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Abstract: In this paper He’s variational iteration method is applied to solve linear and non-linear heat equations. This method is based
on the use of a general Lagrange multiplier in the construction of correction functional for the equation. In comparison with existing
techniques, this method is very powerful, and the solution procedure is very simple since it uses only the prescribed initial condition.
Some analytical results are presented.
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1 Introduction

Finding the particular analytical solutions that have a physical or biological interpretation for the nonlinear equations is
of fundamental importance since nonlinear phenomena play a crucial role in applied mathematics and science.

The main aim of this paper is to present applications of He’s variational iteration method (VIM) to linear and non-linear
heat equations of the form given by Eq.(1).

VIM is based on the incorporation of a general Lagrange multiplier in the construction of correction functional for the
equation. This method has been proposed by Ji-Huan He [16] and is thoroughly used by many researchers (see e.g.,
[3,4,9-12,17,20]) to handle linear and non-linear problems. The VIM is very powerful and easy since it uses only the
prescribed initial condition and does not require a specific treatment.

We consider the heat equation

ut = uxx + ε f (u), (1)

where f is a linear or non-linear function of u, and ε is some parameter. Here, the indices t and x denote derivatives with
respect to these variables. Construction of particular analytical solutions for nonlinear equations of the form of Eq.(1) is
an important problem. Especially, finding an analytical solution that has a biological interpretation is of fundamental
importance. In contrast to simple diffusion (ε = 0 case), when reaction kinetics and diffusion are coupled, travelling
waves of chemical concentration exist, can effect a biochemical change, very much faster than straight diffusional
processes governed by Eq.(1) with ε = 0 [8]. This coupling gives rise to reaction diffusion equation of the form of
Eq.(1), where u is concentration and the term f (u) represents the kinetics [8]. For example, it is known that when
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f (u) = u3, Eq.(1) is an heat equation with cubic nonlinearity that admits soliton-like solutions [7,14].

Recently, some new methods such as Lie symmetry reduction method [6], and antireduction method [7] which
transforms the nonlinear partial differential equations (PDE) to a system of ordinary differential equations (ODE) have
been introduced in the research literature to find particular analytical solutions to PDE. But, finding analytical solutions
of most nonlinear PDE generally requires new methods.

The particular analytical solutions of the nonlinear reaction diffusion equations of the form

ut = (A(u)ux)x +B(u)ux +C(u),

where A(u), B(u) and C(u) are specially chosen smooth functions are obtained in [5]. This equation usually arises in
mathematical biology [8]. In fact, Eq.(1) is a particular case of the last equation.

2 Variational iteration method (VIM)

To illustrate the basic idea of VIM, we consider the following general nonlinear system:

Lu(x, t)+Nu(x, t) = g(x, t), (2)

where L is a linear operator, and N is a nonlinear operator, and g(x, t) is the source inhomogeneous term.

According to the variational iteration method [16,17], one can construct the following iteration formulation:

un+1(x, t) = un(x, t)+
∫ t

0
λ (t,s)(Lun(x,s)+Nũn(x,s)−g(x,s))ds, (3)

where λ is a general Lagrange’s multiplier, which can be identified optimally via the variational theory, and ũn is a
restricted variation which means δ ũn = 0.

It is obvious now that the main steps of variational iteration method require first the determination of the Lagrangian
multiplier λ that will be identified optimally. Having determined the Lagrangian multiplier, the successive
approximations un+1,n = 0,1,2, · · · , of the solution u will be readily obtained upon using any selective function u0

[16,17]. Consequently, the solution is obtained as the limit of the resulting successive approximations, i.e.,

u = lim
n→∞

un. (4)

3 Applications of VIM

Example 1. In this example we solve Eq.(1) with ε = 1, f (u) = u. We take u(x,0) = sin(πx) as the initial condition.
According to VIM described above, a correction functional for this problem can be constructed as follows:

un+1(x, t) = un(x, t)+
∫ t

0
λ (t,s)

(
∂un(x,s)

∂ s
− ũn(x,s)−

∂ 2ũn(x,s)
∂x2

)
ds, (5)

where n = 0,1,2, · · · , and λ is a Lagrange multiplier, ũn is a restricted variation, i.e., δ ũn = 0. To find the optimal value
of λ , we make Eq.(5) stationary with respect to un, and obtain

∂λ (t,s)
∂ s

= 0, (6)
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1+λ (t,s)|s=t = 0. (7)

The Lagrange multiplier can be identified as λ = −1, submitting the result into Eq.(5) leads to the following iteration
formula:

un+1(x, t) = un(x, t)+
∫ t

0
(−1)

(
∂un(x,s)

∂ s
−un(x,s)−

∂ 2un(x,s)
∂x2

)
ds, (8)

where n = 0,1,2, · · · . Beginning with an initial approximation u0(x, t) = u0(x,0) = sin(πx), we obtain the following
successive approximations:

u1(x, t) = sin(πx)+(1−π2)t sin(πx),

u2(x, t) = sin(πx)+(1−π2)t sin(πx)+ 1
2! (1−π2)2t2 sin(πx),

u3(x, t) = sin(πx)+(1−π2)t sin(πx)+ 1
2! (1−π2)2t2 sin(πx)+ 1

3! (1−π2)3t3 sin(πx),
...

un(x, t) = sin(πx)+(1−π2)t sin(πx)+ 1
2! (1−π2)2t2 sin(πx)+ · · ·+

1
n! (1−π2)ntn sin(πx).

