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Abstract: In the present paper, an initial boundary value problem for the linear Schrödinger equation including the momentum operator
is introduced. This problem is discretized by the finite difference method and a difference scheme is presented. Moreover, an estimate
for the solution of the proposed scheme is obtained. Finally, with the help of the estimate, it is proved that the proposed scheme is
unconditionally stable and convergent.
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1 Introduction

The general form of a Schrödinger type equation (StE) is as follows:

εut +F2(ς , t;u)uςς +F1(ς , t;u)uς +F0(ς , t;u)u = 0, (1)

where ε = const., u(ς , t) is the wave’s complex amplitude; ut =
∂u
∂ t , uς = ∂u

∂ς
, uςς = ∂ 2u

∂ς2 . Equation (1) describes the slow
variation of the function u(ς , t) in a medium with quadratic dispersion [1]. The diversified versions of equation (1) and
its applications have been studied widely in many fields such as hydrodynamics, water waves, optical fiber setting,
photonics, nonlinear transmission lines, Bose-Einstein condensates, plasma physics [2]. In equation (1), the variables ς

and t have different meanings according to the context of its application areas. Here, ς and t denote the space and time
variables, respectively.

In the present paper, we study an initial boundary value problem (IBVP) for a particular case of equation (1), which is a
linear Schrödinger equation including a momentum operator, in the form

i
∂u
∂ t

+ p0
∂ 2u
∂ς2 + ip1

∂u
∂ς

− p(ς)u+q(t)u = ρ(ς , t), (ς , t) ∈ Ω , (2)

u(ς ,0) = η(ς), ς ∈ I, (3)

u(0, t) = u(l, t) = 0, t ∈ Q, (4)
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where i =
√
−1, I = (0, l) , Q = (0,T ), Ω = I ×Q, p0, p1 > 0 are real numbers; p(ς) and q(t) are real valued functions

such that

0 < p(ς)≤ µ0 almost everywhere (a.e.) in I, µ0 = const. > 0 , (5)

q ∈ L2(Q), |q(t)| ≤ b0,

∣∣∣∣dq(t)
dt

∣∣∣∣≤ b1 a.e. in Q, (6)

b0,b1 > 0 are given numbers; η ∈ H2
0 (I), ρ ∈ H0,1(Ω). Here, almost everywhere means that a property is said to hold

almost everywhere in any set E if it holds in E except in some subset of E with measure zero. Also, H2
0 (I), H0,1(Ω) are

Sobolev spaces defined as in [3] and L2(Q) is a Hilbert space with the inner product ⟨u,v⟩ =
∫
Q

u(t)v(t)dt for any u,v ∈

L2(Q).

In this work, we examine the solution of problem (2)-(4) with the help of the finite difference method. For this, firstly, we
constitute a difference scheme for IBVP (2)-(4). Later, we obtain an estimate for the solution of difference scheme.
Finally, by using the estimate obtained we show that the scheme is unconditionally stable and is convergent. According
to characteristics of the coefficients Fα, α = 0,1,2 in (1), we obtain the varied forms of linear and nonlinear
Schrödinger equations from equation (1). The solutions by finite difference method of IBVPs for linear Schrödinger
equations obtained from equation (1) in case of F0(ς , t;u) = F0(ς , t) are previously analyzed in the works [4,5,6,7]. In
these papers, the coefficient F1 is usually zero. But, in [6], there is a nonzero real valued function. Also, when
F2(ς , t;u) = const., F1(ς , t;u) = 0, F0(ς , t;u) = F0(ς , t;u) in (1), we obtain the nonlinear Schrödinger equations such that
the solutions of such equations by the finite difference method are studied in [7,8,9,10,11,12,13,14]. The stability, error
and convergence of the method have been demonstrated in most of these papers.

As different from previous studies, in this paper, we work out an IBVP in the form (2)-(4) for linear Schrödinger
equation including a momentum operator with coefficients ε = i, F2(ς , t;u) = p0, F1(ς , t;u) = ip1,

F0(ς , t;u) =−p(ς)+q(t), which is more comprehensive and current than the problems studied before.

Based on results in [15], we write the next theorem for problem (2)-(4). It is easily proved by the Galerkin’s method.

Theorem 1. Assume that (5) and (6) are satisfied and η ∈ H2
0 (I), ρ ∈ H0,1(Ω). Then, there exists a unique solution

u ∈ B0 ≡C0(QT ,H2
0 (I)) ∩C1(QT ,L2(I)) of problem (2)-(4) f or any t ∈ QT = [0,T ] and the following estimate holds

||u(., t)||2H2
0 (I)

+

∥∥∥∥∂u
∂ t

∥∥∥∥2

L2(I)
≤ c0

(
||η ||2H2

0 (I)
+ ||ρ||2H0,1(Ω)

)
, (7)

where c0 > 0 is a constant independent of η ,ρ, t.

