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Abstract: We prove the existence and uniqueness of the steady-state solution of a nonlinear parabolic equation modeling the capillary
formation in tumor angiogenesis. The analysis is based on the Lax-Milgram Theorem in variational calculus. Proving the existence and
uniqueness of this steady-state shows that there is only one way for endothelial cells to follow the trail of transition probability density
function.
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1 Introduction

Let us consider the following initial boundary-value problem:
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Here

f (x) =
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(
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,n > 10 (4)

is the so called transition probability density function (TPDF) [1]. Also, u(x, t) is the concentration of Endothelial Cells
(EC), D is the cell diffusion constant and a,b,c,d,A,B,n,α1,α2 are some positive arbitrary constants. As stated in [4,5]
ECs are to be stimulated by a tumor angiogenic factor for angiogenesis to occur. After the ECs are stimulated they will
follow the trail of TPDF (see also [8]).

This model has originally been presented in [6], and has been studied numerically and qualitatively in [7,8],
respectively. Also, a two dimensional steady-state analysis of a mathematical model for capillary network formation in
the absence of tumor source is given in [9]. Some interesting mathematical analysis of a mathematical model of tumor
dynamics in competition with the immune system is given in [1].

Eq.(1) can be written
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Therefore, by setting F(x) =
f ′(x)
f (x)

Eq.(1) reads as follows:

ut = D(uxx − (uF)x) . (5)

Therefore, our original problem becomes:

ut = D(uxx − (uF)x) , ∀(x, t) ∈ ΩT := (0,1)× (0,T ] (6)

u(x,0) = 1 , ∀x ∈ ΩT (7)

ux(x, t)|x=0,1 = uF , ∀t ∈ (0,T ]. (8)

Since F(x) = 0 at x = 0,1, the boundary conditions in Eq.(8) become:

ux(x, t)|x=0,1 = 0.

2 Constructing the bilinear form

Let us consider the following operator:

Lu :=−uxx +(uF)x.

Since we are interested in the existence and uniqueness of the steady-state solution, we consider the following initial-
boundary problem:

−uxx +(uF)x = 0 , (x, t) ∈ ΩT (9)

u(x,0) = 1 , x ∈ (0,1) (10)

ux(x, t)|x=0,1 = 0 , ∀t ∈ (0,T ]. (11)

One can easily see from Eq.(6) that u(x, t) ∈ C2([0,1])×C1([0,T ]) , F(x) ∈ C1([0,1]). We now multiply the Eq.(9)
by a function v(x, t) that has the same properties as u(x, t), and integrate it over ΩT . Therefore, we have

∫ T

0

∫ 1

0
(−uxxv+(uF)xv)dxdt =

∫ T

0

∫ 1

0
(uxvx −Fuvx)dxdt. (12)

Since the function v(x, t) has the same properties as u(x, t) the following equality holds for v(x, t), as well. Therefore,
from Eq.(9) we obtain

−vxx + vF ′(x) =−vxF(x) on ΩT . (13)
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By the aid of Eq.(13), the right hand side of the Eq.(12) becomes:

∫ T

0

∫ 1

0
(uxvx −uvxx +uvF ′(x))dxdt =

∫ T

0

∫ 1

0
(2uxvx +F ′(x)uv)dxdt. (14)

By the maximum principle, it is clear from Eq.(10) that u(x, t)> 0, for all (x, t)∈ ΩT . On the other hand, by the first mean
value theorem for integration there exists λ ∈ [0,1] such that

∫ T

0

∫ 1

0
F ′(x)uvdxdt = F ′(λ )

∫ T

0

∫ 1

0
uvdxdt. (15)

Hence, if we plug Eq.(15) in Eq.(14) the bilinear form can be chosen as follows

a(u,v) = 2
∫ T

0

∫ 1

0
uxvxdxdt +F ′(λ )

∫ T

0

∫ 1

0
uvdxdt. (16)

In fact, by the construction of Eq.(16), we can say that the weak solution of the problem given by Eqs.(9)-(11) belongs
to the class

W 1
2 (ΩT ) :=

{
u ∈ ΩT |

∫
ΩT

[(u)2 +(ux)
2]dΩT < ∞, ux(x, t)|x=0,1 = 0

}
.

