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Abstract: In order to solve mth-order linear differential difference equations with variable coefficients under mixed conditions, this
research suggests a combined operational matrix approach based on Lucas polynomials. The simplicity of the proposed method’s
application is a benefit. The technique simplifies the provided problem by turning it into a matrix equation. Absolute errors are used to
validate illustrative examples. The solutions are enhanced by residual error estimates. The results, which are displayed in graphs and
tables, are contrasted with the accepted approaches in the literature.
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1 Introduction

Differential-difference equations find applications in areas that are not covered by classical models of mathematical
physics, namely, in models of nonlinear optics, in nonclassical diffusion models, in biomathematical applications, and in
the theory of multilayered plates and shells [1]. This is explained by the nonlocal nature of functional-differential
equations: unlike in classical differential equations, where all derivatives of the unknown function are related at the same
point, in functional-differential equations, these terms can be related at different points, thus substantially expanding the
generality of the model [2,3,4,5,6].

Consider the following differential-difference equation,

m

∑
k=0

Pk(t)y(k)(t)+
J

∑
j=0

Q j(t)y( j)(αt +β ) = g(t) (1)

with the mixed condition

m−1

∑
k=0

(
aksy(k) (−1)+bksy(k) (0)+ cksy(k) (1)

)
= λs, s = 0,1, ...,m−1 (2)

where Pk (t), Q j (t) and g(t) are functions defined on the interval −1 ≤ t ≤ 1;α , β , aks, bks, cks and λs are appropriate
constants; y(t) is an unknown solution function to be determined.

For our purpose, we assume the approximate solution of the problem Eq.(1)-Eq.(2) in the truncated Lucas polynomials
form
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y(t)∼= yN(t) =
N

∑
n=0

an Ln(t), −1 ⩽ t ⩽ 1 (3)

where an,n = 0,1,2, ...,N are unknown coefficients to be determined and Ln(t) indicates the Lucas polynomials which
are originally studied in 1970 by Bcknell. Lucas polynomials are defined recursivelly as follows [7,8,9].

Ln+1 (t) = tLn (t)+Ln−1 (t) , n ⩾ 1, L0 (t) = 2,L1 (t) = t. (4)

Their explicit form for n ⩾ 1 is

Ln(t) =

n
2

∑
n=0

n
n− k

(
n− k

k

)
tn−2k (5)

where x is the largest integer smaller than or equal to x.
By using Eq.(4) and Eq.(5) the first Lucas polynomials respectively are given by

L0(t) = 2, L1(t) = t, L2(t) = t2 +2, L3(t) = t3 +3t,
L4(t) = t4 +4t2 +2, L5(t) = t5 +5t3 +5t, L6(t) = t6 +6t4 +9t2 +2,

2 Materials and Methods

2.1 Matrix Relations

The following process is used in this section to convert the expressions defined in Eq.(1) and Eq.(2) into matrix forms:
First, the derivatives of the function y(t) defined by Eq.(3) can be expressed in matrix form.

y(t)∼= yN (t) = L(t)A, L(t) = T(t)DT (6)

where

L(t) = [L0 (t) L1 (t) · · · LN (t)] , A = [a0 a1 · · · aN ]
T

T(t) =
[
1 t t2 · · · tN] .

If N is odd,
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2 0 0 0 0 0 · · · 0
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and if N is even,

D =



2 0 0 0 0 0 · · · 0
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From the matrix relations Eq. (6), it follows that

yN (t) = T(t)DT A, (7)

Besides, it is well known that the relation between the matrix T(t) and its derivatives are

T(k) (t) = T(t)Bk

where

B =



0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 0 N
0 0 0 0 0


B0 =



1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · 1


By using Eq.(6)-(7), we have the matrix relation

y(k)N (t) = T(t)BkDT A, k = 0,1,2, . . . (8)

By putting t → αt +β in the relation Eq.(8)

y(k)N (αt +β ) = T(αt +β )BkDT A, k = 0,1,2, . . . (9)

T(αt +β ) = T(t)B(α,β ) (10)
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where

B(α,β ) =



(
0
0

)
α0β 0

(
1
0

)
α0β 1

(
2
0

)
α0β 2 · · ·

(
N
0

)
α0β N

0

(
1
1

)
α1β 0

(
2
1

)
α1β 1 · · ·

(
N
1

)
α1β N−1

0 0

(
2
2

)
α2β 0 0

(
N
2

)
α2β N−2

...
...

...
. . .

...

0 0 0 0

(
N
N

)
αNβ 0


To obtain the Lucas polynomial solution of Eq.(1) in the form Eq.(3) we firstly compute the Lucas coefficients by means
of the collocation points defined by

ti = a+
b−a

N
i, i = 0,1, . . . ,N.

