Almost $C(\alpha)$-manifold on M–projective curvature tensor

Tuğba Mert1 and Mehmet Atçeken2

1Department of Mathematics, University of Sivas Cumhuriyet, Sivas, Turkey
2Department of Mathematics, University of Aksaray, Aksaray, Turkey

Received: 16 February 2022, Accepted: 8 June 2022
Published online: 17 August 2022.

Abstract: In this article, the behavior of the $C(\alpha)$-manifold satisfying the conditions $R(X,Y)W^* = 0, W^*(X,Y)R = 0, W^*(X,Y)\tilde{Z} = 0, W^*(X,Y)S = 0$ and $W^*(X,Y)\tilde{C} = 0$ on the M–projective curvature tensor is investigated. The $C(\alpha)$–Manifold is characterized according to these states of the curvature tensor. Here, W^*, R, S, \tilde{Z} and \tilde{C} are M–projective, Riemann, Ricci, concircular and quasi-conformal curvature tensors.

Keywords: M–Projective Curvature Tensor, Ricci Curvature Tensor, Concircular Curvature Tensor

1 Introduction

A new tensor field

$$W^*(X,Y)Z = R(X,Y)Z - \frac{1}{4n} [S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY]$$

(1)

is defined by Pokhariyal and Mishra in n–dimensional Riemannian manifolds [1]. The W^* tensor field is called the M–projective tensor field where Q is the Ricci operator and S is the Ricci tensor. The definition and properties of the M–projective curvature tensor are given by Ojha in Sasakian and Kaehler manifolds [2],[3]. In recent years, many geometers have worked on the M–projective curvature tensor [4]-[10]. Again, many authors have worked on curvature tensors in almost $C(\alpha)$–manifold [11]-[13].

Based on the many studies mentioned above, in this article, the curvature conditions of $C(\alpha)$–manifold $R(X,Y)W^* = 0, W^*(X,Y)R = 0, W^*(X,Y)\tilde{Z} = 0, W^*(X,Y)S = 0$ and $W^*(X,Y)\tilde{C} = 0$ are searched.

Let’s take an $(2n+1)$–dimensional differentiable M manifold. If it admits a tensor field ϕ of type $(1, 1)$, a vector field ξ and a 1-form η satisfying the following conditions;

$$\phi^2X = -X + \eta(X)\xi \text{ and } \eta(\xi) = 1,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \text{ and } g(X, \xi) = \eta(X),$$

for all $X, Y \in \chi(M)$ and $\xi \in \chi(M), (\phi, \xi, \eta, g)$ is called almost contact metric structure and (M, ϕ, ξ, η, g) is called almost contact metric manifold. On the $(2n+1)$ dimensional M manifold,

$$g(\phi X, Y) = -g(X, \phi Y),$$

* Corresponding author e-mail: tmert@cumhuriyet.edu.tr

© 2022 BISKA Bilisim Technology
for all \(X, Y \in \chi(M)\), that is, \(\phi\) is an anti-symmetric tensor field according to the \(g\) metric. The transformation \(\Phi\) defined as
\[
\Phi(X, Y) = g(X, \phi Y),
\]
for all \(X, Y \in \chi(M)\), is called the fundamental 2-form of the \((\phi, \xi, \eta, g)\) almost contact metric structure, where
\[
\eta \wedge \Phi^c \neq 0.
\]

If the \(R\) Riemann curvature tensor of the \(M\) almost contact metric manifold satisfies the condition
\[
R(X, Y, Z, W) = R(X, Y, \phi Z, \phi W) + \alpha \{ -g (X, Z) g (Y, W) + g (X, W) g (Y, Z) + g (X, \phi Z) g (Y, \phi W) - g (X, \phi W) g (Y, \phi Z) \},
\]
for all \(X, Y, Z, W \in \chi(M), \exists \alpha \in \mathbb{R}\), then \(M\) is called the almost \(C(\alpha)\)-manifold. Also, the Riemann curvature tensor of a almost \(C(\alpha)\)-manifold with \(c\)-constant sectional curvature is given by
\[
R(X, Y) Z = \left(\frac{c + 3\alpha}{4}\right) \{ g (Y, Z) X - g (X, Y) Z \} + \left(\frac{c - \alpha}{4}\right) \{ g (X, \phi Z) \phi Y - g (Y, \phi Z) \phi X \}
+ 2g(X, \phi Y) \phi Z + \eta(\eta) \eta(X) X + g(X, Z) \eta(\eta) \xi - g(Y, Z) \eta(X) \xi \}.
\]

