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Abstract: In this paper, the optimal distributed control problem of an Damped Boussinesq equation is studied. Dubovitskii-Milyutin
functional analytical approach is formulated for obtaining the necessary optimality condition in the form of Maximum principle for the
system under consideration. Necessary optimality condition is presented in fixed final horizon case.
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1 Introduction

Boussinesq equation is introduced by Joseph Boussinesq in 1870s for modelling the propagation of long waves on the
surface of water with a small amplitude. Over the last two decades, Boussinesq equation is studied in various aspects by
different researchers. In [2], Li considered the maxiumum principle for an optimal control problem governed by
Boussinesq equations including integral type state constraints. Analysis and approximation of linear feedback control
problems for the Boussinesq equations are studied in [3]. In [5], Wazwaz investigated the logarithmic-Boussinesq
equation for Gaussian solitary waves and derived the Gaussian solitary wave solutions for the logarithmic-regularized
Boussinesq equation. In [6], Shakhmurov obtained the existence and uniqueness of solution of the integral boundary
value problem for abstract Boussinesq equations. Global well-posedness and long time decay of the 3D Boussinesq
equations presented in [7]. Also, small global solutions to the damped two-dimensional Boussinesq equations obtained in
[8]. The results on local well-posedness for the sixth-order Boussinesq equation are derived in [9]. In [10], damped
infinite energy solutions of the 3D Euler and Boussinesq equations are presented. In [11], extended Boussinesq model to
predict the propagation of waves in porous media is developed. The inertial and drag resistances are taken into account in
the developed model. In [12], Fourier spectral approximation for the time fractional Boussinesq equation with periodic
boundary condition is considered. In the light of [1]-[4], this paper is concerned with the optimal distributed control
problem for an Damped Boussinesq equation. By adopting Dubovitskii and Milyutin functional analytical approach,
necessary optimality condition is obtained in the form of Maximum principle.

2 Well-posedness of the system

Let us consider the following damped Boussinesq equation[13]

utt +∆
2u−∆ut −∆ f (u) =C(x, t), 0 < x < ℓ, 0 < t < T (1)

∗ Corresponding author e-mail: e-mail: k.yildirim@alparslan.edu.tr, sertan.alkan@iste.edu.tr © 2022 BISKA Bilisim Technology

 http://dx.doi.org/10.20852/ntmsci.2022.495


134 K Yildirim and S Alkan: Maximum Principle for the Damped Boussinesq equation

where state variable u is the displacement function, f is a nonlinear function satisfying specific conditions given in the
next , C(x, t) is the control function and ∆u = uxx. Eq.(1) is subject to the following boundary conditions

u(0, t) = u(ℓ, t) = 0, uxx(0, t) = uxx(ℓ, t) = 0 (2)

and initial conditions

u(x,0) = u0(x) ∈ H2
0 (0, ℓ), ut(x,0) = u1(x) ∈ L2(0, ℓ). (3)

In [14], by using relaxed assumption on the non-linearity in the stiffness constitute law, a definition of weak solution and
the existence and uniqueness of such weak solutions are presented. In the light of the [14], the well-posedness of the
system given by Eqs.(1)-(3) is shown as follows;

Let H = L2(0, ℓ) and V = H2
0 (0, ℓ), so the Gelfand triple V ↪→ H ↪→ V ∗ with V ∗ = H−2(0, ℓ). Here ⟨., .⟩ is the inner

product in H and ⟨., .⟩V ∗,V denotes the usual duality product. Denote ∥.∥S the norm of the space S. Define the space of
solutions to be

S(0,T ) = {p|p ∈ L2(0,T ;V ), pt ∈ L2(0,T ;V ), ptt ∈ L2(0,T ;V ∗)}

with norm
∥p∥S(0,T ) = (∥p∥2

L2(0,T ;V )+∥pt∥2
L2(0,T ;V )+∥ptt∥2

L2(0,T ;V ∗))
1/2.

A function u ∈ S(0,T ) is weak solution of Eq.1 if the following equation holds:

⟨utt(t),φ⟩V ∗,V + ⟨uxx(t),φxx⟩−⟨ut(t),φxx⟩−⟨ f (u(t)),φ⟩= ⟨C(t),φ⟩V ∗,V , ∀φ ∈V, (4)

and u(0) = u0 ∈ V and ut(0) = u1 ∈ H. Assume that the nonlinear function f satisfies the following local Lipschitz
condition. Let Br(0) denote the ball radius r centred at 0 in H, and for some constant LBr , we have

∥ f (ξ )− f (σ)∥H ≤ LBr∥ξ −σ∥H , ∀ξ ,σ ∈ Br(0). (5)

Then, if the non-linear function f satisfies the local Lipschitz condition given by Eq.(5) and the control function C ∈
L2(0, ℓ : V ∗), there exists a T ∗ such that Eq.(1) has a unique weak solution on the interval [0,T ∗]. Assuming that f ∈
W 1,2(0,T ;H), which is the Sobolev space defined in [15], the global existence of unique weak solution is guaranteed.
Besides, if the non-linear function f is a bounded function, this weak solution is a global solution to the system defined
by Eqs.(1)-(3).

