

Journal of Abstract and Computational Mathematics

http://www.ntmsci.com/jacm

The Effects of the Assorted Cross-Correlation Definitions

Daniel J. Greenhoe

Holland Charter Township, MI 49464 USA

Received: 11 Jul 2019, Accepted: 20 Jan 2023

Published online: 22 Mar 2023

Abstract: The literature offers varying and in general incompatible definitions of the cross-correlation function $R_{xy}(n,m)$ and its jointly wide-sense stationary special case $R_{xy}(m)$. The choice of definition has consequences for results involving the cross-spectral density function $\tilde{S}_{xy}(\omega)$, and the more general Z-transform density $\check{S}_{xy}(z)$. In some stochastic processing systems involving simple additive noise or even additive noise combined with non-linear operations, these varying definitions lead to identical results. In some other systems involving nonlinear and linear parallel operations, including those involving system identification problems, results differ.

1 Introduction

The literature offers varying and in general incompatible definitions of the cross-correlation function $R_{xy}(n,m)$ and its jointly wide-sense stationary (Definition 6 page 20) special case $R_{xy}(m)$. The choice of definition has consequences for results involving the cross-spectral density function $\tilde{S}_{xy}(\omega)$, which is defined as the Discrete-time Fourier Transform of $R_{xy}(m)$, as well as the more general $\check{S}_{xy}(z)$, which is defined as the Z-Transform of $R_{xy}(m)$:

Definition 1.[19, page 265], [12, page 52], [2, page 50], [4, page 118]

$\check{S}_{xy}(z) \triangleq \operatorname{Z}R_{xy}(m) \triangleq \sum R_{xy}(m) z^{-m}$	$\tilde{S}_{xy}(\omega) \triangleq \breve{\mathrm{F}}R_{xy}(m) \triangleq \sum R_{xy}(m) e^{-i\omega m}$
$m{\in}\mathbb{Z}$	$m \in \mathbb{Z}$
Z-Transform of $R_{xy}(m)$	Discrete-time Fourier Transform of $R_{xy}(m)$

2 Definitions

Here is a very limited overview of definitions of $\mathsf{R}_{xy}(m)$ in the literature:

References that put the conjugate * on y:

*				
• Papoulis	[19 , page 263]	$R_{xy}(m)$	\triangleq	$E\{\mathbf{x}(m)\mathbf{y}^*(0)\}$
• Cadzow	[7, page 341]	$r_{xy}(m)$	\triangleq	$E[\mathbf{x}(m)\mathbf{y}^*(0)]$
• MatLab	[16, 17]	$R_{xy}(m)$	\triangleq	$E\{x_{n+m}y_n^*\}$
References that put the	conjugate * on x:	-		
• Kay	[12, page 52]	$r_{xy}[m]$	\triangleq	$\mathcal{E}\left\{x^*[0]y[m]\right\}$
• Weisstein	$[25, page 594]^1$	$f\star g$		$\int_{-\infty}^{\infty} \bar{f}(\tau) g(t+\tau) \tau$
				$v - \infty$

• Leuridan et al.	[15, page 2](7)	GXY_1	\triangleq	$\sum X_1^* Y$
References that use no conju	gate:			—
• Bendat and Piersol	[4, page 111]	$R_{xy}(m)$	\triangleq	$E[\mathbf{x}(0)\mathbf{y}(m)]$
• Helstrom	[10, page 369]	$R_{xy}(t_1,t_2)$	\triangleq	$E[\mathbf{x}(t_1)\mathbf{y}(t_2)]$
• Proakis and Manolakis	[20, page A4]	$\gamma_{xy}(t_1, t_2)$	\triangleq	$E(X_{t_1}Y_{t_2})$
• Shin and Hammond	[22, page 280]	$R_{xy}(\tau)$	\triangleq	$E[x(t)y(t+\tau)]$
• Bracewell	$[5, page 46]^2$	$g^* \star h$	\triangleq	$\int_{-\infty}^{\infty} g^*(u)h(u+x) \mathrm{u}$

In this paper, each sequence (Definition 7 page 20) mentioned hereafter is assumed to be an element of the space of all absolutely square summable sequences $\ell^2_{\mathbb{C}}$ (Definition 8 page 20). Furthermore, the random sequences $(|\mathbf{x}(n)|)_{n\in\mathbb{Z}}$ and $||\mathbf{y}(n)||_{n\in\mathbb{Z}}$ are assumed to be jointly wide-sense stationary (Definition 6 page 20).