For a \((2n + 1)\)-dimensional \(M\) almost \(C(\alpha)\)-manifold, the following equations are provided.
\[
S(X, Y) = \left[\frac{\alpha (3n - 1) + c(n + 1)}{2}\right] g(X, Y) + \frac{\alpha - c}{2} \eta(X) \eta(Y),
\]
\[
S(X, \xi) = 2n \alpha \eta(X),
\]
\[
QX = \left[\frac{\alpha (3n - 1) + c(n + 1)}{2}\right] X + \frac{\alpha - c}{2} \eta(X) \xi,
\]
\[
Q\xi = 2n \alpha \xi,
\]
\[
Q\phi Y = \frac{r - 2n \alpha}{2n} QY,
\]
for all \(X, Y \in \chi(M)\), where \(Q\) and \(S\) are the Ricci operator and Ricci tensor of manifold \(M\), respectively.

\section{2 \(C(\alpha)\)-manifolds satisfying some important conditions on the \(M\)-projective curvature tensor}

Let \(M\) be a \((2n + 1)\)-dimensional almost \(C(\alpha)\)-manifold and \(R\) be the Riemann curvature tensor of \(M\) manifold. So, if we choose \(X = \xi\) in (2), we get
\[
R(\xi, Y) Z = \alpha [g(Y, Z) \xi - \eta(Z) Y].
\]
Similarly, if we choose \(Z = \xi\) in (2), we get
\[
R(X, Y) \xi = \alpha [\eta(Y) X - \eta(X) Y].
\]
In addition, if \(Y = \xi \) is chosen in (9),
\[
R(X, \xi) \xi = \alpha [X - \eta (X) \xi]
\]
is obtained. If the inner product of both sides of (2) is taken by \(\xi \in \chi (M) \), we have
\[
\eta (R(X, Y)Z) = \alpha [g(Y, Z) \eta (X) - g(X, Z) \eta (Y)].
\]
Finally, if we choose \(X = \xi \) in the (1), then it reduces the form
\[
W^* (\xi, Y) Z = \frac{(n+1)(\alpha-c)}{8n} [g(Y, Z) \xi - \eta (Z) Y],
\]
and if we choose \(Z = \xi \) in the same equation, we get
\[
W^* (X, Y) \xi = \frac{(n+1)(\alpha-c)}{8n} [\eta (Y)X - \eta (X) Y].
\]

Theorem 1. Let \(M \) be a \((2n+1)\)-dimensional almost \(C (\alpha) \)–manifold. If \(M \) is \(M \)–projective flat, then \(M \) is an Einstein manifold.

Proof. Let’s assume that manifold \(M \) is \(M \)-projective flat. From (1), we can write
\[
W^* (X, Y) Z = 0,
\]
for each \(X, Y, Z \in \chi (M) \). Then from (1), we obtain
\[
R(X, Y) Z = \frac{1}{4n} [S(Y, Z)X - S(X, Z) Y + g(Y, Z) QX - g(X, Z) QY],
\]
for each \(X, Y, Z \in \chi (M) \). If we choose \(Z = \xi \) in (11) and using (4), (9), we obtain
\[
\frac{\alpha}{2} [\eta (Y)X - \eta (X) Y] = \frac{1}{4n}[\eta (Y)QX - \eta (X) QY].
\]
In the last equation, if we first choose \(X = \xi \) and we take inner product both sides of the last equation by \(Z \in \chi (M) \), then we get
\[
S(Y, Z) = 2n\alpha g(Y, Z)
\]
It is clear from the last equation that \(M \) is Einstein manifold.