3 Optimal control problem formulation

Let C(x, t) = α(x, t)β (t), in which α(x, t) ∈ L2(0,T ;V ∗) and the control β (t) ∈ L2(0,T ) distributed over the space-time
domain. Then, we can define the performance index of the system given by Eqs.(1)-(3) as follows;

min
β (.)∈Uad

J (u,β ) = min
β (.)∈Uad

T∫
0

ℓ∫
0

L(u(x, t),β (t),x, t)dxdt (6)

and the admissible control function constraint is defined by

Uad = {β ∈ L2(0,T ) | 0 ≤ β0 ≤ β (t)≤ β1, t ∈ [0,T ] a.e.}. (7)
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The performance index of the system L is quite general in the sense that it contains most practically concerned cost
functional like quadratic cost functional of the following form:

J (u,β ) =
T∫

0

ℓ∫
0

µ1 | u(x, t)−u∗(x, t) |2 dxdt +µ2

T∫
0

| β (t)−β
∗(t) |2 dt,

where µi > 0, i = 1,2, are constants and u∗(x, t),β ∗(t) are, respectively, the optimal control goal for the displacement
of vibrating beam and the optimal control force. Take u ∈ S(0,T ). The control space is L2(0,T ) and the control
constraint is β0 ≤ βt ≤ β1 in (0,T ). The following assumptions for the cost functional are assumed:

L is a functional defined on V × [β0,β1]× [0,T ]× [0, ℓ] and

∂L(u(x, t),β (t),x, t)
∂u

,
∂L(u(x, t),β (t),x, t)

∂β

exists for every (u,β ) ∈V × [β0,β1] and L is continuous in its variables.Also,

ℓ∫
0

| ∂L(u(x, t),β (t),x, t)
∂u

| dx,
ℓ∫

0

| ∂L(u(x, t),β (t),x, t)
∂β

| dx

are bounded for t ∈ [0,T ].

Define XT = S(0,T )× L2(0,T ). Let (u∗,β ∗) be the optimal solution to the control problem (6) subject to the state
equation Eq.(1). Set

Ω1 = {(u,β ) ∈ XT | β0 ≤ β (t)≤ β1, t ∈ [0,T ] a.e.},

Ω2 = {(u,β ) ∈ XT | utt +∆
2u−∆ut −∆ f (u) = α(x, t)β (t),u(0, t) = u(ℓ, t) = 0,

uxx(0, t) = uxx(ℓ, t) = 0,u(x,0) = u0(x),ut(x,0) = u1(x),u(x,T ) = u∗(x,T )}.
(8)

Then the optimal control problem Eq.(6) is equivalent to questing for (u∗,β ∗) ∈ Ω = Ω1 ∩Ω2 such that

J (u∗,β ∗) = min
(u,β )∈Ω

J (u,β ). (9)

It is seen that the problem (9) is an extremum problem on the inequality constraint Ω1 and the equality constraint Ω2. In
this situation, the functional analytical approach of Dubovitskii and Milyutin has been turned out to be very powerful to
solve such kind of extremum problems[16,17,18]. The general Dubovitskii-Milyutin theorem for the extremum problem
(9) can be stated as the following theorem 1.

Theorem 1. [Dubovitskii-Milyutin] Suppose the functional J (u,β ) assumes a minimum at the point (u∗,β ∗) in Ω .

Assume that J (u,β ) is regularly decreasing at (u∗,β ∗) with the cone of directions of decrease K0 and the inequality
constraint is regular at (u∗,β ∗) with the cone of feasible directions K1 and that the equality constraint is also regular at
(u∗,β ∗) with the cone of tangent directions K2. Then there exists continuous linear functionals f0, f1, f2, not all identically
zero, such that fi ∈ K∗

i , the dual cone of Ki, i = 0,1,2, which satisfy condition

f0 + f1 + f2 = 0.
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4 Pontryagin’s maximum principle

4.1 The cone of directions of decrease K0

In order to apply Theorem 1, we have to determine all cones Ki, i = 0,1,2. First, let us find the cone of directions of
decrease K0. By assumption, J (u,β ) is differentiable at any point (u0,β 0) in any direction (u,β ) and its directional
derivative is

J ′(u0,β 0,u,β ) = lim
ε→0+

1
ε
[J (u0 + εu,β 0 + εβ )−J (u0,β 0)]

= lim
ε→0+

1
ε

{ T∫
0

ℓ∫
0

[L(u0 + εu,β 0 + εβ ,x, t)−L(u0,β 0,x, t)]dxdt
}

=

T∫
0

ℓ∫
0

[
∂L(u0,β 0,x, t)

∂u
u+

∂L(u0,β 0,x, t)
∂β

β

]
dxdt.

