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Abstract: We prove the existence and uniqueness of the steady-state solution of a nonlinear parabolic equation modeling the capillary
formation in tumor angiogenesis. The analysis is based on the Lax-Milgram Theorem in variational calculus. Proving the existence and
uniqueness of this steady-state shows that there is only one way for endothelial cells to follow the trail of transition probability density
function.
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1 Introduction

Let us consider the following initial boundary-value problem:

du d d u
E:Da <Max (hl]((x))) 5 (X,t)GQT = (O,I)X(O,T], (1)
u(x,0)=1,x€(0,1), (2
d u
Dua (ln f‘(x)) o =0 , 1€ (0, T] (3)
Here
(a4 A" (1—x)"\" (c+1—Bx"(1—x)"\*
fx) = (b+Axn(1x)n> <d+le”(1x)”> on> 10 @

is the so called transition probability density function (TPDF) [1]. Also, u(x,t) is the concentration of Endothelial Cells
(EC), D is the cell diffusion constant and a,b,c,d,A,B,n, 0, 0 are some positive arbitrary constants. As stated in [4,5]
ECs are to be stimulated by a tumor angiogenic factor for angiogenesis to occur. After the ECs are stimulated they will
follow the trail of TPDF (see also [8]).

This model has originally been presented in [6], and has been studied numerically and qualitatively in [7,8],
respectively. Also, a two dimensional steady-state analysis of a mathematical model for capillary network formation in
the absence of tumor source is given in [9]. Some interesting mathematical analysis of a mathematical model of tumor
dynamics in competition with the immune system is given in [1].

Eq.(1) can be written

(@ (i) = (55,
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f'(x)
f(x)

Therefore, by setting F(x) = Eq.(1) reads as follows:

u = D (uyy — (uF)y). 5)

Therefore, our original problem becomes:

uy = D(uyy — (uF)y) , V(x,t) € Qr :=(0,1) x (0,T] (6)
u(x,0)=1,Vxe Qr @)
Uy (x,1)|x=0,1 =uF ,Vt € (0,T]. (8)

Since F(x) =0 at x =0, 1, the boundary conditions in Eq.(8) become:

ux(x,t)\x:(“ =0.

2 Constructing the bilinear form

Let us consider the following operator:

Lu = —uyy + (uF)y.

Since we are interested in the existence and uniqueness of the steady-state solution, we consider the following initial-

boundary problem:

—ty + (WF)x =0, (x,t) € Qr 9
u(x,0)=1,x€(0,1) (10)
ux(x,t)|x:0,| ZO,VIE(O,T]. (11)

One can easily see from Eq.(6) that u(x,7) € C*([0,1]) x C'([0,T]) , F(x) € C'(]0,1]). We now multiply the Eq.(9)
by a function v(x,7) that has the same properties as u(x,t), and integrate it over Qr. Therefore, we have

T rl T rl
/O /0 (_Mxxv+(uF)xV)dXdl:/0 /O (MXVX—FMVX)dxdt. (12)

Since the function v(x,#) has the same properties as u(x, ) the following equality holds for v(x,7), as well. Therefore,

from Eq.(9) we obtain

—Vy +VF'(x) = —vF(x) on Qr. (13)
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By the aid of Eq.(13), the right hand side of the Eq.(12) becomes:

T /1 T
/ / (Uxvy — uvyy +uvF’ (x))dxdt = / / (Quyvy + F' (x)uv)dxdt. (14)
0o Jo 0o Jo

By the maximum principle, it is clear from Eq.(10) that u(x,7) > 0, for all (x,#) € Q7. On the other hand, by the first mean

value theorem for integration there exists A € [0, 1] such that

/OT/olF/(x)uvdxdt :F’(}u)/oT/o1 uvdxdt. (15)

Hence, if we plug Eq.(15) in Eq.(14) the bilinear form can be chosen as follows

T T
a(u,v) = 2/ / uyvedxdt +F'()L)/ / uvdxdt. (16)
o Jo 0o Jo

In fact, by the construction of Eq.(16), we can say that the weak solution of the problem given by Eqs.(9)-(11) belongs
to the class

Wy (Qr) == {u €Qr| [ [(w)*+ (u)*dQr < o0, 1y(x,1)]s=01 = 0} .

Qr

This is a first order Sobolev space endowed with a norm (for details of Sobolev Spaces see also [2])

Nlulli2 = (/(;[(M)2+ (ux)Z]dG) 1/2.