The following steps are taken to obtain the matrix equation system:

m

∑
k=0

Pk (ti)y(k) (ti)+
J

∑
j=0

Q j (ti)y( j) (αti +β ) = g(ti) (11)

It is constructed the fundamental matrix equation corresponding to Eq.(1). For this purpose, it is substituted the matrix
relations Eq.(8)-(10) into Eq.(1) and simplified, obtained the fundamental matrix equation

m

∑
k=0

Pk (ti)T(ti)BkDT A+
J

∑
j=0

Q j (ti)T(ti)B(α,β )BkDT A = g(ti) (12)

or briefly,
m

∑
k=0

PkTBkDT A+
J

∑
j=0

Q jTB(α,β )BkDT A = G (13)

where

Pk =


Pk (t0) 0 · · · 0

0 Pk (t1) 0
...

... · · ·
. . . 0

0 · · · 0 Pk (tN)

 , Q j =


Q j (t0) 0 · · · 0

0 Q j (t1) 0
...

... · · ·
. . . 0

0 · · · 0 Q j (tN)



T =


T(t0)
T(t1)

...
T(tN)

 G =


g(t0)
g(t1)

...
g(tN)

 , A =


a0

a1
...

aN

 ,
Besides, the fundamental matrix equation Eq.(13) can be expressed in the form

WA = G ⇔ [W : G] (14)
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where

W =
m

∑
k=0

PkTBkDT +
J

∑
j=0

Q jTB(α,β )BkDT = [wmn] ; m,n = 0,1, . . .N.

Now we can obtain the corresponding matrix form for the initial conditions Eq.(2), by means of the relation Eq.(8),

UsA = λs ⇔ [Us : λs] ; s = 0,1, . . .m−1. (15)

such that

Us =
m−1

∑
k=0

(
a jkT(a)+b jkT(b)

)
BkDT A =

[
u j0 u j1 · · · u jN

]
(16)

After substituting any m rows of the augmented matrix (14) with the m row matrices (16), we finally get the new matrix
as the answer to the problems (1)-(2).

W̃ A = G̃ ⇒
[

W̃ : G̃
]

(17)

In Eq.(17), if rankW̃ = rank
[

W̃ : G̃
]
= N+1 , then the coefficient matrix A is uniquelly determined and the solution of

the problem Eq.(1)-(2) is obtained as
yN(t) = L(t)A = T(t)DT A

3 Residual Error Analysis

By employing the residual correction method, we build an error estimation strategy for the Lucas polynomial
approximations of the problem Eq.(1)-(2), and we then use this technique to improve the approximation.
To begin with, the residual function of the method is

RN (t) = L [yN (t)]−g(t) (18)

where L [yN (t)] ∼= g(t) and yN(t) is the Lucas polynomial solution Eq.(3) of the problems Eq.(1)-(2). For
t = tl ∈ [−1,1], l = 0,1,2, . . . ; RN(tl)≤ 10−kl (kl is any positive integer).
Further, the error function eN(t) can be determined as

eN(t) = y(t)− yN(t) (19)

where y(t) is the exact solution of the problem Eq.(1)-(2). From Eqs.(1), (2), (18) and (19), we obtain the system of the
error differential equations

L[eN(t)] = L[y(t)]−L[yN(t)] =−RN(t) (20)

and the error problem

m

∑
k=0

Pk(t)e
(k)
N (t)+

J

∑
j=0

Q j(t)e
( j)
N (αt +β ) =−RN (t)

e(k)jN (a) = 0, j = 1,2, . . .J, k = 0,1, . . .m−1 (21)

The error problem Eq.(21) can be settled by using the presented method in Section 2. So, we obtain the approximation
eN,M(t) to eN(t) as follows:

eN,M(t) =
M

∑
n=0

a∗NLN(t), M > N, j = 1,2, . . .J. (22)
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As a result, using the polynomials yN(t) and eN,M(t), the corrected Lucas polynomial solution yN,M(t) = yN(t)+ eN,M(t)
is achieved. Additionally, the error function eN(t) = y(t)− yN(t), the estimated error function eN,M(t) and the corrected
error function EN,M(t) = eN(t)− eN,M(t) = y(t)− yN,M(t) constructed [10,11].

4 Numerical Examples

In order to demonstrate the correctness and efficiency of the procedure, some numerical examples of the problem Eq. (1)
are provided in this section.

Example 4.1. Let us first consider the problem

y′ (t) = ty(t)+
1
2

e−ty(t −1)+ et − tet − 1
2

e−1

with the initial condition y(0) = 1 [12].