This is a first order Sobolev space endowed with a norm (for details of Sobolev Spaces see also [2])

∥u∥1,2 =

(∫
G
[(u)2 +(ux)

2]dG
)1/2

.

One can easily see from the last equality that

∥u∥2
2 +∥ux∥2

2 = ∥u∥2
1,2. (17)

Here, ∥.∥2 indicates the L2 norm in this space. From Eq.(17) we can see that following two inequalities hold:

∥u∥2 ≤ ∥u∥1,2 ∥ux∥2 ≤ ∥u∥1,2. (18)

Moreover, in the following section, we prove that the norms ∥ux∥2 and ∥u∥1,2, and ∥u∥2 and ∥u∥1,2 are equivalent.

3 Equivalency of norms

Lemma 3.1: We consider the problem given by Eqs.(9)-(11). Then, the following inequality holds
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∥ux∥2 ≤ K∥u∥2, (19)

where K := max
x∈[0,1]

|F(x)|.

Proof: Since F(x) ∈C1([0,1]) it has a maximum over [0,1]. Let us multiply both sides of Eq.(9) by u(x, t), and then
integrate over ΩT :

0 =
∫ T

0

∫ 1

0
(ux)

2dxdt −
∫ T

0

∫ 1

0
Fuuxdxdt. (20)

Therefore,

∫ T

0

∫ 1

0
(ux)

2dxdt =
∫ T

0

∫ 1

0
Fuuxdxdt (21)

≤ K
∫ T

0

∫ 1

0
uuxdxdt. (22)

Using Holder inequality for the inequality obtained in Eq.(22) we obtain

∥ux∥2
2 ≤ K∥u∥2∥ux∥2, (23)

which follows that

∥ux∥2 ≤ K∥u∥2. (24)

Lemma 3.2: (i) The norms ∥u∥1,2 and ∥u∥2 are equivalent.

(ii) The norms ∥u∥1,2 and ∥ux∥2 are equivalent.

Proof: (i) We must show that there exist α,β > 0 such that β∥u∥2 ≤ ∥u∥1,2 ≤ α∥u∥2. By Eq.(18) β must be equal
to 1. On the other hand, it is easy to see from Eq.(17) and Eq.(24) that α must be equal to

√
(K2 +1). This implies the

following inequalities:

∥u∥2 ≤ ∥u∥1,2 ≤
√

(K2 +1)∥u∥2. (25)

(ii) As in the previous proof, we must show that there exist α,β > 0 such that β∥ux∥2 ≤ ∥u∥1,2 ≤ α∥ux∥2. Again
β must be equal to 1. Now we must find the number α . We know from the definitions of norms ∥u∥1,2 < ∞ and ∥ux∥2 < ∞.
Therefore, it is true that there exist M1,M2 > 0 such that ∥u∥1,2 = M1, ∥ux∥2 = M2. By the inequality in Eq.(18) we have
M2 ≤ M1. Finally, by the Archimedean property there exists α ∈ N such that M1 ≤ αM2. Then, the following holds as
well:

∥ux∥2 ≤ ∥u∥1,2 ≤ α∥ux∥2. (26)

A different proof of this Lemma is given in [11].
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4 Boundedness of the bilinear form a(u,v)

Theorem 4.1: The bilinear form a(u,v) = 2
∫ T

0
∫ 1

0 uxvxdxdt +F ′(λ )
∫ T

0
∫ 1

0 uvdxdt is bounded.

Proof:

|a(u,v)| =

∣∣∣∣2∫ T

0

∫ 1

0
uxvxdxdt +F ′(λ )

∫ T

0

∫ 1

0
uvdxdt

∣∣∣∣ (27)

≤ 2
∫ T

0

∫ 1

0
|uxvx|dxdt + |F ′(λ )|

∫ T

0

∫ 1

0
|uv|dxdt (28)

≤C
{∫ T

0

∫ 1

0
|uxvx|dxdt +

∫ T

0

∫ 1

0
|uv|dxdt

}
(29)

≤C {∥ux∥∥vx∥+∥u∥∥v∥}, (30)

by the aid of Holder inequality, where C := max{2, |F ′(λ )|}. We now use the inequality in Eq.(24), and obtain

|a(u,v)| ≤ M∥u∥1,2∥v∥1,2, (31)

where M :=C(1+K2). This shows that the bilinear form a(u,v) is bounded.