Theorem 2. Let \(M \) be \((2n+1)\)–dimensional a \(C (\alpha) \)–manifolds. Then \(W^* (X, Y) R = 0 \) if and only if either the scalar curvature of \(M \) is \(r = 2n\alpha (2n+1) \) or \(M \) reduces real space form with constant sectional curvature.

Proof. Suppose that \(W^* (X, Y) R = 0 \). Then, we have
\[
\]
If we choose \(X = \xi \) in here, we get
\[
(W^* (\xi, Y)) R(U, V, Z) = W^* (\xi, Y) R(U, V) Z - R(W^* (\xi, Y) U, V) Z - R(U, W^* (\xi, Y) V) Z - R(U, V) W^* (\xi, Y) Z = 0, \tag{12}
\]
for each \(Y, U, V, Z \in \mathcal{X}(M) \). In (12), using (10), we obtain
\[
\frac{(n + 1)(\alpha - c)}{8n} [g(Y, R(U, V) Z) \xi - \eta(R(U, V) Z) Y - g(Y, U) R(\xi, V) Z + \eta(U) R(\xi, V) Z - g(Y, V) R(U, \xi) Z + \eta(V) R(U, \xi) Z - g(Y, Z) R(U, V) \xi + \eta(Z) R(U, V) Y] = 0. \tag{13}
\]
Substituting \(U = \xi \) in (13) and using (8), (9), we conclude
\[
\frac{(n + 1)(\alpha - c)}{8n} [R(Y, V) Z - \alpha (g(V, Z) Y - g(Y, Z) V)] = 0. \tag{14}
\]
From (14), we have
\[
c = \alpha. \tag{15}
\]
In addition, since the scalar curvature of a \(C(\alpha) \)-manifold with constant sectional curvature is
\[
r = n[\alpha (3n + 1) + c(n + 1)] \tag{16}
\]
if the expression (15) is also put in (16), we get
\[
r = 2n\alpha (2n + 1). \]
On the other hand, from (14) we get
\[
R(Y, V) Z = \alpha [g(V, Z) Y - g(Y, Z) V].
\]
Thus, \(M \) is reduced to the real space form with constant sectional curvature. The converse is obvious and the proof is completed.

Let \(M \) be a \((2n + 1)\)-dimensional Riemannian manifold. Then the conircular curvature tensor \(\tilde{Z} \) is defined as
\[
\tilde{Z}(X, Y) Z = R(X, Y) Z - \frac{r}{2n(2n + 1)} [g(Y, Z) X - g(X, Z) Y], \tag{17}
\]
for all \(X, Y, Z \in \mathcal{X}(M) \). If we choose \(X = \xi \) in (17), we get
\[
\tilde{Z}(\xi, Y) Z = \left(\alpha - \frac{r}{2n(2n + 1)} \right) [g(Y, Z) \xi - \eta(Z) Y], \tag{18}
\]
and when we choose \(Z = \xi \) in (18) we get
\[
\tilde{Z}(\xi, Y) \xi = \left(\alpha - \frac{r}{2n(2n + 1)} \right) [\eta(Y) \xi - Y].
\]

Theorem 3. Let \(M \) be \((2n + 1)\)-dimensional \(C(\alpha) \)-manifold. Then \(W^* (X, Y) \tilde{Z} = 0 \) if and only if either the scalar curvature of \(M \) is \(r = 2n\alpha (2n + 1) \) or \(M \) reduces real space form with constant sectional curvature-c.
Proof. Suppose that $W^* (X,Y) \tilde{Z} = 0$. Then we have

$$(W^* (X,Y) \tilde{Z}) (U,V,Z) = W^* (X,Y) \tilde{Z} (U,V) Z - \tilde{Z} (W^* (X,Y) U,V) Z - \tilde{Z} (U,W^* (X,Y) V) Z - \tilde{Z} (U,V) W^* (X,Y) Z = 0.$$