In terms of the expectation operator E (Definition 4 page 19), there are a total of eight choices for defining the crosscorrelation $R_{xy}(m)$ of *complex-valued jointly wide-sense stationary* (Definition 6 page 20) sequences $(|x(n)|)_{n\in\mathbb{Z}}$ and $(|y(n)|)_{n\in\mathbb{Z}}$. There are eight because each of the two sequences may be defined with or without the conjugate operator *, and one sequence may lead or lag the other $(2 \times 2 \times 2 = 8)$. Definition 2 (next) provides a formalized list of the eight possible definitions.

Definition 2.

(1). Papoulis:	$R_{xy}(m) \triangleq \mathrm{E}[\mathbf{x}\ (m)\mathbf{y}^*(0\)] _{(5)}$. Bendat-Piersol: ³	$R_{xy}(m) \triangleq \mathrm{E}[\mathbf{x} \ (0) \ \mathbf{y} \ (m)]$
(2). Kay:	$R_{xy}(m) \triangleq \mathrm{E}[x^*(0) \ y \ (m)] _{(6)}.$ alt-BP:	$R_{xy}(m) \triangleq \mathrm{E}[\mathrm{x} \ (m)\mathrm{y} \ (0 \)]$
(3). alt-Papoulis:	$R_{xy}(m) \triangleq \mathrm{E}[\mathbf{x} \ (0) \ \mathbf{y}^*(m)] (7). \ \boldsymbol{BP-star:}$	$R_{xy}(m) \triangleq \mathrm{E}[\mathrm{x}^*(0) \ \mathrm{y}^*(m)]$
(4). alt-Kay:	$R_{xy}(m) \triangleq \mathrm{E}[\mathbf{x}^*(m)\mathbf{y} \ (0 \)] _{(8)}.$ alt-BP-star:	$R_{xy}(m) \triangleq \mathrm{E}[\mathrm{x}^*(m)\mathrm{y}^*(0)]$

3 Results

Remark.

The 8 definitions of $R_{xy}(m)$	listed in Definition 2 yield \ldots	
• 2 relations on the pair	$(R_{yx}(m), R_{xy}(m))$	$(Lemma \ 1 \ page \ 3)$
$\bullet~2$ relations on the pair	$(\check{S}_{xy}(z), \check{S}_{yx}(z))$	(Proposition 1 page 3)
• 4 relations on the triple	$(\check{S}_{xy}(z), \check{H}(z), \check{S}_{xx}(z))$	(Proposition $2 \text{ page } 4$)
• 3 relations on the triple	$(\tilde{S}_{yy}(\omega), \tilde{H}(\omega), \tilde{S}_{xx}(\omega))$	(Corollary 2 page 7)
• only 4 cases in which \tilde{S}_{-}	(ω) is guarenteed to be <i>real-valued</i>	(Corollary 1 page 4)

Remark.

 $\begin{array}{l} \text{Moreover, if } \left(\!\!\left|\!\!\left|\!\!\left|x(n)\right|\!\!\right| \text{ and } \left(\!\!\left|\!\!\left|y(n)\right|\!\!\right| \text{ are } \textbf{real-valued}, \text{ the 8 definitions of } \mathsf{R}_{xy}(m) \text{ yield } \dots \right. \\ \text{ 1 relation on } \left(\!\!\left|\!\!\left|\mathsf{X}_{xy}(m),\mathsf{R}_{yx}(m)\right.\right.\right) (\text{Corollary 3 page 8}) \\ \text{ 1 relation on } \left(\!\!\left|\!\!\left|\mathsf{X}_{xy}(z), \, \check{\mathsf{S}}_{yx}(z)\right.\right.\right) (\text{Proposition 3 page 8}) \\ \text{ 2 relations on } \left(\!\!\left|\!\!\left|\mathsf{X}_{xy}(z), \, \check{\mathsf{H}}(z), \, \check{\mathsf{S}}_{xx}(z)\right.\right.\right) (\text{Proposition 4 page 9}) \\ \text{ 2 relations on } \left(\!\!\left|\!\!\left|\!\!{\mathsf{X}}_{xy}(\omega), \, \check{\mathsf{H}}(\omega), \, \check{\mathsf{S}}_{xx}(\omega)\right.\right) (\text{Corollary 4 page 10}) \\ \text{ 1 relation on } \left(\!\!\left|\!\!\left|\!\!{\mathsf{S}}_{yy}(z), \, \check{\mathsf{H}}(z), \, \, \check{\mathsf{S}}_{xx}(z)\right.\right) (\text{Proposition 4 page 9}) \\ \text{ 1 relation on } \left(\!\!\left|\!\!{\mathsf{S}}_{yy}(\omega), \, \check{\mathsf{H}}(\omega), \, \, \check{\mathsf{S}}_{xx}(\omega)\right.\right) (\text{Corollary 4 page 10}) \\ \end{array} \right)$