2 Notations, some useful lemmas and difference scheme

In this section, we present some notations and give some lemmas and theorems used in the paper. Let I be discretized
using by grid points ς j = jh− h

2 , j = 1,2, ...,A−1, ς1 − h
2 = 0, ςA−1 +

h
2 = l, h = l

A−1 and let QT be divided by tk = kτ,

k = 0,1, ...,B with τ = T
B , where A,B are any positive integers. Let u jk, j = 0,1, ...,A, k = 0,1, ...,B be the numerical

approximation of u(ς , t) at the point (ς j, tk) . Also, we define the finite difference operators
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D−
t u jk =

u jk −u jk−1

τ
, D−

ς u jk =
u jk −u j−1k

h
,

D+
ς u jk =

u j+1k −u jk

h
, D2

ς u jk =
D+

ς u jk −D−
ς u jk

h
=

u j+1k −2u jk +u j−1k

h2 ,

and some discrete inner product and norms as

(v,w) = h
A−1

∑
j=1

v jw j, ∥v∥2 =

√√√√h
A−1

∑
j=1

∣∣v j
∣∣2, ∥v∥

∞
= max

1≤ j≤A−1

∣∣v j
∣∣ ,∥∥∥D+

ς v
∥∥∥

2
=

√√√√h
A−1

∑
j=1

∣∣D+
ς v j
∣∣2

for any grid functions v,w, where the symbols ∥.∥2 and ∥.∥
∞

indicate the discrete norms on spaces L2(I) and L∞(I),
respectively and w j means the complex-conjugate of w j. Also, throughout this paper, we denote the positive constants
independent from τ, h and m by cr, r = 1,2, ...,12.

With these designations, we write the finite difference scheme of problem (2)-(4) for j = 1,2, ...,A−1,k = 1,2, ...,B as

iD−
t u jk + p0D2

ς u jk + ip1D−
ς u jk − p ju jk +qku jk = ρ jk, (8)

u j0 = η j, j = 0,1, ...,A, (9)

u0k = uAk = 0, k = 1,2, ...B, (10)

where the functions p j, qk, ρ jk and η j for j = 1,2, ...,A−1,k = 1,2, ...,B are Steklov averages of the functions p(ς), q(t),
ρ(ς , t) and η(ς) respectively, defined by

p j =
1
h

ς j+h/2∫
ς j−h/2

p(ς)dς ,

qk =
1
τ

tk∫
tk−1

q(t)dt,

ρ jk =
1

τh

tk∫
tk−1

ς j+h/2∫
ς j−h/2

ρ(ς , t)dςdt,

η j =
1
h

ς j+h/2∫
ς j−h/2

η(ς)dς , η0 = ηA = 0

[16]. Also, from conditions (5) and (6), the inequalities

0 ≤ p j ≤ µ0, j = 1,2, ...,A−1, (11)

|qk| ≤ b0, k = 1,2, ...B,
∣∣D−

t qk
∣∣≤ b1, k = 2, ...B, (12)

are written.

We need the following lemmas and theorem.
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Lemma 1.(Discrete Gronwall’s Inequality [17]): Assume that the nonnegative grid functions
{v(s),y(s), s = 1,2, ...,S, Sτ = T} satisfy the inequality

v(s)≤ y(s)+ τ

s

∑
r=1

Brv(r),

where Br (r = 1,2, ...,S) are nonnegative constant. Then, for any 0 ≤ s ≤ S, there is

v(s)≤ y(s)exp

(
sτ

s

∑
r=1

Br

)
.

Lemma 2. (Summation by Parts Formula): For any two grid functions

v,w ∈ {v : v = (v0,v1,v2, ...,vA−1,vA) , v0 = vA = 0} , we have

h
A−1

∑
j=1

(
D2

ς v j

)
w j =−h

A

∑
j=1

(
D−

ς v j

)(
D−

ς w j

)
.

Lemma 3. (∈ −Cauchy′s inequality [18]): For any ∈> 0 and arbitrary a and b, the inequality

ab ≤ ∈
2

a2 +
1

2 ∈
b2

is valid.

Theorem 2. (Fubini’s Theorem [19]): Let the function f (ς ,y) be integrable over Θp+q = Θp ×Θq. Then, f (ς ,y) is
integrable with respect to y ∈ Θp for almost all ς ∈ Θq, is integrable with respect to ς ∈ Θq for almost all y ∈ Θp, the
functions

∫
Θp

f (ς ,y)dy and
∫

Θq

f (ς ,y)dς are integrable with respect to ς ∈Θq and y ∈Θp, respectively, and

∫
Θp+q

f dςdy =
∫

Θq

dς

∫
Θp

f dy =
∫

Θp

dy
∫

Θq

f dς ,

where Θp is a p−dimensional bounded region in variables y = (y1,y2, ...yp),Θq is a q−dimensional bounded region in
variables ς = (ς1,ς2, ...ςq).

3 The stability of scheme (8)-(10)

We firstly get an estimate for the solution of difference scheme (8)-(10). By this estimate, we provide the proof of
unconditional stability of the difference scheme.

Theorem 3. Assume that (5) and (6) are satisfied and η ∈H2
0 (I), ρ ∈H0,1(Ω). Then, the solution u jm of difference scheme

(8)-(10) for any m ∈ {1,2, ...,B} satisfies the estimate

h
A−1

∑
j=1

∣∣u jm
∣∣2 +2h

m

∑
k=1

A−1

∑
j=1

∣∣u jk −u jk−1
∣∣2 +2p1τ

m

∑
k=1

|uA−1k|2

+2p1τ

m

∑
k=1

A−1

∑
j=1

∣∣u jk −u j−1k
∣∣2 ≤ c1

(
h

A−1

∑
j=1

∣∣η j
∣∣2 + τh

B

∑
k=1

A−1

∑
j=1

∣∣ρ jk
∣∣2) . (13)
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Proof.It is clear that for any scheme function ξ jk such that ξ0k = ξAk = 0 for k = 1,2, ...B, scheme (8)-(10) is equivalent
to the summation identity