If we choose $X = \xi$ in here, we get

$$(W^* (\xi,Y) \tilde{Z}) (U,V,Z) = W^* (\xi,Y) \tilde{Z} (U,V) Z - \tilde{Z} (W^* (\xi,Y) U,V) Z - \tilde{Z} (U,W^* (\xi,Y) V) Z - \tilde{Z} (U,V) W^* (\xi,Y) Z = 0, \tag{19}$$

for each $Y,U,V,Z \in \chi (M)$. In (19), using (10), we obtain

$$\frac{(n+1)(\alpha-c)}{8n} \left[g (Y, \tilde{Z} (U,V) Z) \xi - \eta (\tilde{Z} (U,V) Z) Y \right. \\
- g (Y,U) \tilde{Z} (\xi,V) Z + \eta (U) \tilde{Z} (Y,V) Z - g (Y,V) \tilde{Z} (U,\xi) Z \\
\left. + \eta (V) \tilde{Z} (U,Y) Z - g (Y,Z) \tilde{Z} (U,V) \xi + \eta (Z) \tilde{Z} (U,V) Y \right] = 0. \tag{20}$$

Taking $U = \xi$ in (20) and using (18), we obtain

$$\frac{(n+1)(\alpha-c)}{8n} \left[\tilde{Z} (Y,V) Z - \left(\alpha - \frac{r}{8n(2n+1)} \right) \right. \\
\left. (g (V,Z) Y - g (Y,Z) V) \right] = 0. \tag{21}$$

In (21), using (17) we conclude

$$\frac{(n+1)(\alpha-c)}{8n} [\tilde{R} (Y,Z) V - \alpha (g (V,Z) Y - g (Y,Z) V)] = 0.$$

This proves our assertion. The converse obvious.

Theorem 4. Let M be $(2n+1)$–dimensional a $C (\alpha)$–manifold. Then $W^* (X,Y) S = 0$ if and only if either the scalar curvature of M is $r = 2n\alpha (2n+1)$ or M reduces an Einstein manifold.

Proof. Suppose that $W^* (X,Y) S = 0$. Then we can easily see that

$$S (W^* (X,Y) Z, U) + S (Z, W^* (X,Y) U) = 0.$$

If we choose $X = \xi$ in here, we get

$$S (W^* (\xi,Y) Z, U) + S (Z, W^* (\xi,Y) U) = 0. \tag{22}$$

In (22), using (10), we obtain

$$\frac{(n+1)(\alpha-c)}{8n} [2n\alpha \eta (U) g (Y,Z) - \eta (Z) S (Y,U) + 2n\alpha \eta (Z) g (Y,U) - \eta (U) S (Z,Y)] = 0. \tag{23}$$

Substituting $Z = \xi$ in (23), we find

$$\frac{(n+1)(\alpha-c)}{8n} [-S (Y,U) + 2n\alpha g (Y,U)] = 0. \tag{24}$$
From (24), we get
\[c = \alpha. \]
This tells us that the scalar curvature of \(M \) is
\[r = 2n\alpha (2n + 1). \]
On the other hand, from (24) we have
\[S(Y, U) = 2n\alpha g(Y, U), \]
which implies \(M \) reduces an Einstein manifold. This proves our assertion. The converse is obvious.

