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Abstract: Series and parallel LRC circuit systems are widely encountered in numerous electrical, electronics, control issues and
differential equation applications. Accurate control of the current in series and voltage in parallel LRC circuit systems with nonlinear
time-varying inductance, resistance and capacitance is a challenge. In this study, a novel approach proposed for control of current in
nonlinear time-varying series LRC circuit and voltage in nonlinear and time-varying parallel LRC circuit. The proposed controller is
characterized by a nonlinear algebraic equation and straining the tracking error converge to zero. Illustrative results confirm the
proposed approach for forcing the current /voltage in series and parallel nonlinear time-varying LRC circuit to follow the targeted
current /voltage trajectories efficiently. The proposed approach shows great novelty to determine the dynamics behavior of nonlinear
time-varying systems. Therefore, the obtained results generalize and improve the existing conclusions. Simulations illustrate the
feasibility and validity of the theoretical results.
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1 Introduction

The LRC circuit is an important type of electronic circuit comprising of an inductor (L), a resistor (R) and a capacitor (C)

connected in series and parallel. LRC circuits have many different applications such as second-order differential equations
[1,2,3], fractional differential equations [4], higher-order differential systems (elliptic filters) [5], control issues [6,7,8,
9,10], electrical transmission line models [11], oscillators and dividing power [12], computers, medical devices, mobile
phones, TVs, and FM radios [13] are just a few examples that use different forms of LRC circuits. LRC circuits are
traditionally considered to have constant inductance, resistance and capacitance. However, in many scenarios, the value
of elements of LRC circuits can change over time depending on the environment [12]. Therefore, we further assume the
mass of a moving particle m(t,x, ẋ) where m, t, x and ẋ represent mass, time, position and velocity, respectively. With
this analogy, the value of the elements of LRC circuits may depend on the time (t) and the charge (q) and current q̇ that
following through the elements of the circuits. For simplicity, we define the inductance, resistance and capacitance of
the LRC circuits such as L(t,q, q̇), R(t,q) and C(t,q), respectively. Since most of the physical systems encountered in
the application are nonlinear. This is the overriding reason we study nonlinear systems. The mathematical model of LRC
resembles the equation of mass-spring-damper systems, which are frequently encountered in many conformable robotics
systems as a basic architecture [14,15]. Therefore, it may be more advantageous to examine the dynamic behavior of
some physical systems by using the notion of LRC circuit models. Because the LRC circuits are more reliable than the
mechanical systems. For example, the energy function of a LRC circuit and its derivation can be constructed from power-
energy relationship of circuit theory. Hence, the dynamical behavior of such systems can be predictable. Since the energy
and its derivation determine the behavior of the system [16]. The construction of the energy function of a LRC circuit
and the variation of this energy along the trajectories of the system is one of the advantages. Therefore, the study of
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control issues for LRC circuits with nonlinear time-varying inductance, resistance and capacitance are indispensable. In
control theory, there is a great need to investigate the controlling of such systems with nonlinear time-varying coefficients.
Hence, we are motivated to analyze nonlinear and time-varying LRC circuit models and to propose a new nonlinear
control strategy. In addition, despite the long history and wide use of LRC circuits in practice, differential equations of
such circuits are still writing incorrectly. In this study, some existing equations and conclusions [12,14] were discussed
and refined. This paper proposes a novel nonlinear control strategy for series figure1 and parallel figure 2 LRC circuits
with nonlinear time-varying inductance, resistance and capacitance. The nonlinear error function is defined twice and
used to ensure that the tracking control error of current or voltage is stable by the Lyapunov method, and with linear case
(tracking control error) current or voltage converges to zero. The resultant nonlinear controller takes the benefit of time
derivative information of the desired current/voltage trajectories and can be defined by an algebraic expression. One of
the disadvantages of our approach with the defined nonlinear systems is that the convergence rate is slow. This idea will
be clear with figures 3 and 4.
The remainder of the paper is arranged as follows. Section 2 forms the backbone of the study, models and methods,
controller design and some remarks present the theoretical analysis of this section. The main results with concluding
remark presented in section 3. Simulations are given in section 4.
The above discussions will concretize with the following theoretical analysis.