ih
A−1

∑
j=1

D−
t u jkξ jk + p0h

A−1

∑
j=1

D2
ς u jkξ jk + ip1h

A−1

∑
j=1

D−
ς u jkξ jk −h

A−1

∑
j=1

p ju jkξ jk +h
A−1

∑
j=1

qku jkξ jk = h
A−1

∑
j=1

ρ jkξ jk, (14)

where ξ jk is the complex conjugate of ξ jk. Substituting τu jk for ξ jk in (14) and applying the formula of summation by
parts, we get

ihτ

A−1

∑
j=1

D−
t u jku jk − p0hτ

A−1

∑
j=1

∣∣∣D−
ς u jk

∣∣∣2 + ip1hτ

A−1

∑
j=1

D−
ς u jku jk −hτ

A−1

∑
j=1

p j
∣∣u jk
∣∣2 +hτ

A−1

∑
j=1

qk
∣∣u jk
∣∣2 = hτ

A−1

∑
j=1

ρ jku jk. (15)

By subtracting its complex conjugate from (15) and using the relations

τ
(
D−

t u jku jk +D−
t u jku jk

)
=
∣∣u jk
∣∣2 − ∣∣u jk−1

∣∣2 + ∣∣u jk −u jk−1
∣∣2 , (16)

h
(

D−
ς u jku jk +D−

ς u jku jk

)
=
∣∣u jk
∣∣2 − ∣∣u j−1k

∣∣2 + ∣∣u jk −u j−1k
∣∣2 , (17)

we have

h
A−1

∑
j=1

(∣∣u jk
∣∣2 − ∣∣u jk−1

∣∣2 + ∣∣u jk −u jk−1
∣∣2)+ p1τ

A−1

∑
j=1

(∣∣u jk
∣∣2 − ∣∣u j−1k

∣∣2 + ∣∣u jk −u j−1k
∣∣2)= 2hτ

A−1

∑
j=1

Im
(
ρ jku jk

)
(18)

for k = 1,2, ...B. If we sum all equalities in (18) in k from 1 to m ≤ B and consider

m

∑
k=1

A−1

∑
j=1

(∣∣u jk
∣∣2 − ∣∣u jk−1

∣∣2) =
A−1

∑
j=1

(∣∣u jm
∣∣2 − ∣∣u j0

∣∣2)= A−1

∑
j=1

∣∣u jm
∣∣2 − A−1

∑
j=1

∣∣η j
∣∣2 (19)

m

∑
k=1

A−1

∑
j=1

(∣∣u jk
∣∣2 − ∣∣u j−1k

∣∣2) =
m

∑
k=1

(
|uA−1k|2 −|u0k|2

)
=

m

∑
k=1

|uA−1k|2 (20)

with (9) and (10), we obtain from (18) the inequality

h
A−1

∑
j=1

∣∣u jm
∣∣2 +h

m

∑
k=1

A−1

∑
j=1

∣∣u jk −u jk−1
∣∣2 + p1τ

m

∑
k=1

|uA−1k|2

+p1τ

m

∑
k=1

A−1

∑
j=1

∣∣u jk −u j−1k
∣∣2 ≤ 2hτ

m

∑
k=1

A−1

∑
j=1

∣∣ρ jk
∣∣ ∣∣u jk

∣∣+h
A−1

∑
j=1

∣∣η j
∣∣2 . (21)

By ε −Cauchy′s and Young’s inequalities it is written that

2hτ

m

∑
k=1

A−1

∑
j=1

∣∣ρ jk
∣∣ ∣∣u jk

∣∣ = 2τh
A−1

∑
j=1

∣∣ρ jm
∣∣ ∣∣u jm

∣∣+2hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣ρ jk
∣∣ ∣∣u jk

∣∣
≤ ετh

A−1

∑
j=1

∣∣ρ jm
∣∣2 + hτ

ε

A−1

∑
j=1

∣∣u jm
∣∣2 +hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣ρ jk
∣∣2 +hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣u jk
∣∣2

≤ 2T τh
A−1

∑
j=1

∣∣ρ jm
∣∣2 + h

2

A−1

∑
j=1

∣∣u jm
∣∣2 +hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣ρ jk
∣∣2 +hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣u jk
∣∣2

© 2022 BISKA Bilisim Technology

www.ntmsci.com


37 Nigar Yıldırım Aksoy: On the convergence of finite difference scheme

with ε = 2τ and τ ≤ T. Thus,

h
A−1

∑
j=1

∣∣u jm
∣∣2 +2h

m

∑
k=1

A−1

∑
j=1

∣∣u jk −u jk−1
∣∣2 +2p1τ

m

∑
k=1

|uA−1k|2 +2p1τ

m

∑
k=1

A−1

∑
j=1

∣∣u jk −u j−1k
∣∣2

≤ 4T hτ

B

∑
k=1

A−1

∑
j=1

∣∣ρ jk
∣∣2 +2hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣u jk
∣∣2 +2h

A−1

∑
j=1

∣∣η j
∣∣2 (22)

for any m ∈ {1,2, ...,B} is obtained from (21). From the non-negativeness of all terms in the left-hand side of (22), it is
written that

h
A−1

∑
j=1

∣∣u jm
∣∣2 ≤ 4T hτ

B

∑
k=1

A−1

∑
j=1

∣∣ρ jk
∣∣2 +2hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣u jk
∣∣2 +2h

A−1

∑
j=1

∣∣η j
∣∣2 . (23)