We approximate the solution y(t) by the polinomial

y(t) = yN(t) =
3

∑
n=0

anLn(t), −1 ≤ t ≤ 1

P1 (t) = 1, P0 (t) =−t, Q1 (t) = 0, Q0 (t) = e−t

2 g(t) = et − tet − 1
2 e−1

and the collocation points for a =−1, b = 1 and N = 3 are computed as{
t0 =−1, t1 =−1

3
, t2 =

1
3

t3 = 1
}
.

Following the procedure in Section 2, the fundamental matrix equation of the given equation becomes

1

∑
k=0

PkTBkDT A+
1

∑
j=0

Q jTB(1,−1)BkDT A = G

where

P0 =



1 0 0 0

0 1
3 0 0

0 0 − 1
3 0

0 0 0 1


, P1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, Q0 =



e
2 0 0 0

0 e1/3

2 0 0

0 0 e−1/3

2 0

0 0 0 e−1

2


,DT =



2 0 2 0

0 1 0 3

0 0 1 0

0 0 0 1


,

B0 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, B =



0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0


, B(1,−1) =



1 −1 1 −1

0 1 −2 3

0 0 1 −3

0 0 0 1


, T =



1 −1 1 −1

1 − 1
3

1
9 − 1

27

1 1
3

1
9

1
27

1 1 1 1


,
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W =



− 719
1001

1457
536

−1109
155

3007
143

−1307
1793

1037
570

−590
227

4378
589

−675
488

980
869

−806
883

10246
2689

−3450
1457

0 −1993
1457

2


,G =



1001
1814

3257
4222

1004
1345

− 268
1457


The augmented matrix for this fundamental matrix equation is

[
W̃ ; G̃

]
=



− 719
1001

1457
536

−1109
155

3007
143

;
1001
1814

−1307
1793

1037
570

−590
227

4378
589

;
3257
4222

−675
488

980
869

−806
883

10246
2689

;
1004
1345

2 0 2 0 ; 1



Solving this system, A is obtained as A =

[
− 39

23113
461
648

446
889

145
1382

]
Thus, the solution of the problem becomes

y3(t) = 0.10492t3 +0.50169t2 +1.02618t +1

for different values of N as follows:

y5(t) = 0.00582t5 +0.042026t4 +0.16898t3 +0.49995t2 +0.99963t +1

y8(t) = 0.00002t8 +0.00020t7 +0.00140t6 +0.00833t5 +0.04166t4 +0.16667t3 +0.5t2 + t +1

y10(t) = 2.03∗10−7t10+2.76∗10−6t9+0.00002t8+0.0002t7+0.0014t6+0.0083t5+0.0417t4+0.1667t3+0.5t2+t+1

which are the approximate solution expanded for N = 3,5,8,10 as y(t) = et

Some results from the solutions of the example are tabulated for N = 3,5,8,10 in Table 1. Furthermore, the results obtained
by the proposed method are compared with the results of Gegenbauer polynomials given in [12]. The tables show that,
the result obtained by the current approach is almost the same as the results of the exact solution. The current approach is
practical and efficient as well. Fig. 1 depicts the numerical solution of the absolute errors in Example 4.1. As the integer
N is increased, the error goes down.
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Table 1: Comparisons of numerical results for N= 5, 8, 10 in Example 4.1.

t
Exact

solution

Present method

(N=5)

Present method

(N=8)

Present method

(N=10)

-1.0 0.367879 0.367550 0.367878 0.367879

-0.5 0.606531 0.606495 0.606530 0.606531

0.0 1 1 1 1

0.5 1.648721 1.648733 1.648721 1.648721

1.0 2.718282 2.716404 2.718280 2.718282

CPU time 0.860 s 0.883 s 0.918 s

Table 2: Comparisons of absolute errors in Example 4.1.

t
Gegenbauer method

e5[12]

Present method

e5

Present method

e8

Present method

e10

-1.0 2.7944e-04 5.8051e-05 1.5655e-06 2.4749e-10

-0.5 1.1910e-05 2.0165e-05 2.8968e-07 1.9899e-08

0.0 0 0 0 0

0.5 9.9783e-06 3.0710e-06 2.7317e-07 4.7011e-09

1.0 0.0019 0.0002 2.2649 e-06 2.9354e-09
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Fig. 1: The absolute errors of Example 4.1 for 3 ≤ N ≤ 10.

Additionally, the residual error analysis provides the improved numerical results as seen in Fig 2.
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Fig. 2: Comparison of Absolute, Estimated and Improved Absolute Errors of Example 4.1.