2 Models and methods

The goal of tracking error problems is to design a feedback controller such that the output x(t) asymptotically tracks the
desired target (reference) signal xd(t); that is, lim

x→∞
[x(t)− xd(t)] = 0, where all the state variables are initially bounded in

magnitude. A commonly used model for our discussion is a nonlinear and non-autonomous system that is

x(t) = f (t,x(t),u(t)), x(0) = x0, ∀t ≥ 0, (1)

where t ∈ ℜ+(ℜ+ = [0,∞)) denotes time, x ∈ ℜ denotes the state of the system, while u ∈ ℜ is called the input or
the control function. However, f : ℜ+×ℜ×ℜ → ℜ satisfies Lipschitz condition. The state vector x(t) ∈ D, in which
D ⫅ ℜ is a domain that contains the origin x = 0. We assume that (1) is well posed, that is, there exists a unique solution
x : [0,∞)→ ℜ for every initial data x(0) = x0 ∈ ℜ and x depends continuously on x0 according to the normed topology
on ℜ. Let f (t,0,0) = 0, f (t,x,0) ̸= 0 for x ̸= 0. First, we will construct the mathematical models of nonlinear and time-
varying series and parallel LRC circuit systems in the standard form of second-order differential equations. A special form
of (1) may be written as:

ẍ+ f (t,x, ẋ)+g(t,x) = u(t). (2)

We may transform (2) into the following state space form
ẋ = y,

ẏ =−
[

f (t,x,y)
y

]
y−

[
g(t,x)

x

]
x+u(t)

(3)

where x ̸= 0, y ̸= 0.
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2.1 Nonlinear and time-varying series LRC circuit model

Fig. 1: Nonlinear and time-varying series LRC circuit.

The mathematical model of the above LRC circuit from Kirchhoff’s Law is described by the following equation:

L(t,q, q̇)q̈+R(t,q)q̇+
q

C(t,q)
=Vs(t), (4)

where t ∈ ℜ+ denotes the time, q ∈ ℜ represents the charge (the state variable), L > 0, R ≥ 0 and C > 0, respectively,
denote the nonlinear time-varying resistance, inductance and capacitance of the series LRC circuit, and Vs(t) is the input
voltage to be controlled. Assume that the existence and uniqueness solution to (4) satisfies the bounded initial data q(0) =
q0 and q̇(0) = q0. We may write (4) in the x(= q) variable and in the standard form such as:

ẍ+
R(t,x)

L(t,x, ẋ)
ẋ+

1
L(t,x, ẋ)C(t,x)

x =
V (t)

L(t,x, ẋ)
. (5)

With making an analogy between (3) and (5) for ẋ = y, we have the followings:

f (t,x,y)
y

=
R(t,x)

L(t,x,y)
,

g(t,x)
x

=
1

L(t,x,y)C(t,x)
, u(t) =

V (t)
L(t,x,y)

.

The tracking error for the above series circuit is e(t) = x(t)− xd(t).

Remark 1 For linear time-varying case of (5), we have u(t) = V (t)
L(t) . But, for the same problem u(t) stated in [12] such

as u(t) = V̇s(t)C(t)+Vs(t)Ċ(t)+I(0)
C(t)L(t) . (5) also refines the coefficients of the differential system (4) in [12]. For convenience, see

[12].
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2.2 Nonlinear and time-varying parallel LRC circuit model

Fig. 2: Nonlinear and time-varying series LRC circuit.

The mathematical model of the above LRC circuit from Kirchhoff’s Law described by the following equation:

V (t)
R(t,q)

+

t∫
0

Vs(t)
L(s,q(s), q̇(s))

ds+ IL(0)+Ċt(t,q)V (t)+Ċq(t,q)q̇V (t)+C(t,q)V̇ (t) = Is(t), (6)

First, we differentiate (6) with respect to time t, then we have the followings:

V̇ (·)R(·)− [Ṙ(·)+ Ṙq(·)q̇]V (·)
R2(·)

+
V (·)
L(·)

+C̈t(t,q)V (t)+C̈tq(t,q)q̇V (t)+

Ċt(t,q)V̇ (t)+C̈qt(t,q)q̇V (t)+C̈q(t,q)q̇2V (t)+Ċq(t,q)q̈V (t)+

Ċq(t,q)V̇ (t)+Ċt(t,q)V̇ (t)+Ċq(t,q)q̇V̇ (t)+C(t,q)V̈ (t) = İs(t),

(7)

(7) can be rewritten in the standard form

V̈ (·)+ 1
C(·)

[
1

R(·)
+2Ċt(·)+2Ċq(·)q̇

]
V̇ (·)+

1
C(·)

[
−

Ṙ(·)+ Ṙq(·)q̇
R2(t)