Hence, the cone of directions of decrease of the functional J (u,β ) at the point (u∗,β ∗) is determined by

K0 = {(u,β ) ∈ XT | J ′(u∗,β ∗;u,β )< 0}

=

{
(u,β ) ∈ XT |

T∫
0

ℓ∫
0

[
∂L(u∗,β ∗,x, t)

∂u
u+

∂L(u∗,β ∗,x, t)
∂β

β

]
dxdt < 0

}
.

(10)

If K0 ̸= /0, then for any f0 ∈ K∗
0 , there exists a κ0 ≥ 0 such that

f0(u,β ) =−κ0

T∫
0

ℓ∫
0

[
∂L(u∗,β ∗,x, t)

∂u
u+

∂L(u∗,β ∗,x, t)
∂β

β

]
dxdt

}
. (11)

4.2 The cone of feasible directions K1

Since Ω1 = S(0,T )× Ω̃1, in which Ω̃1 = {β ∈ L2(0,T )|β0 ≤ β (t) ≤ β1, t ∈ [0,T ] a.e.} is a closed convex subset of
L2(0,T ), the interior Ω̇1 of Ω1 is not empty, and at point (u∗,β ∗), the cone of feasible directions K1 of Ω1 is determined
by

K1 = {κ(Ω̇1 − (u∗,β ∗))|κ > 0}= {h|h = κ(u−u∗,β −β
∗),(u,β ) ∈ Ω̇ ,κ > 0}. (12)

Therefore, for any arbitrary f1 ∈ K∗
1 , if there is an ā(t) ∈ L2(0,T ), such that the linear functional defined by

f1(u,β ) =
T∫

0

ā(t)β (t)dt (13)

is a support to Ω̃1 at point β ∗, then

ā(t)[β (t)−β
∗]≥ 0, ∀β (t) ∈ [β0,β1], t ∈ [0,T ] a.e. (14)
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4.3 The cone of tangent directions K2

Let χ(x, t) = utt +∆ 2u−∆ut −∆ f (u)−α(x, t)β (t). Define the operator G : XT → L2(0,T ;V ∗)×(L2(0,T ))4×V ×H×V
by

G(u,β ) = (χ(x, t),u(0, t),u(ℓ, t),uxx(0, t),uxx(0, ℓ),u(x,0)−u0(x),ut(x,0)−u1(x),u(x,T )−u∗(x,T )). (15)

Then

Ω2 = {(u,β ) ∈ XT | G(u(x, t),β (t)) = 0}, (16)

so the Fréchet derivative of the operator G(u,β ) is

G′(u,β )(û, β̂ ) = (χ̂(x, t), û(0, t), û(ℓ, t), ûxx(0, t), ûxx(0, ℓ), û(x,0), ût(x,0), û(x,T ))

in which χ̂(x, t) = ûtt(x, t)+∆ 2û(x, t)−∆ ût(x, t)−∆ [ f ′(u(x, t))û(x, t)]−α(x, t)β̂ (x, t). Since u∗,β ∗ is the solution to the
problem Eq.(6), it has G(u∗,β ∗) = 0. Choosing arbitrary

(g1,g2,g3,g4,g5,g6,g7,g8) ∈ L2(0,T ;V ∗)× (L2(0,T ))4 ×V ×H ×V

and solving the equation

G′(u∗,β ∗)(û, β̂ ) = (g1(x, t),g2(t),g3(t),g4(t),g5(t),g6(x),g7(x),g8(x)),

we obtain

ûtt(x, t)+∆
2û(x, t)−∆ ût(x, t)−∆ [ f ′(u∗(x, t))û(x, t)] = α(x, t)β̂ (t)+g1(x, t),u(0, t) = g2(t),

u(ℓ, t) = g3(t),uxx(0, t) = g4(t),uxx(ℓ, t) = g5(t),u(x,0) = g6(x),ut(x,0) = g7(x),u(x,T ) = g8(x).
(17)