The concept of the quasi-conformal curvature tensor was defined by Yano and Sowaki as
\[
\hat{C}(X, Y) Z = aR(X, Y) Z + b[S(Y, Z) X - S(X, Z) Y + g(Y, Z) QX - g(X, Z) QY]
- \frac{r}{2n + 1} \left[\frac{1}{2} \left(\frac{a}{2n} + 2b \right) \right] [g(Y, Z) X - g(X, Z) Y],
\]
where \(a \) and \(b \) are constants, \(Q \) is the Ricci operator, \(S \) is the Ricci tensor and \(r \) is the scalar curvature of the manifold. If \(\hat{C} = 0 \), then this manifold is called a quasi-conformal flat. If \(X = \xi \) is chosen in (25),
\[
\hat{C}(\xi, Y) Z = \left[\frac{bc(n + 1) + a(2a + 7b - b)}{2} \right] - \frac{r}{2n + 1} \left[\frac{1}{2} \left(\frac{a}{2n} + 2b \right) \right] [g(Y, Z) \xi - \eta(Z) Y],
\]
and if \(Z = \xi \) is chosen in (26), we reach at
\[
\hat{C}(\xi, \xi) = \left[\frac{a(2a + 7b - b)}{2} \right] - \frac{r}{2n + 1} \left[\frac{1}{2} \left(\frac{a}{2n} + 2b \right) \right] [\eta(Y) \xi - \eta(Y) \xi] + b[2n\alpha \eta(Y) \xi - QY].
\]

Theorem 5. Let \(M \) be \((2n + 1)\)-dimensional a \(C(\alpha) \)-manifolds. Then \(W^*(X, Y) \hat{C} = 0 \) if and only if either the scalar curvature of \(M \) is \(r = 2n\alpha (2n + 1) \) or \(M \) reduces real space form with constant sectional curvature.

Proof. Suppose that \(W^*(X, Y) \hat{C} = 0 \). Then, we have
\[
(W^*(X, Y) \hat{C})(U, V, Z) = W^*(X, Y) \hat{C}(U, V) Z - \hat{C}(W^*(X, Y) U, V) Z
- \hat{C}(U, W^*(X, Y) V) Z - \hat{C}(U, V) W^*(X, Y) Z = 0.
\]
If we choose \(X = \xi \) in here
\[
(W^*(\xi, Y) \hat{C})(U, V, Z) = W^*(\xi, Y) \hat{C}(U, V) Z - \hat{C}(W^*(\xi, Y) U, V) Z
- \hat{C}(U, W^*(\xi, Y) V) Z - \hat{C}(U, V) W^*(\xi, Y) Z = 0,
\]

© 2022 BISKA Bilisim Technology
for each $Y, U, V, Z \in \chi(M)$. Using (10) in (28), we get
\[
\frac{(n + 1)(\alpha - c)}{8n} g(Y, \tilde{C}(U, V, Z) \xi - \eta(\tilde{C}(U, V) Z Y
\]
\[-g(Y, U) \tilde{C}(\xi, V) Z + \eta(U) \tilde{C}(Y, V) Z - g(Y, V) \tilde{C}(U, \xi) Z
\]
\[+ \eta(V) \tilde{C}(U, Y) Z - g(Y, Z) \tilde{C}(U, V) \xi + \eta(Z) \tilde{C}(U, V) Y \right] = 0.
\] (29)

Taking $U = \xi$ in (29) and using (26), we obtain
\[
\left[\frac{(n + 1)(\alpha - c)}{8n} \right] \otimes \left\{ \tilde{C}(Y, Z) V - \left[\frac{bc(n + 1) + \alpha(2a + 7bn - b)}{2} - \frac{r}{2n + 1} \left(\frac{a}{2n + 2b} \right) \right] \right.
\]
\[= g(V, Z) Y - g(V, Z) V \right\} = 0.
\]

In the last equation, if (25) is written in its place and necessary adjustments are made, we get
\[
aR(Y, V) Z = \left[\frac{\alpha(2a + bn + b) - bc(n + 1)}{2} \right] g(V, Z) Y - g(V, Z) V \]
\[- \frac{b(\alpha - c)(n + 1)}{2} \left[\eta(V) \eta(X) Y - \eta(Y) \eta(Z) V + g(V, Z) \eta(Y) \xi - g(Y, Z) \eta(V) \xi \right].
\] (30)

Substituting $Y \rightarrow \phi Y$ and $V \rightarrow \phi V$ in (30), we conclude
\[
R(\phi Y, \phi V) Z = \left[\frac{\alpha(2a + bn + b) - bc(n + 1)}{2} \right] g(V, Z) Y - g(V, Z) V.
\]

This proves our assertion. The converse is obvious.

References