+
1

L(·)
+C̈t(·)+2C̈tq(·)q̇+C̈q(·)q̇2 +Ċq(t,q)q̈

]
V (·) = İs(·)

C(·)

(8)

To analyze the proposed control approach further, we may transform the above equation (7) to the state space form (3).
Now, the coefficients of (3) are the followings:

f (t,x,y)
y

=
1

C(·)

[
1

R(·)
+2Ċt(·)+2Ċq(·)q̇

]
and

g(t,x)
x

=
1

C(·)

[
1

L(·)
+C̈t(·)+2C̈tq(·)q̇+C̈q(·)q̇2

]
and the control input is

u(t) =
İs(·)
C(·)
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We again assume that the existence and uniqueness solution to (8) satisfies any bounded initial data. For this case, we
denote the state variables such as: x(t) =V (t),y(t) = V̇ (t).

Remark 2 For linear time-varying case of (8) we have u(t) = İs(t)
C(t) . But, for the same problem u(t) stated in [12] such as

u(t) = L(t)İs(t)+C(t)+L̇(t)Is(t)+V (0)
C(t)L(t) . Further, for the same problem defined in [12], we have the following

V̈ +
1

C(t)

(
1

R(t)
+2Ċ(t)

)
V̇ +

1
C(t)

(
− Ṙ

R2(t)
+

1
L(t)

+C̈(t)
)

V =
İs(t)
C(t)

.

Obviously, one can see the big differences between our equation above and (2) in [12]. The tracking error for the above
parallel circuit is

Remark 3 When we carefully examine article [12], there are fundamental errors in equations (1),(3) and (8). Namely,
in (1) and (3) 1

L(t) and 1
C(t) must be written in the associated integral (not outside of the integral) such as (6), and in (3)

However, other coefficients are also wrong. In (8) of [12], and in (5) of [14] the two solutions must be linearly independent.
That is, the second solution may be written in the form c2t exp(−rt). Furthermore, our Theorem 2 in section3 improves
the theoretical results in [12,14]. In addition, the control functions u(t) in [12] must not contain the initial values. They
must disappear while taking the derivative of the associated integrals.

2.3 Controller Design

Our second goal in this work is to attain accurate control of the voltage/current of the nonlinear and time-varying
series/parallel LRC circuit systems to the desired target value xd(t). To monitor the tracking control process of the circuit
models, we consider the first error function and apply it as follows:

e1(t) = x(t)− xd(t), (9)

where xd = q(t) or xd =V (t) coresspondignly. In addition to this, we may need to construct another error design formula
forcing the tracking error to be zero:

ėi(t) =−rϕ(ei(t)) =−re2n−1
i (t), i = 1,2

where n ∈ N, N = {1,2,3, ...} , and r > 0 is a design parameter that scales the convergence rate of the solution. For
simplicity, let n = 2 in this work, the nonlinear activation function is ϕ(ei(t)) = e3

i (t), i = 1,2 to force the tracking error
e1(t) to be zero as time t evolves. Thus, we have the tracking error formula characterized by

ė1(t) =−re3
1(t). (10)

From (9) and (10), we obtain
ẋ(t)− ẋd(t) =−r(x(t)− xd(t))

3.

Considering ẋ(t) = y(t),, we have
y(t)− ẋd(t)+ r(x(t)− xd(t))

3 = 0.

We may need to construct a second error function:

e2(t) = y(t)− ẋd(t)+ r(x(t)− xd(t))
3 = 0.
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By applying the design formula ė2(t) =−re3
2(t) again, we obtain

ẏ− ẍd +3r(x− xd)
2(ẋ− ẋd)+ r

[
y+ rẋd + r2(x− xd)

3
]3

= 0.

From (3), by substituting ẏ = − f (t,x,y)−g(t,x)+u(t), into the above equation, we can derive the control function and
then write is as follows:

u(t) = f (t,x,y)+g(t,x)+ ẍd −3r(x− xd)
2(y− ẋd)− r

[
y+ rẋd + r2(x− xd)

3
]3
. (11)

3 Main results

The applications of the nonlinear and linear controller will take place with the following theorems.

Theorem 1. Starting from the bounded initial states, the solution of the tracking error e1(t)) of the nonlinear time-varying
series or parallel LRC circuit system equipped with controller (11) is stable. If the relation

√
h(t) := sup

t≥0

1
2 y2(t) exists

between the storage function h(t) and the current v(t) of the circuit then the solution e1(t) exponentially convergences to
zero.