Applying the discrete Gronwall’s inequality to (23), we achieve

h
A−1

∑
j=1

∣∣u jm
∣∣2 ≤ c2

(
h

A−1

∑
j=1

∣∣η j
∣∣2 + τh

B

∑
k=1

A−1

∑
j=1

∣∣ρ jk
∣∣2) for any m ∈ {1,2, ...,B} . (24)

If we use inequality (24) in (22), we get for any m ∈ {1,2, ...,B} ,

h
A−1

∑
j=1

∣∣u jm
∣∣2 +2h

m

∑
k=1

A−1

∑
j=1

∣∣u jk −u jk−1
∣∣2 +2p1τ

m

∑
k=1

|uA−1k|2 +2p1τ

m

∑
k=1

A−1

∑
j=1

∣∣u jk −u j−1k
∣∣2

≤ c3

(
h

A−1

∑
j=1

∣∣η j
∣∣2 + τh

B

∑
k=1

A−1

∑
j=1

∣∣ρ jk
∣∣2) (25)

which completes the proof.

Theorem 4. Suppose that u1
jk, u2

jk are solutions of difference scheme (8)-(10) with initial values η1
j , η2

j and right sides ρ1
jk,

ρ2
jk, respectively. Assume that the conditions of theorem 3 are fulfilled. Let Φ jk = u1

jk −u2
jk. Then, for any m ∈ {1,2, ...,B}

and h,τ > 0,

h
A−1

∑
j=1

∣∣Φ jm
∣∣2 ≤ c4

(
h

A−1

∑
j=1

∣∣η1
j −η

2
j
∣∣2 +hτ

B−1

∑
k=1

A−1

∑
j=1

∣∣ρ1
jk −ρ

2
jk

∣∣2) .

Hence, difference scheme (8)-(10) is unconditionally stable.

Proof. It is clear that for j = 1,2, ...,A−1,k = 1,2, ...B, Φ jk is the solution of scheme

iD−
t Φ jk + p0D2

ς Φ jk + ip1D−
ς Φ jk − p jΦ jk +qkΦ jk = ρ

1
jk −ρ

2
jk, (26)

Φ j0 = η
1
j −η

2
j , j = 0,1, ...,A, (27)

Φ0k = ΦAk = 0, k = 1,2, ...B, (28)

which is equivalent to summation identity

ih
A−1

∑
j=1

D−
t Φ jkκ jk + p0h

A−1

∑
j=1

D2
ς Φ jkκ jk + ip1h

A−1

∑
j=1

D−
ς Φ jkκ jk

−h
A−1

∑
j=1

p jΦ jkκ jk +h
A−1

∑
j=1

qkΦ jkκ jk = h
A−1

∑
j=1

(
ρ

1
jk −ρ

2
jk
)

κ jk (29)
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for any scheme function κ jk such that κ0k = κAk = 0 for k = 1,2, ...B. If we substitute τΦ jk for κ jk in (29) and apply the
formula of summation by parts, we get

ihτ

A−1

∑
j=1

D−
t Φ jkΦ jk − p0hτ

A−1

∑
j=1

∣∣∣D−
ς Φ jk

∣∣∣2 + ip1hτ

A−1

∑
j=1

D−
ς Φ jkΦ jk −hτ

A−1

∑
j=1

p j
∣∣Φ jk

∣∣2
+hτ

A−1

∑
j=1

qk
∣∣Φ jk

∣∣2 = hτ

A−1

∑
j=1

(
ρ

1
jk −ρ

2
jk
)

Φ jk.

If we continue the process similarly to the proof of Theorem 3, we obtain for any m ∈ {1,2, ...,B} ,

h
A−1

∑
j=1

∣∣Φ jm
∣∣2 +2h

m

∑
k=1

A−1

∑
j=1

∣∣Φ jk −Φ jk−1
∣∣2 +2p1τ

m

∑
k=1

|ΦA−1k|2 +2p1τ

m

∑
k=1

A−1

∑
j=1

∣∣Φ jk −Φ j−1k
∣∣2

≤ 4T hτ

B

∑
k=1

A−1

∑
j=1

∣∣ρ1
jk −ρ

2
jk

∣∣2 +2hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣Φ jk
∣∣2 +h

A−1

∑
j=1

∣∣η1
j −η

2
j
∣∣2 . (30)

Since all terms in the left-hand side of (30) are non-negative, the inequality

h
A−1

∑
j=1

∣∣Φ jm
∣∣2 ≤ 4T hτ

B

∑
k=1

A−1

∑
j=1

∣∣ρ1
jk −ρ

2
jk

∣∣2 +2hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣Φ jk
∣∣2 +h

A−1

∑
j=1

∣∣η1
j −η

2
j
∣∣2 (31)

is written. If we apply discrete Gronwall’s Inequality to (31), we obtain

h
A−1

∑
j=1

∣∣Φ jm
∣∣2 ≤ c5

(
hτ

B

∑
k=1

A−1

∑
j=1

∣∣ρ1
jk −ρ

2
jk

∣∣2 +h
A−1

∑
j=1

∣∣η1
j −η

2
j
∣∣2) for any m ∈ {1,2, ...,B}

which completes the proof.