¹ Note that Bracewell's "Pentagram notation for cross correlation" $g^* \star h = \int_{-\infty}^{\infty} g^*(u)h(u+x) u$ implies $g \star h = \int_{-\infty}^{\infty} g(u)h(u+x) u$ (and hence in the "References that use no conjugate" category).

³ Note that Bendat and Piersol are well known and highly cited for their work related to random vibration testing. In this field, data samples are customarily collected using an analog-to-digital converter (ADC) and as such, for this application (in contrast to wireless communication applications involving phase discriminating PSK or QAM), are customarily *real-valued*. Therefore, it is very understandable that these authors would define $R_{xy}(m)$ without any conjugate operator.

¹ Bracewell and Weisstein here use the *integral operator* $\int_{\mathbb{R}} \mathbf{x}$ rather than the *expectation operator* E. That is, they use a *time average* rather than an *ensemble average*. But in essence, the two types of operators are "the same" because both types represent *inner products*. That is, $\int_{x \in \mathbb{R}} f(x) g^*(x) \mathbf{x} \triangleq \langle f(x) | g(x) \rangle_1$ and $\mathbf{E} [\mathbf{x}(t) \mathbf{y}^*(t)] \triangleq \langle \mathbf{x}(t) | \mathbf{y}(t) \rangle_2$ (both are inner products, but operate in perpendicular orientations across the ensemble plane).

 $\hat{\mathsf{H}}(z)$

y(n)

Lemma 1.Let (1)–(8) below correspond to the eight definitions of $R_{xy}(m)$ in Definition 2.

(1) (9) (2) or (1)	$\rightarrow P(m) - P^{*}(m) - P^{*}(m) - P^{*}(m) - P^{*}(m)$
(1), (2), (3), 01 (4)	$\longrightarrow N_{yx}(m) = N_{xy}(-m)$ and $N_{xx}(-m) = N_{xx}(m)$ (conjugate symmetric)
(5), (6), (7), or (8)	$\implies R_{yx}(m) = R_{xy}(-m)$ and $R_{xx}(-m) = R_{xx}(m)$ (symmetric)

Proof.

(1).	$R_{yx}(m) \triangleq \mathrm{E}\left[\mathrm{y}(m) \mathrm{x}^*(0) \right]$	by Papoulis' definition of $R_{xy}(m)$	(Definition $2 \text{ page } 2$)
	$= \left(\mathbf{E} \left[\mathbf{x}(0) \mathbf{y}^*(m) \right] \right)^*$	by $antiautomorphic$ property of *-algebras	(Definition 11 page 24)
	$= (\mathrm{E} [\mathrm{x}(0-m) \mathrm{y}^*(m-m)])^*$	by wide sense stationary property	
	$\triangleq R_{xy}^*(-m)$	by Papoulis' definition of $R_{xy}(m)$	(Definition $2 \text{ page } 2$)
l	$R_{xx}(-m) \triangleq R_{xy}(-m)\big _{y=x} = R_{yx}^{*}(m)\big _{y=x}$	$_{\rm x} = {\sf R}_{\rm xx}^{*}(m)$	

Proposition 1. Let (1)–(8) correspond to the eight definitions of $\mathsf{R}_{xy}(m)$ in Definition 2. Let H be a linear time-invariant (LTI) operator with impulse response (h(n)) on a widesense stationary sequence (x(n)) yielding a sequence $(y(n)) \triangleq (Hx(n))$. Let $\check{H}(z)$ be the Z-Transform of (h(n)).

