# On the existence and uniqueness of the steady-state solution in a tumor angiogenesis model 

Serdal Pamuk<br>Department of Mathematics, University of Kocaeli, Umuttepe Campus, 41380, Kocaeli - TURKEY

Received: 6 December 2022, Accepted: 20 December 2022
Published online: 30 December 2022.


#### Abstract

We prove the existence and uniqueness of the steady-state solution of a nonlinear parabolic equation modeling the capillary formation in tumor angiogenesis. The analysis is based on the Lax-Milgram Theorem in variational calculus. Proving the existence and uniqueness of this steady-state shows that there is only one way for endothelial cells to follow the trail of transition probability density function.


Keywords: Existence; uniqueness; capillary formation; tumor angiogenesis; steady-state solution.

## 1 Introduction

Let us consider the following initial boundary-value problem:

$$
\begin{gather*}
\frac{\partial u}{\partial t}=D \frac{\partial}{\partial x}\left(u \frac{\partial}{\partial x}\left(\ln \frac{u}{f(x)}\right)\right),(x, t) \in \Omega_{T}:=(0,1) \times(0, T]  \tag{1}\\
u(x, 0)=1, x \in(0,1)  \tag{2}\\
\left.D u \frac{\partial}{\partial x}\left(\ln \frac{u}{f(x)}\right)\right|_{x=0,1}=0, t \in(0, T] . \tag{3}
\end{gather*}
$$

Here
$f(x)=\left(\frac{a+A x^{n}(1-x)^{n}}{b+A x^{n}(1-x)^{n}}\right)^{\alpha_{1}}\left(\frac{c+1-B x^{n}(1-x)^{n}}{d+1-B x^{n}(1-x)^{n}}\right)^{\alpha_{2}}, n>10$
is the so called transition probability density function (TPDF) [1]. Also, $u(x, t)$ is the concentration of Endothelial Cells (EC), $D$ is the cell diffusion constant and $a, b, c, d, A, B, n, \alpha_{1}, \alpha_{2}$ are some positive arbitrary constants. As stated in [4,5] ECs are to be stimulated by a tumor angiogenic factor for angiogenesis to occur. After the ECs are stimulated they will follow the trail of TPDF (see also [8]).

This model has originally been presented in [6], and has been studied numerically and qualitatively in [7,8], respectively. Also, a two dimensional steady-state analysis of a mathematical model for capillary network formation in the absence of tumor source is given in [9]. Some interesting mathematical analysis of a mathematical model of tumor dynamics in competition with the immune system is given in [1].

Eq.(1) can be written
$\frac{\partial}{\partial x}\left(u\left(\frac{\partial}{\partial x}\left(\ln \frac{u}{f(x)}\right)\right)\right)=u_{x x}-\left(u \frac{f^{\prime}(x)}{f(x)}\right)_{x}$.

[^0]Therefore, by setting $F(x)=\frac{f^{\prime}(x)}{f(x)}$ Eq.(1) reads as follows:
$u_{t}=D\left(u_{x x}-(u F)_{x}\right)$.

Therefore, our original problem becomes:

$$
\begin{gather*}
u_{t}=D\left(u_{x x}-(u F)_{x}\right), \forall(x, t) \in \Omega_{T}:=(0,1) \times(0, T]  \tag{6}\\
u(x, 0)=1, \forall x \in \Omega_{T}  \tag{7}\\
\left.u_{x}(x, t)\right|_{x=0,1}=u F, \forall t \in(0, T] . \tag{8}
\end{gather*}
$$

Since $F(x)=0$ at $x=0,1$, the boundary conditions in Eq.(8) become:
$\left.u_{x}(x, t)\right|_{x=0,1}=0$.

## 2 Constructing the bilinear form

Let us consider the following operator:
$L u:=-u_{x x}+(u F)_{x}$.

Since we are interested in the existence and uniqueness of the steady-state solution, we consider the following initialboundary problem:

$$
\begin{align*}
-u_{x x}+(u F)_{x} & =0,(x, t) \in \Omega_{T}  \tag{9}\\
u(x, 0) & =1, x \in(0,1)  \tag{10}\\
\left.u_{x}(x, t)\right|_{x=0,1} & =0, \forall t \in(0, T] . \tag{11}
\end{align*}
$$

One can easily see from Eq.(6) that $u(x, t) \in C^{2}([0,1]) \times C^{1}([0, T]), F(x) \in C^{1}([0,1])$. We now multiply the Eq.(9) by a function $v(x, t)$ that has the same properties as $u(x, t)$, and integrate it over $\Omega_{T}$. Therefore, we have
$\int_{0}^{T} \int_{0}^{1}\left(-u_{x x} v+(u F)_{x} v\right) d x d t=\int_{0}^{T} \int_{0}^{1}\left(u_{x} v_{x}-F u v_{x}\right) d x d t$.
Since the function $v(x, t)$ has the same properties as $u(x, t)$ the following equality holds for $v(x, t)$, as well. Therefore, from Eq.(9) we obtain
$-v_{x x}+v F^{\prime}(x)=-v_{x} F(x)$ on $\Omega_{T}$.

