;
2√
3
|y1 − y|

2√
3
|y− y2|

= |λ | (10)

since P1 ̸= P2

|λ |=
2√
3
|λy1 −λy2|

2√
3
|y1 − y2|

,

adding x1 − x1 and y1 − y1 to the first and second summands in the numerator and similarly λx2 −λx2 and λy2 −λy2 in
the denominator respectively, one obtains

|λ |= |λy1 + y1 − y1 −λy2|
|y1 +λy2 −λy2 − y2|

.
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Multiplying the numerator and denominator of the right side of the last statement by 1
1+λ

, one gets

|λ |=

∣∣∣y1 − y1+λy2
1+λ

∣∣∣∣∣∣ y1+λy2
1+λ

− y2

∣∣∣ .
Comparing this result with the equation (10) we obtain

y =
y1 +λy2

1+λ
.

3 Theorems of Menelaus and Ceva in the plane R2
π3

Ceva’s and Menelaus theorems are two classic theorems in plane geometry. The main question of these theorems is to
determine conditions under which three points are collinear and conditions under which three lines are concurrent.
Ceva’s theorem characterizes the concurrency of lines and Menelaus’s theorem characterizes the collinearity of points.

In this section, we give analogues of the Theorems of Menelaus and Ceva in the plane R2
π3. In fact, the validity of these

theorems is clear from the Theorem 2, but we prefer to state and give partial proofs for them.

Theorem 2. (Menelaus Theorem) Let {P1,P2,P3} be a triangle and θ1,θ2,θ3 be on the lines that contain the sides P1P2,
P2P3, P3P1 in the plane R2

π3. If θ1,θ2,θ3 are collinear, then

dπ3 [P1θ1]

dπ3 [θ1P2]
.
dπ3 [P2θ2]

dπ3 [θ2P3]
.
dπ3 [P3θ3]

dπ3 [θ3P1]
=−1 (11)

where none of θ1,θ2,θ3 coincide with any of P1,P2,P3.

Proof. Several cases are possible, according to positions P1,P2,P3 and θ1,θ2,θ3 We give a proof of the theorem only in
the following special case. Let Pi = (xi,yi), i = 1,2,3, xi ̸= xi+1 and the points θ1,θ2,θ3 be on a line l given by y = mx+k
such that θi = l∧PiPi+1, (mod3) and l is not parallel to the line PiPi+1 for i = 1,2,3. Clearly, mxi−yi+k ̸= 0 since Pi ̸= θ j

for i, j = 1,2,3 and m ̸= (yi+1−yi)(xi+1−xi)
−1. The equation of the line PiPi+1 is given by y = (yi+1−yi)(xi+1−xi)

−1x−
(xiyi+1 − xi+1yi)(xi+1 − xi)

−1. It follows from a simple calculation that

θi =

(
xiyi+1 − xi+1yi − kxi − kxi+1

mxi −mxi+1 − yi + yi+1
,

mxiyi+1 −mxi+1yi − kyi + kyi+1

mxi −mxi+1 − yi + yi+1

)
.

Now, let’s find dπ3[Piθi]
dπ3[θiPi+1]

. Let’s the proof it, the position of the line segment in the plane R2
π3 Let the slope of line segment

be m;

(i) For 0 ⩽ |m|⩽
√

3;
dπ3 [P1θ1]

dπ3 [θ1P2]
=−dπ3(P1,θ1)

dπ3(θ1,P2)
=−|mx1 − y1 + k|

|mx2 − y2 + k|

similarly,
dπ3 [P2θ2]

dπ3 [θ2P3]
=

dπ3(P2,θ2)

dπ3(θ2,P3)
=

|mx2 − y2 + k|
|mx3 − y3 + k|

and
dπ3 [P3θ3]

dπ3 [θ3P1]
=

dπ3(P3,θ3)

dπ3(θ3,P1)
=

|mx3 − y3 + k|
|mx1 − y1 + k|
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and consequently,
dπ3 [Piθi]

dπ3 [θiPi+1]
= s

|mxi − yi + k|
|mxi+1 − yi+1 + k|

, s =

{
−1, if i = 1
1, if i = 2,3

now, it can be easily computed that
3

Π
i=1

(
dπ3 [Piθi]

dπ3 [θiPi+1]

)
=−1

and therefore, we obtain
dπ3 [P1θ1]

dπ3 [θ1P2]
.
dπ3 [P2θ2]

dπ3 [θ2P3]
.
dπ3 [P3θ3]

dπ3 [θ3P1]
=−1.