(1), (2), (3), or (4) $\Longrightarrow \check{\mathsf{S}}_{\mathsf{yx}}(z) = \check{\mathsf{S}}_{\mathsf{xy}}^{*}\left(\frac{1}{z^{*}}\right) \text{ and } \check{\mathsf{S}}_{\mathsf{xx}}(z) = \check{\mathsf{S}}_{\mathsf{xx}}^{*}\left(\frac{1}{z^{*}}\right)$ (5), (6), (7), or (8) $\Longrightarrow \check{\mathsf{S}}_{\mathsf{yx}}(z) = \check{\mathsf{S}}_{\mathsf{xy}} \left(\frac{1}{z}\right) \text{ and } \check{\mathsf{S}}_{\mathsf{xx}}(z) = \check{\mathsf{S}}_{\mathsf{xx}} \left(\frac{1}{z}\right)$

$$\begin{split} (1) - (4) &: \check{\mathsf{S}}_{\mathsf{yx}}(z) \triangleq \mathbb{Z} \mathsf{R}_{\mathsf{yx}}(m) & \text{by definition of } \check{\mathsf{S}}_{\mathsf{xy}}(z) \\ &\triangleq \sum_{m \in \mathbb{Z}} \mathsf{R}_{\mathsf{yx}}(m) z^{-m} & \text{by definition of } \mathbb{Z} & (\text{Definition 10 page 21}) \\ &= \sum_{m \in \mathbb{Z}} \mathsf{R}_{\mathsf{xy}}^*(-m) z^{-m} & \text{by conjugate symmetry property} & (\text{Lemma 1 page 3}) \\ &= \left[\sum_{m \in \mathbb{Z}} \mathsf{R}_{\mathsf{xy}}(-m)(z^*)^{-m}\right]^* & \text{by antiautomorphic property of *-algebras} & (\text{Definition 11 page 24}) \\ &= \left[\sum_{-p \in \mathbb{Z}} \mathsf{R}_{\mathsf{xy}}(p)(z^*)^p\right]^* & \text{where } p \triangleq -m & \implies m = -p \\ &= \left[\sum_{p \in \mathbb{Z}} \mathsf{R}_{\mathsf{xy}}(p)(z^*)^p\right]^* & \text{because } \langle\!\! x(n)\rangle\!\!\!\!\rangle, \langle\!\! y(n)\rangle\!\!\!\rangle \in \ell_{\mathbb{C}}^2 & (\text{Definition 8 page 20}) \\ &= \left[\sum_{p \in \mathbb{Z}} \mathsf{R}_{\mathsf{xy}}(p)\left(\frac{1}{z^*}\right)^{-p}\right]^* & \text{by definition of }\check{\mathsf{S}}_{\mathsf{xy}}(z) & (\text{Definition 1 page 1}) \end{split}$$

JACM 8, No. 1, 1-25 (2023) / www.ntmsci.com/jacm

$$(1) - (4) : \check{S}_{xx}^{*}(z) \triangleq \left[\check{S}_{yx}(z)\right]_{y=x}^{*} = \left[\check{S}_{xy}^{*}\left(\frac{1}{z^{*}}\right)\right]_{y=x}^{*} = \left[\check{S}_{xx}^{*}\left(\frac{1}{z^{*}}\right)\right]^{*} = \check{S}_{xx}\left(\frac{1}{z^{*}}\right)$$

$$(5) - (8) : \check{S}_{yx}(z) = \sum_{m \in \mathbb{Z}} \mathsf{R}_{xy}(-m)z^{-m} = \sum_{-p \in \mathbb{Z}} \mathsf{R}_{xy}(p)z^{p} = \sum_{p \in \mathbb{Z}} \mathsf{R}_{xy}(p)\left(\frac{1}{z}\right)^{-p} \triangleq \check{S}_{xy}\left(\frac{1}{z}\right)$$

$$(5) - (8) : \check{S}_{xx}(z) = \check{S}_{yx}(z)|_{y=x} = \check{S}_{xy}\left(\frac{1}{z}\right)|_{y=x} = \check{S}_{xx}\left(\frac{1}{z}\right)| = \check{S}_{xx}\left(\frac{1}{z}\right)$$

Corollary 1. Let $((1), (2), \dots, (8))$, H, (h(n)), (x(n)), and (y(n)) be defined as in Proposition 1. Let $\tilde{H}(\omega)$ be the DTFT (Definition 1 page 1) of (h(n)).