By the aid of Eq.(13), the right hand side of the Eq.(12) becomes:
$\int_{0}^{T} \int_{0}^{1}\left(u_{x} v_{x}-u v_{x x}+u v F^{\prime}(x)\right) d x d t=\int_{0}^{T} \int_{0}^{1}\left(2 u_{x} v_{x}+F^{\prime}(x) u v\right) d x d t$.

By the maximum principle, it is clear from Eq.(10) that $u(x, t)>0$, for all $(x, t) \in \Omega_{T}$. On the other hand, by the first mean value theorem for integration there exists $\lambda \in[0,1]$ such that
$\int_{0}^{T} \int_{0}^{1} F^{\prime}(x) u v d x d t=F^{\prime}(\lambda) \int_{0}^{T} \int_{0}^{1} u v d x d t$.

Hence, if we plug Eq.(15) in Eq.(14) the bilinear form can be chosen as follows
$a(u, v)=2 \int_{0}^{T} \int_{0}^{1} u_{x} v_{x} d x d t+F^{\prime}(\lambda) \int_{0}^{T} \int_{0}^{1} u v d x d t$.
In fact, by the construction of Eq.(16), we can say that the weak solution of the problem given by Eqs.(9)-(11) belongs to the class

$$
W_{2}^{1}\left(\Omega_{T}\right):=\left\{u \in \Omega_{T}\left|\int_{\Omega_{T}}\left[(u)^{2}+\left(u_{x}\right)^{2}\right] d \Omega_{T}<\infty, u_{x}(x, t)\right|_{x=0,1}=0\right\} .
$$

This is a first order Sobolev space endowed with a norm (for details of Sobolev Spaces see also [2])
$\|u\|_{1,2}=\left(\int_{G}\left[(u)^{2}+\left(u_{x}\right)^{2}\right] d G\right)^{1 / 2}$.
One can easily see from the last equality that
$\|u\|_{2}^{2}+\left\|u_{x}\right\|_{2}^{2}=\|u\|_{1,2}^{2}$.

Here, $\|\cdot\|_{2}$ indicates the $L_{2}$ norm in this space. From Eq.(17) we can see that following two inequalities hold:
$\|u\|_{2} \leq\|u\|_{1,2} \quad\left\|u_{x}\right\|_{2} \leq\|u\|_{1,2}$.

Moreover, in the following section, we prove that the norms $\left\|u_{x}\right\|_{2}$ and $\|u\|_{1,2}$, and $\|u\|_{2}$ and $\|u\|_{1,2}$ are equivalent.

## 3 Equivalency of norms

Lemma 3.1: We consider the problem given by Eqs.(9)-(11). Then, the following inequality holds
$\left\|u_{x}\right\|_{2} \leq K\|u\|_{2}$,
where $K:=\max _{x \in[0,1]}|F(x)|$.
Proof: Since $F(x) \in C^{1}([0,1])$ it has a maximum over $[0,1]$. Let us multiply both sides of Eq.(9) by $u(x, t)$, and then integrate over $\Omega_{T}$ :
$0=\int_{0}^{T} \int_{0}^{1}\left(u_{x}\right)^{2} d x d t-\int_{0}^{T} \int_{0}^{1} F u u_{x} d x d t$.
Therefore,

$$
\begin{align*}
\int_{0}^{T} \int_{0}^{1}\left(u_{x}\right)^{2} d x d t & =\int_{0}^{T} \int_{0}^{1} F u u_{x} d x d t  \tag{21}\\
& \leq K \int_{0}^{T} \int_{0}^{1} u u_{x} d x d t \tag{22}
\end{align*}
$$

Using Holder inequality for the inequality obtained in Eq.(22) we obtain
$\left\|u_{x}\right\|_{2}^{2} \leq K\|u\|_{2}\left\|u_{x}\right\|_{2}$,
which follows that
$\left\|u_{x}\right\|_{2} \leq K\|u\|_{2}$.