Next, assume that the linearized system

utt(x, t)+∆
2u(x, t)−∆ut(x, t)−∆ [ f ′(u∗(x, t))u(x, t)] = α(x, t)β (t),

u(0, t) = 0,u(ℓ, t) = 0,uxx(0, t) = 0,uxx(ℓ, t) = 0,u(x,0) = 0,ut(x,0) = 0
(18)

is controllable. Then choose β (t) = β̂ (t) ∈ L2(0,T ) such that u(x,T ) = g8(x)−η(x,T ) and let u be the solution to the
linearized system (18). Choose û(x, t) = u(x, t)+η(x, t), where η satisfies the following equation:

ηtt(x, t)+∆
2
η(x, t)−∆ηt(x, t)−∆ [ f ′(u∗(x, t))η(x, t)] = g1(x, t),η(0, t) = g2(t),η(ℓ, t) = g3(t),

ηxx(0, t) = g4(t),ηxx(ℓ, t) = g5(t),η(x,0) = g6(x),ηt(x,0) = g7(x),η(x,T ) = g8(x).
(19)

In this way, it suffices for (û, β̂ ) satisfying (17). Therefore, G′(u∗,β ∗) maps XT on to L2(0,T ;V ∗)× (L2(0,T ))4 ×V ×
H ×V . Moreover, the cone of the tangent directions K2 to the constraint Ω2 at the point (u∗,β ∗) consists of the kernel of
G′(u∗,β ∗), i.e. (u,β ) satisfies the following equation in XT :

utt(x, t)+∆
2u(x, t)−∆ut(x, t)−∆ [ f ′(u∗(x, t))u(x, t)] = α(x, t)β (t),

u(0, t) = 0,u(ℓ, t) = 0, uxx(0, t) = 0,uxx(ℓ, t) = 0,u(x,0) = 0,ut(x,0) = 0
(20)
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and
u(x,T ) = 0. (21)

Define
K21 = {(u,β ) ∈ XT | (u(x, t),β (t)) satisfies (20)},

K22 = {(u,β ) ∈ XT | (u(x, t),β (t)) satisfies (21)}.

Then the cone of tangent directions K2 = K21 ∩K22. Hence,

K∗
2 = K∗

21 +K∗
22.

For any f2 ∈ K∗
2 , decompose f2 = f21 + f22, f2i ∈ K∗

2i, the dual cone of K2i, i = 1,2. Then f21(u,β ) = 0 and for all
u(x, t) ∈ S(0,T ) satisfying u(x,T ) = 0, there exists a ϕ(x) ∈V ∗ such that

f22(u(x, t),β (t)) =
ℓ∫

0

u(x, t)ϕ(x)dx.

It then follows from Theorem 1 that there exist continuous linear functionals, not all identically zero, such that

f0 + f1 + f21 + f22 = 0.

Therefore, when selecting (u,β ) satisfying (20), f21(u,β ) = 0. Moreover,

f1(u(x, t),β (t)) =− f0(u(x, t),β (t))− f22(u(x, t),β (t))

= κ0

T∫
0

ℓ∫
0

[
∂L(u∗,β ∗,x, t)

∂u
u(x, t)+

∂L(u∗,β ∗,x, t)
∂β

β (t)
]

dxdt −
ℓ∫

0

u(x,T )ϕ(x)dx.
(22)

4.4 Maximum principle of problem (6)

Define the adjoint system of the linearized system (18)

φtt(x, t)+∆
2
φ(x, t)−∆φt(x, t)−∆ [ f ′(u∗(x, t))φ(x, t)] = κ0

∂L(u∗,β ∗,x, t)
∂u

,

φ(0, t) = 0,φ(ℓ, t) = 0, φxx(0, t) = 0,φxx(ℓ, t) = 0,φ(x,T ) = µ(x)
(23)

with

µ(x) =


x∫

0

x3∫
0

x2∫
0

x1∫
0

ϕ(s)dsdx1dx2dx3, x ̸= ℓ,

0, x = ℓ.

(24)

As with (1), the existence and uniqueness of the solution to (23) can be obtained similarly.

© 2022 BISKA Bilisim Technology



NTMSCI 10, No. 4, 133-141 (2022) / www.ntmsci.com 139

Theorem 2. The solution of system (18) and that of its adjoint system (23) have the following relation:

κ0

T∫
0

ℓ∫
0

∂L(u∗,β ∗,x, t)
∂u

u(x, t)dxdt −
ℓ∫

0

u(x,T )ϕ(x)dx =
T∫

0

ℓ∫
0

α(x, t)β (t)φ(x, t)dxdt (25)

Proof. Multiply the first equation in (23) by u(x, t) and integrate it by parts over [0,T ]× [0, ℓ] with respect to t and x,
respectively. The proof then follows.