Example 4.2. Consider the problem

y′′ (t)− y′(t)+ y(t)− y(t +1)+ y(t +2) =−cos t − sin(t +1)+ sin(t +2)

with the initial condition y(0) = 0, y′(0) = 1 [13].
The solution of the problem for different values of N becomes as follows:

y3(t) =−0.11764t3 −0.02174t2 + t

y8(t) = 0.00002t8 −0.00022t7 −6.67∗10−6t6 +0.00833t5 +0.00006t4 −0.16662t3 −0.00004t2 + t +7.39∗10−17

which are the approximate solution expanded for N = 3,8 as y(t) = sin(t). Table 3 shows comparison of the results
obtained by our method and the Laguerre polynomials method given in [13] of Example 4.2. As can be inferred from the
table, the result obtained by the present method gives better results for small values of N.

Table 3: Comparisons of absolute errors in Example 4.2.

t
Laguerre method

e10[13]

Present method

e8

Present method

e9

Present method

e10

0.1 0.188e-02 3.885e-07 2.163e-07 2.096e-09

0.2 0.703e-02 1.292e-06 9.905e-07 4.190e-08

0.3 0.146e-01 2.217e-06 2.491e-06 1.738e-07

0.4 0.238e-01 2.564e-06 4.844e-06 4.537e-07

0.5 0.338e-01 1.666e-06 8.109e-06 9.332e-07

0.6 0.435e-01 1.146e-06 1.226e-05 1.654e-06

0.7 0.521e-01 6.471e-06 1.717e-05 2.638e-06

0.8 0.586e-01 1.476e-05 2.261e-05 3.888e-06
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Fig. 3: The absolute errors of Example 4.2 for 3 ≤ N ≤ 10.

Example 4.3. Consider the problem

y′′ (t)+2y′(t)− y′ (2t −1)+ y′ (t +1)−3y(t −2) = 6et −2e2t−1 +2et+1 −6et−2

with the initial condition y(0) = 2, y′(0) = 2 [12].
The solution of the problem for different values of N becomes as follows:

y3(t) = 0.26965t3 +1.16313t2 +2t +2

y6(t) = 0.00135t6 +0.01586t5 +0.08717t4 +0.33754t3 +1.00075t2 +2t +2

y10(t)= 2.39∗10−7t10+4.74∗10−6t9+0.00005t8+0.0004t7+0.00279t6+0.01666t5+0.08330t4+0.33332t3+t2+2t+2

which are the approximate solution expanded for N = 3,6,10 as y(t) = 2et

The numerical solution of the absolute errors in Example 4.3 are depicted in Fig. 4. As the integer N is increased, the error
goes down.
Absolute errors of the approximate solutions, the estimated solutions and the improved approximate solutions will be
given in Fig. 5.

Example 4.4. Consider the problem

y′′′ (t)− ty′′ (2t)+ y′ (t)+ y
( t

2

)
= cos(2t)+ cos

( t
2

)
with the initial condition y(0) = 1, y′(0) = 0, y′′(0) =−1 [12].
The solution of the problem for different values of N becomes as follows:

y3(t) =−0.05774t3 +0.45323t2 +6.94∗10−18t +1

y6(t) =−0.00110t6 +0.00018t5 +0.04155t4 +5.42∗10−20t3 −0.53028t2 −1.63∗10−19t +1
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Fig. 4: The absolute errors of Example 4.3 for 3 ≤ N ≤ 10.
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Fig. 5: Comparison of Absolute, Estimated and Improved Absolute Errors of Example 4.3.

y10(t) =−2.36∗10−7t10 +6.07∗10−8t9 +0.00002t8 −2.11∗10−7t7 −0.00139t6 −3.46∗10−9t5

+0.04167t4 −2.38∗10−22t3 −0.5t2 +2.25∗10−22t +1

which are the approximate solution expanded for N = 3,6,10 as y(t) = cos(t)

The absolute errors in the numerical solution of Example 4.4 are seen in Fig. 6. The error decreases when the integer N is
increased.
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Fig. 6: The absolute errors of Example 4.4 for 3 ≤ N ≤ 13.
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Fig. 7: Comparison of Absolute, Estimated and Improved Absolute Errors of Example 4.4.

5 Conclusion

A collocation calculation approach based on the Lucas polynomial is proposed in this study to solve the differential
difference equations. Additionally, the control of the solutions is carried out using predetermined approaches. The residual
error function also provides an estimation of the error. When results from the tables and figures are compared, it is clear that
the new method is very efficient and practical. Utilizing the suggested method to assess the validity of various problem-
solving approaches is another benefit. Tables and figures show that the errors drop more quickly as N increases, hence
employing a large number of N is advised for better results.
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