5 Coercivity of the Bilinear Form a(u,u)

Theorem 5.1: If F ′(λ )>−2K2 then the bilinear form a(u,u) = 2
∫ T

0
∫ 1

0 u2
xdxdt +F ′(λ )

∫ T
0
∫ 1

0 u2dxdt is coercive.

Proof: We must show that there exist a B > 0 such that a(u,u)≥ B∥u∥2
1,2. Now, if we use the Lemma 3.1 and Eq.(26)

we obtain

a(u,u) = 2
∫ T

0

∫ 1

0
u2

xdxdt +F ′(λ )
∫ T

0

∫ 1

0
u2dxdt (32)

≥ (2+K−2F ′(λ ))
∫ T

0

∫ 1

0
u2

xdxdt (33)

≥ α
−2(2+K−2F ′(λ ))∥u∥2

1,2. (34)

Let B = α−2(2+K−2F ′(λ ))> 0. Hence, this implies that

a(u,u)≥ B∥u∥2
1,2, (35)

which shows the coercivity of the bilinear form a(u,u).

In conclusion we have proved that the steady-state solution of the problem defined by Eqs.(1)-(3) is unique according
to the Lax-Milgram Theorem (For details of coercivity of a bilinear form see also [10]).
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6 What if f(x) is not a transition probability density function?

The stability of the steady-state solution of the problem given in Eqs.(1)-(3) with f (x) is given by Eq.(4) is studied in
[8]. Suppose we now take f (x) = Cex in Eq.(1) where C is a nonzero constant. Since this function is not of the form of
Eq.(4), it is not a TPDF. In this case, the problem given in Eqs.(6)-(8) becomes:

ut = Duxx −aux , ∀(x, t) ∈ ΩT (36)

u(x,0) = 1 , ∀x ∈ (0,1) (37)

ux(x, t)|x=0,1 = 0 , ∀t ∈ (0,T ] (38)

where a =CD. Now, let us consider the transformation [3]

u(x, t) = exp(
ax
2D

− a2t
4D

)w(x, t), (39)

so that the problem obtained in Eqs.(36)-(38) becomes:

wt = Dwxx , ∀(x, t) ∈ ΩT (40)

w(x,0) = e−ax/2D , ∀x ∈ (0,1) (41)
a

2D
w(x, t)+wx(x, t)|x=0,1 = 0 , ∀t ∈ (0,T ] (42)

This is an initial-boundary value problem for a heat equation. We solve Eqs.(40)-(42) using separation of variables by
setting w(x, t) = Φ(x)Ψ(t) to obtain

Ψ ′(t)
DΨ(t)

=
Φ ′′(x)
Φ(x)

=−λ
2, (43)

where λ is a constant. From Eq.(43) we obtain

Ψ
′(t)+λ

2DΨ(t) = 0 (44)

Φ
′′(x)+λ

2
Φ(x) = 0. (45)

In the case λ = 0 we have Ψ(t) = α and Φ(x) = c1x+ c2, where α , c1 and c2 are arbitrary constants. From the
boundary conditions in Eq.(42) we obtain c1 = 0. Therefore, one gets w0(x, t) = κ , where κ is constant. Since we know
from the eigenvalue property of Sturm-Liouville problem λ can not be negative. We now suppose λ > 0. In this case it is
clear from Eq.(44) that Ψ(t) is of the form Me−λ 2Dt , where M is a positive constant and D is the cell diffusion constant.
Also, Φ(x) has the form Φ(x) = Acosλx+Bsinλx. From the boundary conditions in Eq.(42), we get the eigenvalues
λn = nπ , where n = 1,2,3 . . ., and the eigenfunctions corresponding to these eigenvalues Φn(x) = Acosnπx+Bsinnπx,
and Ψn(t) = Me−n2π2Dt . Therefore, one gets the series form of the solution
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w(x, t) = w0(x, t)+
∞

∑
n=1

wn(x, t) (46)

= κ +M
∞

∑
n=1

e−n2π2Dt(Acosnπx+Bcosnπx), (47)

which follows that

u(x, t) = exp(
ax
2D

− a2t
4D

)(κ +M
∞

∑
n=1

e−n2π2Dt(Acosnπx+Bcosnπx)). (48)

As it is clear from the last equality, one obtains

u(x, t)→ 0 as t → ∞. (49)

On the other hand, since we are looking for the steady-state solution of the problem in Eqs.(36)-(38) we have to solve
the following boundary value problem:

Du′′(x)−au′(x) = 0 , ∀x ∈ (0,1) (50)

u′(0) = u′(1) = 0. (51)

It is clear that any nonzero constant satisfies the problem in Eqs.(50)-(51), which contradicts with the result in Eq.(49). In
conclusion, the steady-state solution is unstable with this choice of f (x).