$\{(1), (2), (3), or (4)\}$	$\Longrightarrow \{\tilde{S}_{xx}^{*}(\omega) = \tilde{S}_{xx}(\omega)$	$(\tilde{S}_{xx}(\omega) \text{ is real-valued}) \}$
$\{(1), (2), (3), or (4)\}$	$\implies \{\tilde{S}_{yx}(\omega) = \tilde{S}_{xy}^{*}(\omega)$	
$\{(5), (6), (7), or (8)\}$	$\Longrightarrow \{ \tilde{S}_{yx}(\omega) = \tilde{S}_{xy}(-\omega)$	

Proof.

$$(1)-(4) \quad \tilde{S}_{xx}^{*}(\omega) = \check{S}_{xx}^{*}(z)\Big|_{z=e^{i\omega}} = \check{S}_{xx}^{*}\left(\frac{1}{z^{*}}\right)\Big|_{z=e^{i\omega}} = \check{S}_{xx}(z)\Big|_{z=e^{i\omega}} = \tilde{S}_{xx}(\omega)$$

$$(1)-(4) \quad \tilde{S}_{yx}(\omega) = \check{S}_{yx}(z)\Big|_{z=e^{i\omega}} = \check{S}_{xy}^{*}\left(\frac{1}{z^{*}}\right)\Big|_{z=e^{i\omega}} = \check{S}_{xy}^{*}(e^{i\omega}) = \check{S}_{xy}^{*}(\omega)$$

$$(5)-(8) \quad \tilde{S}_{yx}(\omega) = \check{S}_{yx}(z)\Big|_{z=e^{i\omega}} = \check{S}_{xy}\left(\frac{1}{z}\right)\Big|_{z=e^{i\omega}} = \check{S}_{xy}(e^{-i\omega}) = \check{S}_{xy}(-\omega)$$

Proposition 2. Let (1)–(8) below correspond to the eight definitions of $R_{xy}(m)$ in Definition 2.

 $\begin{array}{l} (1) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}}^* \left(\frac{1}{z^*}\right) \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{yy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{H}}^* \left(\frac{1}{z^*}\right) \check{\mathsf{S}}_{xx}(z) \\ (2) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{yy}(z) = \check{\mathsf{H}}^* \left(\frac{1}{z^*}\right) \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{H}}^* \left(\frac{1}{z^*}\right) \check{\mathsf{S}}_{xx}(z) \\ (3) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}}^* (z^*) \ \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{yy}(z) = \check{\mathsf{H}} \ \left(\frac{1}{z}\right) \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}}^* (z^*) \check{\mathsf{H}} \ \left(\frac{1}{z}\right) \ \check{\mathsf{S}}_{xx}(z) \\ (4) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ \left(\frac{1}{z}\right) \ \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{yy}(z) = \check{\mathsf{H}}^* (z^*) \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}}^* (z^*) \check{\mathsf{H}} \ \left(\frac{1}{z}\right) \ \check{\mathsf{S}}_{xx}(z) \\ (5) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{yy}(z) = \check{\mathsf{H}} \ \left(\frac{1}{z}\right) \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{H}} \ \left(\frac{1}{z}\right) \ \check{\mathsf{S}}_{xx}(z) \\ (6) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ \left(\frac{1}{z}\right) \ \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{yy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{H}} \ \left(\frac{1}{z}\right) \ \check{\mathsf{S}}_{xx}(z) \\ (7) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}}^* (z^*) \ \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{yy}(z) = \check{\mathsf{H}}^* \left(\frac{1}{z^*}\right) \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}}^* (z^*) \check{\mathsf{H}}^* \left(\frac{1}{z^*}\right) \ \check{\mathsf{S}}_{xx}(z) \\ (8) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ \left(\frac{1}{z}\right\right) \ \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{yy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (z^*) \ \check{\mathsf{H}} \ \left(\frac{1}{z^*}\right) \ \check{\mathsf{S}}_{xx}(z) \\ (8) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ \left(\frac{1}{z}\right) \ \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{yy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{H}} \ \left(\frac{1}{z^*}\right) \ \check{\mathsf{S}}_{xx}(z) \\ (8) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ \left(\frac{1}{z}\right) \ \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{yy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{H}} \ \left(\frac{1}{z^*}\right) \ \check{\mathsf{S}}_{xx}(z) \\ (8) \implies \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (1) \ \check{\mathsf{S}} \ \check{\mathsf{S}}_{xx}(z) \ and \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (z) \ \check{\mathsf{S}}_{xy}(z) = \check{\mathsf{H}} \ (1) \ \check{\mathsf{L}} \ \check{\mathsf{S}} \ \check{\mathsf{S}}_{xx}(z) \\ (4) \end{gathered}$