(ii) For
√

3 ⩽ |m|⩽ ∞;
dπ3[P1θ1]
dπ3[θ1P2]

= − dπ3(P1,θ1)
dπ3(θ1,P2)

= −
2√
3

∣∣∣y1−
mx1y2−mx2y1−ky1+ky2

mx1−mx2−y1+y2

∣∣∣
2√
3

∣∣∣mx1y2−mx2y1−ky1+ky2
mx1−mx2−y1+y2

−y2

∣∣∣
= −

2√
3 |mx1y1−mx1y2+y1y2−y2

1+ky1−ky2|
2√
3 |mx2y2−mx2y1+y1y2−y2

2+ky2−ky1|

= −
2√
3
|y1(mx1−y1+k)−y2(mx1−y1+k)|

2√
3
|y2(mx2−y2+k)−y1(mx2−y2+k)|

= −
2√
3
|y1−y2||mx1−y1+k|

2√
3
|y1−y2||mx2−y2+k|

= − |mx1−y1+k|
|mx2−y2+k|

similarly,
dπ3 [P2θ2]

dπ3 [θ2P3]
=

dπ3(P2,θ2)

dπ3(θ2,P3)
=

|mx2 − y2 + k|
|mx3 − y3 + k|

and
dπ3 [P3θ3]

dπ3 [θ3P1]
=

dπ3(P3,θ3)

dπ3(θ3,P1)
=

|mx3 − y3 + k|
|mx1 − y1 + k|

and consequently,
dπ3 [Piθi]

dπ3 [θiPi+1]
= s

|mxi − yi + k|
|mxi+1 − yi+1 + k|

, s =

{
−1, if i = 1
1, if i = 2,3

.

now, it can be easily computed that
3

Π
i=1

(
dπ3 [Piθi]

dπ3 [θiPi+1]

)
=−1

and therefore, we obtain
dπ3 [P1θ3]

dπ3 [θ3P2]
.
dπ3 [P2θ1]

dπ3 [θ1P3]
.
dπ3 [P3θ2]

dπ3 [θ2P1]
=−1.

Theorem 3. (Ceva’s Theorem) Let {P1,P2,P3} be a triangle, P is any point inside of {P1,P2,P3} and lines l1, l2, l3 pass
through the vertices P1,P2,P3, respectively, and intersect lines containing the opposite sides at points θ1,θ2,θ3, The lines
l1, l2, l3 are concurrent (or parallel) if and only if

dπ3 [P1θ1]

dπ3 [θ1P2]
.
dπ3 [P2θ2]

dπ3 [θ2P3]
.
dπ3 [P3θ3]

dπ3 [θ3P1]
= 1.

Note that none of θ1,θ2,θ3 are P1,P2,P3.
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Proof. Let’s apply the Menelaus’ Theorem separately by considering the triangle {P1,P2,θ1} and line segment θ3PP3 ; the
triangle {P1,θ1,P3} and line segment P2Pθ2 for both situation in the plane R2

π3. We obtain

dπ3 [P3θ1]

dπ3 [P3P2]
.
dπ3 [P2θ3]

dπ3 [θ3P1]
.
dπ3 [P1P]
dπ3 [Pθ1]

=−1

and
dπ3 [P2θ1]

dπ3 [P2P3]
.
dπ3 [P3θ2]

dπ3 [θ2P1]
.
dπ3 [P1P]
dπ3 [Pθ1]

=−1 (12)

when (11) and (12) equations are divided by side to side we obtain

dπ3 [P1θ2]

dπ3 [θ2P3]
.
dπ3 [P3θ1]

dπ3 [θ1P2]
.
dπ3 [P2θ3]

dπ3 [θ3P1]
= 1.
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