7 Conclusions and Biological Discussions

In this paper we first proved the existence and uniqueness of the steady state solution of the problem in Eqs.(1)-(3).
The inequalities in Eq.(31) and Eq.(35) satisfy the conditions of the Lax-Milgram Theorem. Therefore, we can say that
there exists one and only one solution of the problem in Eqs.(9)-(11). This implies that the steady-state solution of the
problem in Eqs.(1)-(3) is unique, which means that there is only one way for ECs to follow the trail of TPDF.

In [8] the authors took the TPDF as

f (x) =
(

a1 + ca(x)
a2 + ca(x)

)γ1
(

b1 + f̃ (x)
b2 + f̃ (x)

)γ2

,

where ca(x) = Axn(1−x)n and f̃ (x) = 1−Bxn(1−x)n are the active enzyme and fibronectin concentrations, respectively.
Here ai,bi (i = 1,2) are the constants such that 0 < a1 ≪ 1 < a2 and b1 > 1 ≫ b2 > 0. Also, A and B are the same as in
Eq.(4), and γ1,γ2,n are some positive constants. From the above choice of f (x), they also observed that endothelial cells
prefer to move into the region where ca is large or where f̃ is small. By proving the uniqueness of the steady-state solution
of our model equation, one observes that the preference of the ECs is unique.

We lastly showed that the steady-state solution of our model equation is unstable in the case where f (x) is not a TPDF.
This fact is not a surprise to us, since in [8] the authors showed that the long-time tendency of ECs are towards the TPDF.

© 2022 BISKA Bilisim Technology

 ntmsci.com/cmma 


8 S Pamuk: On the existence and uniqueness of the steady-state solution in a tumor angiogenesis model

References

[1] N. Bellomo, L. Prezrosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune

system, Math. Comput. Model. 32(3-4)(2000) 413-452.

[2] R. F. Curtain, Functional Analysis in Modern Applied Mathematics Academic Press, 1977.

[3] S. Farlow, Partial Differential Equations for Scientists and Engineering Dover, 1993.

[4] J. Folkman,Tumor angiogenesis: therapeutic implications, New Engl. J. Med 285 (1971) 1182-1186.

[5] J. Folkman, The vascularization of tumors, Sci. Am., 234 (1976) 59-73.

[6] H. A. Levine, S. Pamuk, B. D. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of capillary formation and development

in tumor angiogenesis: Penetration into the stroma, Bull. Math. Biol. 63(5) (2001) 801–863.

[7] S. Pamuk and A. Erdem, The method of lines for the numerical solution of a mathematical model for capillary formation: The role

of endothelial cells in the capillary, Appl. Math. Comput. 186 (2007) 831-835.

[8] S. Pamuk, Qualitative Analysis of a Mathematical Model for Capillary Formation in Tumor Angiogenesis, Math. Mod. Meth. Appl.

Sci. 13(1) (2003) 19-33.

[9] S. Pamuk, Steady- State Analysis of a Mathematical Model for Capillary Network Formation in the Absence of Tumor Source,

Math. Biosci. 189(1) (2004) 21-38.

[10] I. Stakgold, Green’s Functions and Boundary Value Problems John Wiley & Sons, 1979.

[11] E. Zeidler, Nonlinear Functional Analysis and Its Applications II/A, Springer-Verlag, 1990.

© 2022 BISKA Bilisim Technology


	Introduction
	Constructing the bilinear form
	Equivalency of norms
	Boundedness of the bilinear form a(u,v)
	Coercivity of the Bilinear Form a(u,u)
	What if f(x) is not a transition probability density function?
	Conclusions and Biological Discussions