$$\begin{aligned} (3). \quad \check{S}_{ty}(z) &\triangleq \operatorname{Z} \operatorname{R}_{ty}(m) \triangleq \operatorname{Z} \operatorname{E} \left[\operatorname{t}(0) \operatorname{y}^{*}(m) \right] &= \operatorname{Z} \operatorname{E} \left(\operatorname{t}(0) \left[\sum_{k \in \mathbb{Z}} \operatorname{h}(k) \operatorname{x}(m-k) \right]^{*} \right) \\ &= \operatorname{Z} \operatorname{E} \left[\operatorname{t}(0) \sum_{k \in \mathbb{Z}} \operatorname{h}^{*}(k) \operatorname{x}^{*}(m-k) \right] &= \operatorname{Z} \sum_{k \in \mathbb{Z}} \operatorname{h}^{*}(k) \operatorname{E} \left[\operatorname{t}(0) \operatorname{x}^{*}(m-k) \right] &= \operatorname{Z} \sum_{k \in \mathbb{Z}} \operatorname{h}^{*}(k) \operatorname{R}_{tx}(m-k) \\ &\triangleq \operatorname{Z} \left[\operatorname{h}^{*}(m) \star \operatorname{R}_{tx}(m) \right] &= \left[\operatorname{Z} \operatorname{h}^{*}(m) \right] \left[\operatorname{Z} \operatorname{R}_{tx}(m) \right] = \check{\operatorname{H}}^{*} \left(z^{*} \right) \check{\operatorname{S}}_{tx} \left(z \right) & \text{by Proposition 12 page 21} \\ &= \operatorname{\check{H}}^{*} \left(z^{*} \right) \check{\operatorname{S}}_{ty}(z) \right|_{t=x} &= \operatorname{\check{H}}^{*} \left(z^{*} \right) \check{\operatorname{S}}_{tx}(z) \right|_{t=x} &= \operatorname{\check{H}}^{*} \left(z^{*} \right) \check{\operatorname{S}}_{tx}(z) \\ &= \operatorname{\check{H}}^{*} \left(z^{*} \right) \check{\operatorname{S}}_{ty}(z) \right|_{t=y} = \check{\operatorname{H}}^{*} \left(z^{*} \right) \check{\operatorname{S}}_{tx}(z) \right|_{t=y} &= \operatorname{\check{H}}^{*} \left(z^{*} \right) \check{\operatorname{S}}_{yx}(z) \\ &= \operatorname{\check{H}}^{*} \left(z^{*} \right) \check{\operatorname{H}} \left(\frac{1}{z} \right) \check{\operatorname{S}}_{xx}^{*} \left(\frac{1}{z^{*}} \right) &= \operatorname{\check{H}}^{*} \left(z^{*} \right) \check{\operatorname{H}} \left(\frac{1}{z} \right) \check{\operatorname{S}}_{xx}(z) \end{aligned}$$