Now, by virtue of Theorem 2, we can rewrite f1(u,β ) as

f1(u,β ) =
T∫

0

{ ℓ∫
0

[
κ0

∂L(u∗,β ∗,x, t)
∂β

+α(x, t)φ(x, t)
]

dx
}

β (t)dt. (26)

Therefore,

ā(t) =
ℓ∫

0

[
κ0

∂L(u∗,β ∗,x, t)
∂β

+α(x, t)φ(x, t)
]

dx

and (14) then reads as

{ ℓ∫
0

[
κ0

∂L(u∗,β ∗,x, t)
∂β

+α(x, t)φ(x, t)
]

dx
}
.[β (t)−β

∗(t)]≥ 0,

∀β (t) ∈ [β0,β1], t ∈ [0,T ] a.e., and φ(x, t) ̸= 0,κ0 ̸= 0.

(27)

Since otherwise, there are definitely f0 = 0, f1 = 0, f22 = 0 and f21 = 0, which contradict with the fact in Theorem 1 that
these continuous linear functionals are not all identically zero. On the other hand, if K0 is a null set, then there is

T∫
0

ℓ∫
0

[
∂L(u∗,β ∗,x, t)

∂u
u(x, t)+

∂L(u∗,β ∗,x, t)
∂β

β (t)
]

dxdt = 0, ∀(u,β ) ∈ XT .

In particular, if we choose κ0 = 1 and ϕ(x) = 0, it follows from Theorem 2 that

T∫
0

ℓ∫
0

∂L(u∗,β ∗,x, t)
∂u

u(x, t)dxdt =
T∫

0

ℓ∫
0

α(x, t)φ(x, t)β (t)dxdt.

Therefore,
T∫

0

{ ℓ∫
0

[
∂L(u∗,β ∗,x, t)

∂β
+α(x, t)φ(x, t)

]
dx
}

β (t)dt = 0, ∀β (t) ∈ L2(0,T ),

from which we obtain
ℓ∫

0

[
∂L(u∗,β ∗,x, t)

∂β
+α(x, t)φ(x, t)

]
dx = 0, ∀t ∈ [0,T ] a.e.
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Therefore, (27) still holds. Finally, if there is a nonzero solution to the adjoint system

φ̂tt +∆
2
φ̂ −∆φ̂t −∆ [ f ′(u∗(x, t))φ̂(x, t)] = κ0

∂L(u∗,β ∗,x, t)
∂u

,

φ̂(0, t) = 0, φ̂(ℓ, t) = 0, φ̂xx(0, t) = 0, φ̂xx(ℓ, t) = 0, φ̂(x,T ) = µ(x)
(28)

such that the following equality holds true

ℓ∫
0

α(x, t)φ̂(x, t)dx = 0, ∀t ∈ [0,T ] a.e.,

then when we choose κ0 = 0, µ(x) = φ̂(x,T ), which is defined as (24), (27) is still valid. Since otherwise, if for any
nonzero solution φ̂ of (28), it has

ℓ∫
0

α(x, t)φ̂(x)dx ̸= 0, (29)

in this case, we say that the situation is non-degenerate. Then the linearized system (18) is controllable. In fact, if (18) is
not controllable, then there exists a ϕ(x) ∈V ∗ such that

ℓ∫
0

u(x,T )ϕ(x)dx = 0, ϕ(x) ̸= 0.

Choose κ0 = 0 and φ̂ to be the solution of (28). Then it follows from Theorem 2 that

T∫
0

ℓ∫
0

α(x, t)φ̂(x, t)β (t)dxdt = 0,∀β (t) ∈ L2(0,T ).

Hence,
ℓ∫

0

α(x, t)φ̂(x, t)dx = 0, ∀t ∈ [0,T ] a.e.

This is a contradiction. Therefore, under the case of (28), the system (29) is controllable. Combining the results above, we
have obtained the Pontryagin’s maximum principle for the optimal control problem (6) subject to the system (1).

Theorem 3. Suppose (u∗,β ∗) is a solution to the optimal control problem (6). Then there exist κ0 ≥ 0 and φ(x, t) ̸= 0,
such that the following maximum principle holds true:

{ ℓ∫
0

[
κ0

∂L(u∗,β ∗,x, t)
∂β

+α(x, t)φ(x, t)
]

dx
}
.
[
β (t)−β

∗(t)
]
≥ 0,

∀β (t) ∈ [β0,β1], t ∈ [0,T ] a.e.,

where the function φ(x, t) satisfies the adjoint equation (23).
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