4 The convergence of scheme (8)-(10)

In this section, we prove that the solution u jk of scheme (8)-(10) is convergent to the exact solution U jk of u(ς , t), which
U jk is defined by

U jk =
1

τh

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

u(ς , t)dςdt, j = 1,2, ...,A−1, k = 1,2, ...B, (32)

U j0 = η j, j = 0,1, ...,A, U0k =UAk = 0, k = 1,2, ...B. (33)

For this, let’s show the error of scheme (8)-(10) by e jk = u jk −U jk at (ς j, tk) . It is clear that e jk satisfies the following
system:

iD−
t e jk + p0D2

ς e jk + ip1D−
ς e jk − p je jk +qke jk = I jk, j = 1,2, ...,A−1, k = 1,2, ...B, (34)

e j0 = 0, j = 0,1, ...,A, e0k = eAk = 0, k = 1,2, ...B, (35)

where

I jk =
1

τh

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

(
i
∂u
∂ t

+ p0
∂ 2u
∂ς2 + ip1

∂u
∂ς

− p(ς)u+q(t)u
)

dςdt (36)

−iD−
t U jk − p0D2

ςU jk − ip1D−
ς U jk + p jU jk −qkU jk.
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Theorem 5. Presume that the conditions of Theorem (1) are fulfilled. Then, the error e jk of scheme (8)-(10) satisfies:

h
A−1

∑
j=1

∣∣e jm
∣∣2 ≤ c12

(
w0

τ +w0
h +w1

h + τ
2 +h2) for any m ∈ {1,2, ...,B} ,

where w0
τ −→ 0, w0

h −→ 0, w1
h −→ 0 as τ,h −→ 0. Hence, the solution u jk of scheme (8)-(10) converges to the solution

U jk of problem (2)-(4).

Proof. System (34)-(35) is equivalent to the summation identity

h
A−1

∑
j=1

iD−
t e jkϑ jk + p0h

A−1

∑
j=1

D2
ς e jkϑ jk + ip1h

A−1

∑
j=1

D−
ς e jkϑ jk

−h
A−1

∑
j=1

p je jkϑ jk +h
A−1

∑
j=1

qke jkϑ jk = h
A−1

∑
j=1

I jkϑ jk, k = 1,2, ...B (37)

for any grid function ϑ jk such that ϑ0k = ϑAk = 0 for k = 1,2, ...B, where ϑ jk is the complex conjugate of ϑ jk. With the
help of the formula of summation by parts for ϑ jk = τe jk in (37), we get

hτ

A−1

∑
j=1

i
(
D−

t e jk
)

e jk − p0hτ

A−1

∑
j=1

∣∣∣D−
ς e jk

∣∣∣2 + ip1hτ

A−1

∑
j=1

(
D−

ς e jk

)
e jk

−hτ

A−1

∑
j=1

p j
∣∣e jk
∣∣2 +hτ

A−1

∑
j=1

qk
∣∣e jk
∣∣2 = hτ

A−1

∑
j=1

I jke jk. (38)

If we subtract its conjugate from (38) and use relations (16), (17), we obtain for k = 1,2, ...B

h
A−1

∑
j=1

[∣∣e jk
∣∣2 − ∣∣e jk−1

∣∣2 + ∣∣e jk − e jk−1
∣∣2]+ p1τ

A−1

∑
j=1

[∣∣e jk
∣∣2 − ∣∣e j−1k

∣∣2 + ∣∣e jk − e j−1k
∣∣2]= 2hτ

A−1

∑
j=1

Im
(
I jke jk

)
. (39)

Let’s sum all equalities in (39) in k from 1 to m ≤ B and use equalities (19) and (20) for e jk with (35). Thus, we have

h
A−1

∑
j=1

∣∣e jm
∣∣2 +h

m

∑
k=1

A−1

∑
j=1

∣∣e jk − e jk−1
∣∣2 + p1τ

m

∑
k=1

|eA−1k|2 + p1τ

m

∑
k=1

A−1

∑
j=1

∣∣e jk − e j−1k
∣∣2 ≤ 2hτ

m

∑
k=1

A−1

∑
j=1

∣∣I jk
∣∣ ∣∣e jk

∣∣
which is equivalent to

h
A−1

∑
j=1

∣∣e jm
∣∣2 +h

m

∑
k=1

A−1

∑
j=1

∣∣e jk − e jk−1
∣∣2 + p1τ

m

∑
k=1

|eA−1k|2 + p1τ

m

∑
k=1

A−1

∑
j=1

∣∣e jk − e j−1k
∣∣2

≤ 2hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣I jk
∣∣ ∣∣e jk

∣∣+2hτ

A−1

∑
j=1

∣∣I jm
∣∣ ∣∣e jm

∣∣ .
By ε −Cauchy′s inequality from inequality above, it is written that

h
A−1

∑
j=1

∣∣e jm
∣∣2 +h

m

∑
k=1

A−1

∑
j=1

∣∣e jk − e jk−1
∣∣2 + p1τ

m

∑
k=1

|eA−1k|2 + p1τ

m

∑
k=1

A−1

∑
j=1

∣∣e jk − e j−1k
∣∣2

≤ 2hτ
1

2ε

A−1

∑
j=1

∣∣e jm
∣∣2 +2hτ

ε

2

A−1

∑
j=1

∣∣I jm
∣∣2 +hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣I jk
∣∣2 +hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣e jk
∣∣2 (40)

which implies that

h
A−1

∑
j=1

∣∣e jm
∣∣2 ≤ (4T +2)hτ

B

∑
k=1

A−1

∑
j=1

∣∣I jk
∣∣2 +2hτ

m−1

∑
k=1

A−1

∑
j=1

∣∣e jk
∣∣2 (41)
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noting that τ ≤ T by ε = 2τ. In (41), by discrete Gronwall’s inequality, we obtain

h
A−1

∑
j=1

∣∣e jm
∣∣2 ≤ c6hτ

B

∑
k=1

A−1

∑
j=1

∣∣I jk
∣∣2 for any m ∈ {1,2, ...B} . (42)