One can easily see from the last equality that

[l 5+ [[oaxl |5 = [Ju]F 2- (17)

Here,

.||2 indicates the L, norm in this space. From Eq.(17) we can see that following two inequalities hold:

ull2 < lull12 [Jucll2 < [lufl12- (18)

Moreover, in the following section, we prove that the norms |u||2 and ||u||1 2, and ||u||2 and ||u||; 2 are equivalent.

3 Equivalency of norms

Lemma 3.1: We consider the problem given by Eqs.(9)-(11). Then, the following inequality holds
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llux|l2 < Kl[ul]2, (19)

where K := max |F(x)|.
x€[0,1]

Proof: Since F(x) € C'([0,1]) it has a maximum over [0, 1]. Let us multiply both sides of Eq.(9) by u(x,t), and then
integrate over Qr:

T [/l T [l
0= / / (ue) 2t — / / Fudxdr. (20)
o Jo 0 Jo
Therefore,
T [/l T [/l
//(ux)zdxdt = / /Fuuxdxdt @1
0 Jo 0 Jo
T /1
SK/ / uudxdt. (22)
o Jo

Using Holder inequality for the inequality obtained in Eq.(22) we obtain

leeal |3 < K Jull2 a2, (23)

which follows that

l[ux]l2 < KJul|2- (24)

Lemma 3.2: (i) The norms ||u||; 2 and ||u]|2 are equivalent.
(ii) The norms ||u||1 2 and ||uy||> are equivalent.
Proof: (i) We must show that there exist &, f > 0 such that B||ul|> < ||lul|12 < c||u||2. By Eq.(18) B must be equal
to 1. On the other hand, it is easy to see from Eq.(17) and Eq.(24) that o must be equal to \/m . This implies the
following inequalities:

llulla < Jlullr2 < /(K> + D) jul2- (25)

(ii) As in the previous proof, we must show that there exist ¢, 8 > 0 such that B |juy|> < |Ju||12 < o|/us|2. Again
B must be equal to 1. Now we must find the number o. We know from the definitions of norms ||u|; 2 < co and ||uy||2 < ee.
Therefore, it is true that there exist M{,M> > 0 such that ||u|| 1> = M\, ||ux||» = M>. By the inequality in Eq.(18) we have
M, < M. Finally, by the Archimedean property there exists & € N such that M| < aM,. Then, the following holds as

well:

lluxllz < llulli2 < offux2 (26)

A different proof of this Lemma is given in [11].
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4 Boundedness of the bilinear form a(u,v)

Theorem 4.1: The bilinear form a(u,v) =2 [ [o uxvedxdt +F' (L) f] Jo uvdxdt is bounded.

Proof:
T [l T [l
la(u,v)| = ’2/ / uxvxdxdt—&—F'(l)/ / uvdxdt 27
0 Jo 0o Jo
T 1 T 1
< 2/ / |uxvx|dxdt+|F/(7L)|/ / \uv|dxd (28)
0 Jo 0 Jo
T 1 T 1
<C {/ / |uxvx|dxdt+/ / |uv|dxdt} (29)
0 Jo 0o Jo
< C {flualllbvall + llulllIvI]}, (30)
by the aid of Holder inequality, where C := max{2,|F'(1)|}. We now use the inequality in Eq.(24), and obtain
|a(u, v)| < Mlull 2[v])1.2, Gn

where M := C(1 + K?). This shows that the bilinear form a(u,v) is bounded.

5 Coercivity of the Bilinear Form a(u,u)

Theorem 5.1: If F/(1) > —2K? then the bilinear form a(u,u) =2 [ [ i2dxdt +F'(A) [ [ utdxd is coercive.

Proof: We must show that there exist a B > 0 such that a(u,u) > B||u||3 ,. Now, if we use the Lemma 3.1 and Eq.(26)
we obtain

Tl Tl
a(uu) =2 /0 /0 uldxdt +F'(L) /0 /0 u*dxdt (32)
T rl
> (2+K%F'(4)) / / uldxdt (33)
0 Jo
> 22+ K2F(A)||ull - (34)

Let B= o 2(2+ K~2F'(1)) > 0. Hence, this implies that

a(u,u) > Blul} ,, (35)

which shows the coercivity of the bilinear form a(u,u).

In conclusion we have proved that the steady-state solution of the problem defined by Eqs.(1)-(3) is unique according

to the Lax-Milgram Theorem (For details of coercivity of a bilinear form see also [10]).