Proof 1 According to the associated design formula, we have the following equations:

e2(t) = ė1(t)+ re3
1(t), ė2(t) =−re3

2(t). (12)

From these two equations (12), we obtain the following second order differential equation:

ë1 +3re2
1ė1 =−r(ė1 + re3

1)
3
,

in x = e1 variable, we have
ẍ+ r(ẋ2 +3x2 +3rx3ẋ+3r2x6)ẋ+ r4x9 = 0 (13)

Now, assume that the resistance component of the circuit (i.e., the coefficient of ẋ ) must be a positive value. Therefore,
for simplicity we may say that xẋ ≥ 0. Thus, the error function may represent a series nonlinear LRC circuit with zero
input. (12) can be transformed into the equivalent system{

ẋ = y,

ẏ =−r(y2 +3rx2 +3rx3y+3r2x6)y− r4x9.
(14)

We may not have an explicit solution to (14), because of the nonlinearity of the equation. In such cases, the Lyapunov
method is often an indispensable tool to make solution predictions about the behavior of the system [16]. Therefore, the
Lyapunov (energy) function for the above system from the power-energy relationship of circuit theory may be written as:

h(t) = h(x,y) =
1
2

y2 +
1

10
r4x10.

Then, we have h(t) ≥ 1
2 y2(t),h(0,0) = 0,h(x,y) > 0 with x ̸= 0 or y ̸= 0. Hence, h is a positive definite function. The

derivative of the Lyapunov function h(t) along the trajectories of system (14) gives

ḣ(t) =−r(y2 +3x2 +3rx3y+3r2x6)y2

,
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ḣ(t)≤−ry4 ≤ 0.

Hence, the solution of the error equation is stable. From
√

h(t) := sup
t≥0

1
2 y2(t) , then it follows that

ḣ(t)≤−4rh(t), (15)

h(t)≤ ce−4rt

for all t ≥ 0, c is a constant value. (15) implies that both the solutions x(t) and y(t) converge to the equilibrium point
(0,0). The tracking error x(t)−xd(t) for series circuit and V (t)−Vd(t) for parallel circuit exponentially converge to zero.
Thus, the proof is complete.

Theorem 2. For the linear time-varying case of series or parallel LRC circuit equipped with linear controller form of
(11), starting with bounded initial states x(0),and ẋ(0), the linear tracking error e1(t) = x(t)− xd(t) of the whole system
exponentially convergences to zero.

Proof 2 The linear form of (12) is the following

e2(t) = ė1(t)+ re1(t), ė2(t) =−re2(t).

The above equations yield the following differential equation

ë1(t)+2rė1(t)+ r2e1(t) = 0, t > 0.

The solution of the above equation is

e1(t) = Aexp(−rt)+Bt exp(−rt), t > 0,

where A and Bare constant values. Obviously, e1(t) exponentially converges to zero as time t evolves. The solution e1(t)
((8)) in [12] and the solution e1(t) ((5)) in [14] may be not correct. They must be in the above solution form.

Remark 4 The proof of Theorem [2] is clearer for an analytic solution. Therefore, there is no need to give a numerical
example.

4 Simulation results

Figure 3 shows the tracking control results for nonlinear time-varying LRC model (5) or (8) by the controller (11) with
r = 10. One can observe that the model output x(t) can achieve the reference as time t evolves. Therefore, the designed
controller (11) can make the nonlinear time-varying LRC model (5) or (8) achieve the step response. Figure 4 demonstrates
the corresponding tracking error of LRC models ((5),(8)) with the designed controller (11). The nonlinear steady-state
tracking error |x(t)− xd(t)| diminished to zero gradually. The convergence rate of nonlinear systems is slow. This is
obvious with figures 3 ,4 and figure 5 shows the phase portrait of the system (14) with r = 10 attains to the equilibrium
solution (x(t),y(t) = (0,0). The last three figures illustrate the feasibility and validity of the theoretical results.
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Fig. 3: Step response for the LRC model (5) or (8) by the controller

Fig. 4: Tracking error |x(t)− xd(t)| of LRC models

Fig. 5: Phase portrait of the system (14) with r = 10.
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5 Conclusion

This paper proposes a novel approach for the control of series and parallels LRC circuits with nonlinear and time-varying
inductance, resistance and capacitance. The proposed nonlinear controller is described by an algebraic equation and can
provide the tracking error to slowly converge to zero. By the way, we realized that the convergence rate of the linear
controller is faster than that of nonlinear systems. The simulations illustrate the feasibility and validity of the theoretical
results.
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