By the use of Eq.(4), the particular analytical solution to this problem becomes

u(x, t) = e(1−π2)t sin(πx), (9)

in the closed form.

Example 2. We now solve Eq.(1) with ε =−2, f (u) = u3, and u(x,0) = 1+2x
x2+x+1 . A correction functional for this problem

can be constructed as follows:

un+1(x, t) = un(x, t)+
∫ t

0
λ (t,s)

(
∂un(x,s)

∂ s
+2ũ3

n(x,s)−
∂ 2ũn(x,s)

∂x2

)
ds, (10)

where n = 0,1,2, · · · , and λ is a Lagrange multiplier, ũn is a restricted variation, i.e., δ ũn = 0. The optimal value of the
Lagrange multiplier is calculated to be λ = −1 as done in above example (see Eqs.(6)-(7)). Submitting this λ into Eq.
(10) leads to the following iteration formula:

un+1(x, t) = un(x, t)+
∫ t

0
(−1)

(
∂un(x,s)

∂ s
+2u3

n(x,s)−
∂ 2un(x,s)

∂x2

)
ds, (11)

where n = 0,1,2, · · · . Beginning with an initial approximation u0(x, t) = u0(x,0) =
1+2x

x2 + x+1
, we obtain the following

successive approximations:

u1(x, t) =
1+2x

x2 + x+1
− 6(1+2x)

(x2 + x+1)2 t,

u2(x, t) =
1+2x

x2 + x+1
− 6(1+2x)

(x2 + x+1)2 t +
36(1+2x)
(x2 + x+1)3 t2,

u3(x, t) =
1+2x

x2 + x+1
− 6(1+2x)

(x2 + x+1)2 t +
36(1+2x)
(x2 + x+1)3 t2 − 216(1+2x)

(x2 + x+1)4 t3,

...

un(x, t) =
1+2x

x2 + x+1
− 6(1+2x)

(x2 + x+1)2 t +
36(1+2x)
(x2 + x+1)3 t2 −·· ·+ (−1)n6n(1+2x)

(x2 + x+1)n+1 tn.

The VIM admits the use of Eq.(4), therefore one obtains the particular analytical exact solution to this problem

u(x, t) =
1+2x

6t + x2 + x+1
, (12)

© 2022 BISKA Bilisim Technology

 ntmsci.com/cmma 


12 S Pamuk: He’s variational iteration method for solving linear and non-linear heat equations

in the closed form.

Example 3. In this example we solve Eq.(1) with ε = −1, f (u) = 2u3 + u2, and u(x,0) = 1/x. This time a correction
functional for this problem can be constructed as follows

un+1(x, t) = un(x, t)+
∫ t

0
λ (t,s)

(
∂un(x,s)

∂ s
+2ũ3

n(x,s)+ ũ2
n(x,s)−

∂ 2ũn(x,s)
∂x2

)
ds, (13)

where n = 0,1,2, · · · , and λ is a Lagrange multiplier, ũn is a restricted variation, i.e., δ ũn = 0. Again, the optimal value of
the Lagrange multiplier for this problem is calculated to be λ =−1. Submitting this λ into Eq. (13) leads to the following
iteration formula:

un+1(x, t) = un(x, t)+
∫ t

0
(−1)

(
∂un(x,s)

∂ s
+2u3

n(x,s)+u2
n(x,s)−

∂ 2un(x,s)
∂x2

)
ds, (14)

where n = 0,1,2, · · · . We begin with an initial approximation u0(x, t) = u0(x,0) =
1
x

, and obtain the following successive
approximations:

u1(x, t) =
1
x
− t

x2 ,

u2(x, t) =
1
x
− t

x2 +
t2

x3 ,

u3(x, t) =
1
x
− t

x2 +
t2

x3 − t3

x4 ,

...

un(x, t) =
1
x
− t

x2 +
t2

x3 −·· ·+(−1)n tn

xn+1 .

By the aid of Eq.(4) we obtain the particular analytical solution to this problem

u(x, t) =
1

x+ t
, (15)

in the closed form.

4 Conclusion and results

In this paper, we provide some applications of VIM to solve linear and non-linear heat equations of the form in Eq. (1).
We see that the VIM uses only the prescribed initial conditions and does not require a specific treatment.

On the other hand, the first two problems studied in Example 1 and Example 2 have been solved in [14] using Adomian
decomposition method (ADM) [1,2], which is widely used by many scientists, e.g., [13,15,18,19]. ADM is an iterative
method which provides approximate analytical solutions in the form of an infinite power series for nonlinear equations.

Although VIM and ADM give the same results for both of the problems, the VIM needs not to calculate Adomian
polynomials, and it is very straightforward, and the solution procedure is very simple, as stated in [16].