Lemma 3.2: (i) The norms $\|u\|_{1,2}$ and $\|u\|_{2}$ are equivalent.
(ii) The norms $\|u\|_{1,2}$ and $\left\|u_{x}\right\|_{2}$ are equivalent.

Proof: (i) We must show that there exist $\alpha, \beta>0$ such that $\beta\|u\|_{2} \leq\|u\|_{1,2} \leq \alpha\|u\|_{2}$. By Eq.(18) $\beta$ must be equal to 1 . On the other hand, it is easy to see from Eq.(17) and Eq.(24) that $\alpha$ must be equal to $\sqrt{\left(K^{2}+1\right)}$. This implies the following inequalities:
$\|u\|_{2} \leq\|u\|_{1,2} \leq \sqrt{\left(K^{2}+1\right)}\|u\|_{2}$.
(ii) As in the previous proof, we must show that there exist $\alpha, \beta>0$ such that $\beta\left\|u_{x}\right\|_{2} \leq\|u\|_{1,2} \leq \alpha\left\|u_{x}\right\|_{2}$. Again $\beta$ must be equal to 1 . Now we must find the number $\alpha$. We know from the definitions of norms $\|u\|_{1,2}<\infty$ and $\left\|u_{x}\right\|_{2}<\infty$. Therefore, it is true that there exist $M_{1}, M_{2}>0$ such that $\|u\|_{1,2}=M_{1},\left\|u_{x}\right\|_{2}=M_{2}$. By the inequality in Eq.(18) we have $M_{2} \leq M_{1}$. Finally, by the Archimedean property there exists $\alpha \in N$ such that $M_{1} \leq \alpha M_{2}$. Then, the following holds as well:
$\left\|u_{x}\right\|_{2} \leq\|u\|_{1,2} \leq \alpha\left\|u_{x}\right\|_{2}$.

A different proof of this Lemma is given in [11].

## 4 Boundedness of the bilinear form a(u,v)

Theorem 4.1: The bilinear form $a(u, v)=2 \int_{0}^{T} \int_{0}^{1} u_{x} v_{x} d x d t+F^{\prime}(\lambda) \int_{0}^{T} \int_{0}^{1} u v d x d t$ is bounded.
Proof:

$$
\begin{align*}
|a(u, v)| & =\left|2 \int_{0}^{T} \int_{0}^{1} u_{x} v_{x} d x d t+F^{\prime}(\lambda) \int_{0}^{T} \int_{0}^{1} u v d x d t\right|  \tag{27}\\
& \leq 2 \int_{0}^{T} \int_{0}^{1}\left|u_{x} v_{x}\right| d x d t+\left|F^{\prime}(\boldsymbol{\lambda})\right| \int_{0}^{T} \int_{0}^{1}|u v| d x d t  \tag{28}\\
& \leq C\left\{\int_{0}^{T} \int_{0}^{1}\left|u_{x} v_{x}\right| d x d t+\int_{0}^{T} \int_{0}^{1}|u v| d x d t\right\}  \tag{29}\\
& \leq C\left\{\left\|u_{x}\right\|\left\|v_{x}\right\|+\|u\|\|v\|\right\} \tag{30}
\end{align*}
$$

by the aid of Holder inequality, where $C:=\max \left\{2,\left|F^{\prime}(\lambda)\right|\right\}$. We now use the inequality in Eq.(24), and obtain

$$
\begin{equation*}
|a(u, v)| \leq M\|u\|_{1,2}\|v\|_{1,2} \tag{31}
\end{equation*}
$$

where $M:=C\left(1+K^{2}\right)$. This shows that the bilinear form $\mathrm{a}(\mathrm{u}, \mathrm{v})$ is bounded.

## 5 Coercivity of the Bilinear Form a(u,u)

Theorem 5.1: If $F^{\prime}(\lambda)>-2 K^{2}$ then the bilinear form $a(u, u)=2 \int_{0}^{T} \int_{0}^{1} u_{x}^{2} d x d t+F^{\prime}(\lambda) \int_{0}^{T} \int_{0}^{1} u^{2} d x d t$ is coercive.
Proof: We must show that there exist a $B>0$ such that $a(u, u) \geq B\|u\|_{1,2}^{2}$. Now, if we use the Lemma 3.1 and Eq.(26) we obtain

$$
\begin{align*}
a(u, u) & =2 \int_{0}^{T} \int_{0}^{1} u_{x}^{2} d x d t+F^{\prime}(\lambda) \int_{0}^{T} \int_{0}^{1} u^{2} d x d t  \tag{32}\\
& \geq\left(2+K^{-2} F^{\prime}(\lambda)\right) \int_{0}^{T} \int_{0}^{1} u_{x}^{2} d x d t  \tag{33}\\
& \geq \alpha^{-2}\left(2+K^{-2} F^{\prime}(\lambda)\right)\|u\|_{1,2}^{2} \tag{34}
\end{align*}
$$