© 2022 BISKA Bilisim Technology


 ntmsci.com/cmma 

6 BISKA S Pamuk: On the existence and uniqueness of the steady-state solution in a tumor angiogenesis model

6 What if f(x) is not a transition probability density function?

The stability of the steady-state solution of the problem given in Egs.(1)-(3) with f(x) is given by Eq.(4) is studied in
[8]. Suppose we now take f(x) = Ce* in Eq.(1) where C is a nonzero constant. Since this function is not of the form of

Eq.(4), it is not a TPDF. In this case, the problem given in Egs.(6)-(8) becomes:

uy = Duy — auy , V(x,t) € Qr (36)
u(x,0)=1,Vxe (0,1) 37
Uy (x,1)|y=0,1 =0, Vt € (0,T] (38)

where a = CD. Now, let us consider the transformation [3]

ax Clzl

u(x,t) = exp(ﬁ - E)w(x,t), (39

so that the problem obtained in Eqgs.(36)-(38) becomes:

wy = Dwyy , V(x,1) € Qr (40)
w(x,0) = e~ /2P vx e (0,1) 41)
%w(x,t) Fwi(x,0)|v—0. =0, Vr € (0,T] (42)

This is an initial-boundary value problem for a heat equation. We solve Eqs.(40)-(42) using separation of variables by
setting w(x,7) = @(x)¥(¢) to obtain

() @'(x) _
DE() = Bl — 43)

where A is a constant. From Eq.(43) we obtain

WY'(t) + A2D¥ (1) =0 (44)
@ (x) + AP (x) =0. (45)

In the case A =0 we have ¥(¢) = a and ®(x) = cjx+ ¢, where o, ¢; and ¢, are arbitrary constants. From the
boundary conditions in Eq.(42) we obtain ¢; = 0. Therefore, one gets wy(x,7) = K, where K is constant. Since we know
from the eigenvalue property of Sturm-Liouville problem A can not be negative. We now suppose A > 0. In this case it is
clear from Eq.(44) that ¥(¢) is of the form Me= 2Dt , where M is a positive constant and D is the cell diffusion constant.
Also, @(x) has the form ®(x) = AcosAx+ BsinAx. From the boundary conditions in Eq.(42), we get the eigenvalues
Ay = nm, where n = 1,2,3. .., and the eigenfunctions corresponding to these eigenvalues ®,(x) = A cosnzx + Bsinnmx,

272 . .
and ¥, (t) = Me~" ™ D' Therefore, one gets the series form of the solution
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w(x,t) = wo(x,r) + i wn(x,1) (46)

n=1
=Kk+M) e ™D (A cosnmx + Beosnix), (47

n=1

which follows that
ax — 252Dy
u(x,t) :exp(———)(K—i—MZe (Acosnmx+ Bcosnmx)). (48)
n=1
As it is clear from the last equality, one obtains

u(x,t) — 0 as t — oo. (49)

On the other hand, since we are looking for the steady-state solution of the problem in Eqs.(36)-(38) we have to solve

the following boundary value problem:

Du"(x)—au'(x) =0 , Vx€(0,1) (50)
u'(0) =u'(1)=0. (51)

It is clear that any nonzero constant satisfies the problem in Eqgs.(50)-(51), which contradicts with the result in Eq.(49). In
conclusion, the steady-state solution is unstable with this choice of f(x).

7 Conclusions and Biological Discussions

In this paper we first proved the existence and uniqueness of the steady state solution of the problem in Eqs.(1)-(3).
The inequalities in Eq.(31) and Eq.(35) satisfy the conditions of the Lax-Milgram Theorem. Therefore, we can say that
there exists one and only one solution of the problem in Eqgs.(9)-(11). This implies that the steady-state solution of the
problem in Eqgs.(1)-(3) is unique, which means that there is only one way for ECs to follow the trail of TPDF.

In [8] the authors took the TPDF as

o= (setd) (o)

where ¢,(x) = Ax"(1 —x)" and f(x) = 1 — Bx"(1 —x)" are the active enzyme and fibronectin concentrations, respectively.
Here a;,b; (i = 1,2) are the constants such that 0 < @) < 1 < ap and b; > 1> by > 0. Also, A and B are the same as in
Eq.(4), and ¥;, 5,1 are some positive constants. From the above choice of f(x), they also observed that endothelial cells

prefer to move into the region where c, is large or where f is small. By proving the uniqueness of the steady-state solution
of our model equation, one observes that the preference of the ECs is unique.

We lastly showed that the steady-state solution of our model equation is unstable in the case where f(x) is not a TPDF.
This fact is not a surprise to us, since in [8] the authors showed that the long-time tendency of ECs are towards the TPDF.
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