Also, in their calculations of the exact solutions of various kinds of heat-like and wave-like equations, the authors of
Ref.[16] pointed out that contrary to Adomian method, VIM needs no calculation of Adomian polynomial, only simple
operation is needed. Another nice comparison between ADM and VIM is given by Wazwaz [17]. In his study he
concludes the following: VIM gives several successive approximations through using the iteration of the correction
functional. However, ADM provides the components of the exact solution, where these components should follow the
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summation of an infinite power series. Moreover, the VIM requires the evaluation of the Lagrangian multiplier λ ,
whereas ADM requires the evaluation of the Adomian polynomials that mostly require tedious algebraic calculations.
More importantly, the VIM reduces the volume of calculations by not requiring the Adomian polynomials, hence the
iteration is direct and straightforward. However, ADM requires the use of Adomian polynomials for nonlinear terms, and
this needs more work. For nonlinear equations that arise frequently to express nonlinear phenomenon, He’s VIM
facilitates the computational work and gives the solution rapidly if compared with ADM.

As a result, although the numerical results are almost the same, VIM is much easier, more convenient and efficient than
ADM.

References

[1] Adomian G. Solving Frontier Problems of Physics: the Decomposition Method, Kluwer Academic Publishers, Boston, 1994.

[2] Adomian G. Solving Frontier Problems Modelled by Nonlinear Partial Differential Equations. Comput. Math. Appl 1991;22(8):

91-94.

[3] Assas LMB. Variational Iteration Method for Solving Coupled-KdV Equations, Chaos, Solitons & Fractals 2008;38: 1225-1228.

[4] Bildik N, Konuralp A. The use of Variational Iteration Method, Differential Transform Method and Adomian Decomposition

Method for Solving Different Types of Nonlinear Partial Differential Equations, International Journal of Nonlinear Sciences and

Numerical Simulation 2006;7(1):65-70.

[5] Cherniha RM. New Ansätze and Exact Solutions for Nonlinear Reaction - Diffusion Equations Arising in Mathematical Biology,

Sym. Nonlinear Math. Phys 1997;1:138-146.

[6] Euler M, Euler N. Symmetries for a Class of Explicitly Space and Time Dependent (1+1)- Dimensional Wave Equations, Sym.

Nonlinear Math. Phys 1997;1:70-78.

[7] Fushchych W, Zhdanov R. Antireduction and Exact Solutions of Nonlinear Heat Equations, Nonlinear Math. Phys 1994;1(1):60-

64.

[8] Murray J.D. Mathematical Biology, Springer, Berlin, 1993.

[9] Noor MA, Noor KI, Mohyud-Din ST, Modified Variational Iteration Technique for Solving Singular Fourth-Order Parabolic Partial

Differential Equations, Nonlinear Analysis: Theory, Methods & Applications, In Press, Corrected Proof, Available Online 11

November 2008.

[10] Noor MA, Mohyud-Din ST. Variational Iteration Method for Fifth-Order Boundary Value Problems Using He’s Polynomials,

Mathematical Problems in Engineering, Article ID 954794, (2008).

[11] Noor MA, Mohyud-Din ST. Variational Iteration Technique for Solving Higher Order Boundary Value Problems, Appl. Math.

Comput 2007;189:1929-1942.

[12] Noor MA, Mohyud-Din ST. Variational Iteration Decomposition Method for Solving Higher Dimensional Initial Boundary Value

Problems, International Journal of Nonlinear Science 2009;7(1): 39-49.

[13] S Pamuk, The Decomposition Method for Continuous Population Models for Single and Interacting Species, Appl.Math.Comput

163(2005)79-88.

[14] Pamuk S. An Application for Linear and Nonlinear Heat Equations by Adomian’s Decomposition Method, Appl.Math.Comput

2005; 163:89-96.

[15] Pamuk S. Solution of the Porous Media Equation by Adomian’s Decomposition Method, Phys.Lett. A 2005;344:184-188.

[16] Shou DH, He JH, Beyond Adomian Method: The Variational Iteration Method for Solving Heat-Like and Wave-Like Equations

with Variable Coefficients, Phys.Lett. A 2008;372:233-237.

[17] Wazwaz AM, A Comparison Between the Variational Iteration Method and Adomian Decomposition Method, J. Comput.

Appl.Math 2007;207:129-136.

[18] Wazwaz AM, Gorguis A. Exact Solutions for Heat-Like and Wave-Like Equations with Variable Coefficients, Appl.Math.Comput

2004;149(1):15-29.

© 2022 BISKA Bilisim Technology

 ntmsci.com/cmma 


14 S Pamuk: He’s variational iteration method for solving linear and non-linear heat equations

[19] Wazwaz AM. A Reliable Technique for Solving the Wave Equation in an Infinite One-Dimensional Medium, Appl.Math.Comput

1998;92: 1-7.

[20] Yusufoglu E, Variational Iteration Method for Construction of Some Compact and Noncompact Structures of Klein-Gordon

Equations, International Journal of Nonlinear Sciences and Numerical Simulation 2007;8(2):153-158.

© 2022 BISKA Bilisim Technology


	Introduction
	Variational iteration method (VIM)
	Applications of VIM
	Conclusion and results