Let $B=\alpha^{-2}\left(2+K^{-2} F^{\prime}(\lambda)\right)>0$. Hence, this implies that

$$
\begin{equation*}
a(u, u) \geq B\|u\|_{1,2}^{2} \tag{35}
\end{equation*}
$$

which shows the coercivity of the bilinear form $a(u, u)$.
In conclusion we have proved that the steady-state solution of the problem defined by Eqs.(1)-(3) is unique according to the Lax-Milgram Theorem (For details of coercivity of a bilinear form see also [10]).

## 6 What if $f(x)$ is not a transition probability density function?

The stability of the steady-state solution of the problem given in Eqs.(1)-(3) with $f(x)$ is given by Eq.(4) is studied in [8]. Suppose we now take $f(x)=C e^{x}$ in Eq.(1) where $C$ is a nonzero constant. Since this function is not of the form of Eq.(4), it is not a TPDF. In this case, the problem given in Eqs.(6)-(8) becomes:
$u_{t}=D u_{x x}-a u_{x}, \forall(x, t) \in \Omega_{T}$
$u(x, 0)=1, \forall x \in(0,1)$
$\left.u_{x}(x, t)\right|_{x=0,1}=0, \forall t \in(0, T]$
where $a=C D$. Now, let us consider the transformation [3]
$u(x, t)=\exp \left(\frac{a x}{2 D}-\frac{a^{2} t}{4 D}\right) w(x, t)$,
so that the problem obtained in Eqs.(36)-(38) becomes:

$$
\begin{array}{r}
w_{t}=D w_{x x}, \forall(x, t) \in \Omega_{T} \\
w(x, 0)=e^{-a x / 2 D}, \forall x \in(0,1) \\
\frac{a}{2 D} w(x, t)+\left.w_{x}(x, t)\right|_{x=0,1}=0, \forall t \in(0, T] \tag{42}
\end{array}
$$

This is an initial-boundary value problem for a heat equation. We solve Eqs.(40)-(42) using separation of variables by setting $w(x, t)=\Phi(x) \Psi(t)$ to obtain
$\frac{\Psi^{\prime}(t)}{D \Psi(t)}=\frac{\Phi^{\prime \prime}(x)}{\Phi(x)}=-\lambda^{2}$,
where $\lambda$ is a constant. From Eq.(43) we obtain
$\Psi^{\prime}(t)+\lambda^{2} D \Psi(t)=0$
$\Phi^{\prime \prime}(x)+\lambda^{2} \Phi(x)=0$.

In the case $\lambda=0$ we have $\Psi(t)=\alpha$ and $\Phi(x)=c_{1} x+c_{2}$, where $\alpha, c_{1}$ and $c_{2}$ are arbitrary constants. From the boundary conditions in Eq.(42) we obtain $c_{1}=0$. Therefore, one gets $w_{0}(x, t)=\kappa$, where $\kappa$ is constant. Since we know from the eigenvalue property of Sturm-Liouville problem $\lambda$ can not be negative. We now suppose $\lambda>0$. In this case it is clear from Eq.(44) that $\Psi(t)$ is of the form $M e^{-\lambda^{2} D t}$, where $M$ is a positive constant and $D$ is the cell diffusion constant. Also, $\Phi(x)$ has the form $\Phi(x)=A \cos \lambda x+B \sin \lambda x$. From the boundary conditions in Eq.(42), we get the eigenvalues $\lambda_{n}=n \pi$, where $n=1,2,3 \ldots$, and the eigenfunctions corresponding to these eigenvalues $\Phi_{n}(x)=A \cos n \pi x+B \sin n \pi x$, and $\Psi_{n}(t)=M e^{-n^{2} \pi^{2} D t}$. Therefore, one gets the series form of the solution

$$
\begin{align*}
w(x, t) & =w_{0}(x, t)+\sum_{n=1}^{\infty} w_{n}(x, t)  \tag{46}\\
& =\kappa+M \sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} D t}(A \cos n \pi x+B \cos n \pi x) \tag{47}
\end{align*}
$$

which follows that

$$
\begin{equation*}
u(x, t)=\exp \left(\frac{a x}{2 D}-\frac{a^{2} t}{4 D}\right)\left(\kappa+M \sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} D t}(A \cos n \pi x+B \cos n \pi x)\right) \tag{48}
\end{equation*}
$$