Let’s denote the grid function I jk as follows

I jk = I1
jk + I2

jk + I3
jk + I4

jk + I5
jk for j = 1,2, ...,A−1,k = 1,2, ...B,

where

I1
jk =

1
hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

i
∂u
∂ t

dςdt − iD−
t U jk, (43)

I2
jk =

1
hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

p0
∂ 2u
∂ς2 dςdt − p0D2

ςU jk, (44)

I3
jk =

1
hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

ip1
∂u
∂ς

dςdt − ip1D−
ς U jk, (45)

I4
jk =

1
hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

−p(ς)u(ς , t)dςdt + p jU jk, (46)

I5
jk =

1
hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

q(t)u(ς , t)dςdt −qkU jk. (47)

From (32) and (43) for j = 1,2, ...,A−1, k = 2,3, ...B, it is written that

I1
jk =

1
hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

i
∂u
∂ t

dςdt − iD−
t U jk =

1
hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

i
∂u
∂ t

dςdt − i
1

hτ2

 tk∫
tk−1

ς j+
h
2∫

ς j− h
2

(u(ς , t)−u(ς , t − τ))dςdt



=
i

hτ2

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

0∫
−τ

(
∂u(ς , t)

∂ t
− ∂u(ς , t +θ)

∂ t

)
dθdςdt

which implies that

∣∣I1
jk

∣∣≤ 1
hτ2

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

0∫
−τ

∣∣∣∣∂u(ς , t)
∂ t

− ∂u(ς , t +θ)

∂ t

∣∣∣∣dθdςdt. (48)

In (48), using Fubini’s Theorem and Cauchy-Schwarz inequality, we achieve

hτ

B

∑
k=2

A−1

∑
j=1

∣∣I1
jk

∣∣2 ≤ 1
τ

0∫
−τ

∫
Ω

∣∣∣∣∂u(ς , t)
∂ t

− ∂u(ς , t +θ)

∂ t

∣∣∣∣2 dςdt

dθ . (49)
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As known, any function belonging to L2(Ω) is continuous in the norm of L2(Ω). So since ∂u/∂ t ∈ L2(Ω), for a given
ε > 0, a number σ > 0 can be found such that

∫
Ω

∣∣∣∣∂u(ς , t)
∂ t

− ∂u(ς , t +θ)

∂ t

∣∣∣∣2 dςdt

1/2

< ε

for all |θ | ≤ τ < σ [19]. Therefore, we write

τh
B

∑
k=2

A−1

∑
j=1

∣∣I1
jk

∣∣2 ≤ w0
τ , (50)

where

w0
τ =

1
τ

0∫
−τ

∫
Ω

∣∣∣∣∂u(ς , t)
∂ t

− ∂u(ς , t +θ)

∂ t

∣∣∣∣2 dςdt

dθ , w0
τ > 0

and w0
τ converges to zero since θ → 0 as τ → 0. Similarly, from (32) and (43) for k = 1, we have

τh
A−1

∑
j=1

∣∣I1
j1
∣∣2 ≤ 4

τ∫
0

∥∥∥∥∂u(., t)
∂ t

∥∥∥∥2

L2(I)
dt ≤ c7τ

by (7). Combining the last inequality with (50), we obtain

τh
B

∑
k=1

A−1

∑
j=1

∣∣I1
jk

∣∣2 ≤ c8τ +w0
τ . (51)

From (32) and (44) for j = 2,3, ...,A−2, k = 1,2, ...B, it is written that

I2
jk =

1
hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

p0
∂ 2u(ς , t)

∂ς2 dςdt − p0

[
U j+1k −2U jk +U j−1k

h2

]

=
p0

h3τ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

ς+h∫
ς

ζ∫
ζ−h

∂ 2u(ς , t)
∂ς2 dφdζ dςdt − p0

h3τ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

ς+h∫
ς

ζ∫
ζ−h

∂ 2u(φ , t)
∂φ 2 dφdζ dςdt

=
p0

h3τ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

h∫
0

0∫
−h

(
∂ 2u(ς , t)

∂ς2 − ∂ 2u(ς +ζ +φ , t)
∂ς2

)
dφdζ dςdt

which implies that

∣∣I2
jk

∣∣≤ p0

h3τ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

h∫
0

0∫
−h

∣∣∣∣∂ 2u(ς , t)
∂ς2 − ∂ 2u(ς +ζ +φ , t)

∂ς2

∣∣∣∣dφdζ dςdt.
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In above inequality, by using Fubini’s Theorem and Cauchy-Schwarz inequality, we get

τh
B

∑
k=1

A−2

∑
j=2

∣∣I2
jk

∣∣2 ≤ 2p0

h2

h∫
0

0∫
−h

∫
Ω

∣∣∣∣∂ 2u(ς , t)
∂ς2 − ∂ 2u(ς +ζ , t)

∂ς2

∣∣∣∣2 dςdt

dφdζ

+
2p0

h2

h∫
0

0∫
−h

∫
Ω

∣∣∣∣∂ 2u(ς +ζ , t)
∂ς2 − ∂ 2u(ς +ζ +φ , t)

∂ς2

∣∣∣∣2 dςdt

dφdζ .