As it is clear from the last equality, one obtains

$$
\begin{equation*}
u(x, t) \rightarrow 0 \text { as } t \rightarrow \infty . \tag{49}
\end{equation*}
$$

On the other hand, since we are looking for the steady-state solution of the problem in Eqs.(36)-(38) we have to solve the following boundary value problem:

$$
\begin{align*}
D u^{\prime \prime}(x)-a u^{\prime}(x) & =0, \quad \forall x \in(0,1)  \tag{50}\\
u^{\prime}(0) & =u^{\prime}(1)=0 . \tag{51}
\end{align*}
$$

It is clear that any nonzero constant satisfies the problem in Eqs.(50)-(51), which contradicts with the result in Eq.(49). In conclusion, the steady-state solution is unstable with this choice of $f(x)$.

## 7 Conclusions and Biological Discussions

In this paper we first proved the existence and uniqueness of the steady state solution of the problem in Eqs.(1)-(3). The inequalities in Eq.(31) and Eq.(35) satisfy the conditions of the Lax-Milgram Theorem. Therefore, we can say that there exists one and only one solution of the problem in Eqs.(9)-(11). This implies that the steady-state solution of the problem in Eqs.(1)-(3) is unique, which means that there is only one way for ECs to follow the trail of TPDF.

In [8] the authors took the TPDF as
$f(x)=\left(\frac{a_{1}+c_{a}(x)}{a_{2}+c_{a}(x)}\right)^{\gamma_{1}}\left(\frac{b_{1}+\tilde{f}(x)}{b_{2}+\tilde{f}(x)}\right)^{\gamma_{2}}$,
where $c_{a}(x)=A x^{n}(1-x)^{n}$ and $\tilde{f}(x)=1-B x^{n}(1-x)^{n}$ are the active enzyme and fibronectin concentrations, respectively. Here $a_{i}, b_{i}(i=1,2)$ are the constants such that $0<a_{1} \ll 1<a_{2}$ and $b_{1}>1 \gg b_{2}>0$. Also, $A$ and $B$ are the same as in Eq.(4), and $\gamma_{1}, \gamma_{2}, n$ are some positive constants. From the above choice of $f(x)$, they also observed that endothelial cells prefer to move into the region where $c_{a}$ is large or where $\tilde{f}$ is small. By proving the uniqueness of the steady-state solution of our model equation, one observes that the preference of the ECs is unique.

We lastly showed that the steady-state solution of our model equation is unstable in the case where $f(x)$ is not a TPDF. This fact is not a surprise to us, since in [8] the authors showed that the long-time tendency of ECs are towards the TPDF.

## References

[1] N. Bellomo, L. Prezrosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comput. Model. 32(3-4)(2000) 413-452.
[2] R. F. Curtain, Functional Analysis in Modern Applied Mathematics Academic Press, 1977.
[3] S. Farlow, Partial Differential Equations for Scientists and Engineering Dover, 1993.
[4] J. Folkman,Tumor angiogenesis: therapeutic implications, New Engl. J. Med 285 (1971) 1182-1186.
[5] J. Folkman, The vascularization of tumors, Sci. Am., 234 (1976) 59-73.
[6] H. A. Levine, S. Pamuk, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma, Bull. Math. Biol. 63(5) (2001) 801-863.
[7] S. Pamuk and A. Erdem, The method of lines for the numerical solution of a mathematical model for capillary formation: The role of endothelial cells in the capillary, Appl. Math. Comput. 186 (2007) 831-835.
[8] S. Pamuk, Qualitative Analysis of a Mathematical Model for Capillary Formation in Tumor Angiogenesis, Math. Mod. Meth. Appl. Sci. 13(1) (2003) 19-33.
[9] S. Pamuk, Steady- State Analysis of a Mathematical Model for Capillary Network Formation in the Absence of Tumor Source, Math. Biosci. 189(1) (2004) 21-38.
[10] I. Stakgold, Green's Functions and Boundary Value Problems John Wiley \& Sons, 1979.
[11] E. Zeidler, Nonlinear Functional Analysis and Its Applications II/A, Springer-Verlag, 1990.


[^0]:    * Corresponding author e-mail: spamuk @ kocaeli.edu.tr