Since ∂ 2u/∂ς2 ∈ L2(Ω), for a given ε > 0, a number σ > 0 can be found such that

∫
Ω

∣∣∣∣∂ 2u(ς , t)
∂ς2 − ∂ 2u(ς +ζ , t)

∂ς2

∣∣∣∣2 dςdt

1/2

<
ε

2

∫
Ω

∣∣∣∣∂ 2u(ς +ζ , t)
∂ς2 − ∂ 2u(ς +ζ +φ , t)

∂ς2

∣∣∣∣2 dςdt

1/2

<
ε

2

for |ζ | ≤ h < σ and |φ | ≤ h < σ [19]. Since ζ −→ 0 and φ −→ 0 as h −→ 0, it is clear that

∫
Ω

∣∣∣∣∂ 2u(ς , t)
∂ς2 − ∂ 2u(ς +ζ , t)

∂ς2

∣∣∣∣2 dςdt −→ 0 and
∫
Ω

∣∣∣∣∂ 2u(ς +ζ , t)
∂ς2 − ∂ 2u(ς +ζ +φ , t)

∂ς2

∣∣∣∣2 dςdt −→ 0.

Thus, we can write

hτ

B

∑
k=1

A−2

∑
j=2

∣∣I2
jk

∣∣2 ≤ w0
h, (52)

where

w0
h =

2p2
0

h2

h∫
0

0∫
−h

∫
Ω

∣∣∣∣∂ 2u(ς , t)
∂ς2 − ∂ 2u(ς +ζ , t)

∂ς2

∣∣∣∣2 dςdt

dφdζ

+
2p2

0
h2

h∫
0

0∫
−h

∫
Ω

∣∣∣∣∂ 2u(ς +ζ , t)
∂ς2 − ∂ 2u(ς +ζ +φ , t)

∂ς2

∣∣∣∣2 dςdt

dφdζ .

So we say w0
h converges to zero as h → 0. From (32) and (44) for j = 1 and j = A−1, we get

∣∣I2
1k

∣∣ ≤ 3p0

hτ

tk∫
tk−1

ς1+
h
2∫

ς1− h
2

∣∣∣∣∂ 2u(ς , t)
∂ς2

∣∣∣∣dςdt for k = 1,2, ...B,

∣∣I2
A−1k

∣∣ ≤ 3p0

hτ

tk∫
tk−1

ςA−1+
h
2∫

ςA−1− h
2

∣∣∣∣∂ 2u(ς , t)
∂ς2

∣∣∣∣dςdt for k = 1,2, ...B

which is equivalent to

hτ

B

∑
k=1

∣∣I2
1k

∣∣2 +hτ

B

∑
k=1

∣∣I2
A−1k

∣∣2 ≤ 9p2
0

 h∫
0

∥∥∥∥∂ 2u(ς , .)
∂ς2

∥∥∥∥2

L2(0,T )
dς +

l∫
l−h

∥∥∥∥∂ 2u(ς , .)
∂ς2

∥∥∥∥2

L2(0,T )
dς

 . (53)
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From (53), we can easily say that the term hτ
B
∑

k=1

∣∣I2
1k

∣∣2 + hτ
B
∑

k=1

∣∣I2
A−1k

∣∣2 converges to zero as h −→ 0. Combining (53)

with (52), we obtain

τh
B

∑
k=1

A−1

∑
j=1

∣∣I2
jk

∣∣2 ≤ w0
h. (54)

By formulas (32) and (45) for j = 2,3, ...,A−2, k = 1,2, ...B, we write

I3
jk =

1
hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

ip1
∂u
∂ς

dςdt − ip1

(
U jk −U j−1k

)
h

=
1

hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

ip1
∂u
∂ς

dςdt − ip1

h2τ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

(u(ς , t)−u(ς −h, t))dςdt

which implies that ∣∣∣I3
jk

∣∣∣≤ p1

τh2

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

0∫
−h

∣∣∣∣∂u(ς , t)
∂ς

− ∂u(ς +ζ , t)
∂ς

∣∣∣∣dζ dςdt. (55)

From (55), by means of Fubini’s theorem and Cauchy-Schwarz inequality, we get

hτ

B

∑
k=1

A−2

∑
j=2

∣∣∣I3
jk

∣∣∣2 ≤ p2
1

h

0∫
−h

∫
Ω

∣∣∣∣∂u(ς , t)
∂ς

− ∂u(ς +ζ , t)
∂ς

∣∣∣∣2 dςdt

dζ .

Since ∂u/∂ς ∈ L2(Ω), for a given ε > 0, a number σ > 0 can be found such that

∫
Ω

∣∣∣∣∂u(ς , t)
∂ς

− ∂u(ς +ζ , t)
∂ς

∣∣∣∣2 dςdt

1/2

< ε

for |ζ | ≤ h < σ . Since ζ −→ 0 as h −→ 0, we can write

hτ

B

∑
k=1

A−2

∑
j=2

∣∣∣I3
jk

∣∣∣2 ≤ w1
h, (56)

where

w1
h =

p2
1

h

0∫
−h

∫
Ω

∣∣∣∣∂u(ς , t)
∂ς

− ∂u(ς +ζ , t)
∂ς

∣∣∣∣2 dςdt

dζ

and w1
h converges to zero as h → 0. Similarly, from (32) and (45) for j = 1 and j = A−1, we get

τh
B

∑
k=1

∣∣I3
1k

∣∣2 ≤ 4p2
1

h∫
0

 T∫
0

∣∣∣∣∂u(ς , t)
∂ς

∣∣∣∣2 dt

dς = 4p2
1

h∫
0

∥∥∥∥∂u(ς , .)
∂ς

∥∥∥∥2

L2(0,T )
dς ,

τh
B

∑
k=1

∣∣I3
A−1k

∣∣2 ≤ 4p2
1

l∫
l−h

 T∫
0

∣∣∣∣∂u(ς , t)
∂ς

∣∣∣∣2 dt

dς = 4p2
1

l∫
l−h

∥∥∥∥∂u(ς , .)
∂ς

∥∥∥∥2

L2(0,T )
dς

which implies that

τh
B

∑
k=1

∣∣I3
1k

∣∣2 + τh
B

∑
k=1

∣∣I3
A−1k

∣∣2 ≤ 4p2
1

 h∫
0

∥∥∥∥∂u(ς , .)
∂ς

∥∥∥∥2

L2(0,T )
dς +

l∫
l−h

∥∥∥∥∂u(ς , .)
∂ς

∥∥∥∥2

L2(0,T )
dς

 . (57)
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In (57), since hτ
B
∑

k=1

∣∣I3
1k

∣∣2 +hτ
B
∑

k=1

∣∣I3
A−1k

∣∣2 −→ 0 as h −→ 0, combining (56) with (57), we can write

τh
B

∑
k=1

A−1

∑
j=1

∣∣∣I3
jk

∣∣∣2 ≤ w1
h. (58)

From (32) and (46) for j = 1,2, ...,A−1, k = 1,2, ...B, it is written that

I4
jk =

1
τh

U jk

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

(p j − p(ς))dςdt +
1

hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

p(ς)
(
U jk −u(ς , t)

)
dςdt =

1
τh

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

p(ς)
(
U jk −u(ς , t)

)
dςdt

which implies that

∣∣I4
jk

∣∣≤ µ0

hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

∣∣U jk −u(ς , t)
∣∣dςdt (59)

by condition (5). Since

U jk −u(ς , t) =
1

τh

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

θ∫
t

∂u(ρ,η)

∂η
dηdρdθ +

1
τh

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

ρ∫
ς

∂u(γ, t)
∂γ

dγdρdθ ,

it is obtained that

∣∣I4
jk

∣∣ ≤ µ0

τh

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

 1
τh

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

θ∫
t

∣∣∣∣∂u(ζ ,φ)
∂φ

∣∣∣∣dφdζ dθ +
1

hτ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

ρ∫
ς

∣∣∣∣∂u(γ, t)
∂γ

∣∣∣∣dγdζ dθ

dςdt

≤ µ0

(τh)2

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

tk∫
tk−1

∣∣∣∣∂u(ζ ,φ)
∂φ

∣∣∣∣dφdζ dθdςdt +
µ0

(τh)2

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

ς j+
h
2∫

ς j− h
2

∣∣∣∣∂u(γ, t)
∂γ

∣∣∣∣dγdζ dθdςdt (60)

=
µ0

h

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

∣∣∣∣∂u(ς , t)
∂ t

∣∣∣∣dςdt +
µ0

τ

tk∫
tk−1

ς j+
h
2∫

ς j− h
2

∣∣∣∣∂u(ς , t)
∂ς

∣∣∣∣dςdt.

In (60), by Cauchy-Schwarz and Young’s inequalities, we get

∣∣I4
jk

∣∣2 ≤ 2µ2
0 τ

h

 tk∫
tk−1

ς j+
h
2∫

ς j− h
2

∣∣∣∣∂u(ς , t)
∂ t

∣∣∣∣2 dςdt

+
2µ2

0 h
τ

 tk∫
tk−1

ς j+
h
2∫

ς j− h
2

∣∣∣∣∂u(ς , t)
∂ς

∣∣∣∣2 dςdt


which implies that

τh
B

∑
k=1

A−1

∑
j=1

∣∣I4
jk

∣∣2 ≤ 2µ
2
0 τ

2
∥∥∥∥∂u

∂ t

∥∥∥∥2

L2(Ω)

+2µ
2
0 h2
∥∥∥∥∂u

∂ς

∥∥∥∥2

L2(Ω)

≤ c9
(
τ

2 +h2) (61)

by the estimate (7).

Similarly to the computations obtaining inequality (61), from (32) and (47) for j = 1,2, ...,A − 1, k = 1,2, ...,B, we
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obtain

τh
B

∑
k=1

A−1

∑
j=1

∣∣∣I5
jk

∣∣∣2 ≤ 2b2
0τ

2
∥∥∥∥∂u

∂ t

∥∥∥∥
L2(Ω)

+2b2
0h2
∥∥∥∥∂u

∂ς

∥∥∥∥
L2(Ω)

≤ c10
(
τ

2 +h2) (62)

by the estimate (7).

Thus, from (51), (54), (58), (61) and (62), we have

τh
B

∑
k=1

A−1

∑
j=1

∣∣I jk
∣∣2 ≤ w0

τ +w0
h +w1

h + c11
(
τ

2 +h2) . (63)

Inserting (63) into (42), we achieve

h
A−1

∑
j=1

∣∣e jm
∣∣2 ≤ c12

(
w0

τ +w0
h +w1

h + τ
2 +h2) for any {m ∈ 1,2, ...,B} .

This completes the proof.

5 Conclusion

In the present paper, a finite difference scheme for Schrödinger type equation including the momentum operator has
been constructed. Unconditional stability and convergence of the proposed scheme have been proved. Here, it is worth
mentioning that the considered equation in discretized problem contains a momentum operator. Such problems focussing
on the solution of Schrödinger type equations including momentum operators by finite difference method have been very
slightly studied in literature. Hence, our paper is more comprehensive and current than previous works.
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