$$\begin{array}{ll} (4). \quad \tilde{\mathsf{S}}_{\mathsf{yt}}(z) \triangleq \mathsf{Z}\,\mathsf{R}_{\mathsf{yt}}(m) & \triangleq \mathsf{Z}\,\mathsf{E}\,[\mathsf{y}^*(m)\,\mathsf{t}(0)] = \mathsf{Z}\,\mathsf{E}\,\left[\left[\sum_{k\in\mathbb{Z}} \mathsf{h}(k)\,\mathsf{x}(m-k)\right]^*\,\mathsf{t}(0)\right] \\ & = \mathsf{Z}\sum_{k\in\mathbb{Z}} \mathsf{h}^*(k)\,\mathsf{E}\,[\mathsf{x}^*(m-k)\,\mathsf{t}(0)] & = \mathsf{Z}\sum_{k\in\mathbb{Z}} \mathsf{h}^*(k)\,\mathsf{R}_{\mathsf{xt}}(m-k) & \triangleq \mathsf{Z}\,[\mathsf{h}^*(m)\,\mathsf{x}\,\mathsf{R}_{\mathsf{xt}}(m)] \\ & = [\mathsf{Z}\,\mathsf{h}^*(m)][\mathsf{Z}\,\mathsf{R}_{\mathsf{xt}}(m)] & = \tilde{\mathsf{H}}^*(z^*)\,\tilde{\mathsf{S}}_{\mathsf{xt}}(z) & \text{by Proposition 12 page 21} \\ & \tilde{\mathsf{S}}_{\mathsf{xy}}(z) & = \tilde{\mathsf{S}}_{\mathsf{yx}}^*\left(\frac{1}{z^*}\right) & \triangleq \tilde{\mathsf{S}}_{\mathsf{yt}}^*\left(\frac{1}{z^*}\right) \Big|_{\mathsf{t}=\mathsf{x}} & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xt}}^*\left(\frac{1}{z^*}\right)\Big|_{\mathsf{t}=\mathsf{x}} \\ & \triangleq \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}^*\left(\frac{1}{z^*}\right) & = \left[\tilde{\mathsf{H}}^*(z^*)\,\tilde{\mathsf{S}}_{\mathsf{xt}}(z)\right] & \text{by Proposition 12 page 21} \\ & \Phi_{\mathsf{yt}}^*\left(\frac{1}{z^*}\right)\Big|_{\mathsf{t}=\mathsf{x}} & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) \\ & \Rightarrow \mathsf{proposition 12 page 21} \\ & \Phi_{\mathsf{yt}}^*\left(\frac{1}{z^*}\right)\Big|_{\mathsf{t}=\mathsf{x}} & = \tilde{\mathsf{H}}\left(\frac{1}{z^*}\right)\Big|_{\mathsf{t}=\mathsf{x}} \\ & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) & \text{by Proposition 12 page 21} \\ & \Phi_{\mathsf{yt}}^*\left(\frac{1}{z^*}\right)\Big|_{\mathsf{t}=\mathsf{x}} & = \tilde{\mathsf{H}}\left(\frac{1}{z^*}\right)\Big|_{\mathsf{t}=\mathsf{x}} \\ & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) & \text{by Proposition 12 page 21} \\ & \Phi_{\mathsf{yt}}^*\left(\frac{1}{z^*}\right)\Big|_{\mathsf{t}=\mathsf{x}} & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) \\ & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) & \text{by Proposition 12 page 21} \\ & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) & \text{by Proposition 12 page 21} \\ & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) & \text{by Proposition 12 page 21} \\ & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) & \text{by Proposition 12 page 21} \\ & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) & \text{by Proposition 12 page 21} \\ & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) & \text{by Proposition 11 \\ & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z) & \text{by Proposition 12 \\ & = \tilde{\mathsf{H}}\left(\frac{1}{z}\right)\,\tilde{\mathsf{S}}_{\mathsf{xx}}(z$$

$$(6). \quad \check{S}_{yt}(z) \triangleq Z R_{yt}(m) \qquad \qquad \triangleq Z E [y(m) t(0)] \qquad = Z E \left[\left(\sum_{k \in \mathbb{Z}} h(k) x(m-k) \right) t(0) \right] \\ = Z \sum_{k \in \mathbb{Z}} h(k) E [x(m-k) t(0)] \qquad \qquad \triangleq Z \sum_{k \in \mathbb{Z}} h(k) R_{xt}(m-k) \\ = Z [h(m) \star R_{xt}(m)] \qquad \qquad = Z [h(m)][Z R_{xt}(m)] \qquad \qquad = \check{H}(z) \check{S}_{xt}(z) \\ \hline \check{S}_{xy}(z) = \check{S}_{yx} \left(\frac{1}{z} \right) \triangleq \check{S}_{yt} \left(\frac{1}{z} \right) \Big|_{t=x} \qquad \qquad = \check{H} \left(\frac{1}{z} \right) \check{S}_{xt} \left(\frac{1}{z} \right) \Big|_{t=x} = \check{H} \left(\frac{1}{z} \right) \check{S}_{xx} \left(\frac{1}{z} \right) = \left[\check{H} \left(\frac{1}{z} \right) \check{S}_{xx}(z) \right] \\ \hline \check{S}_{yy}(z) \triangleq \check{S}_{yt}(z) \Big|_{t=y} = \check{H}(z) \check{S}_{xt}(z) \Big|_{t=y} \qquad \qquad = \left[\check{H}(z) \check{S}_{xy}(z) \right] \qquad \qquad = \left[\check{H}(z) \check{H} \left(\frac{1}{z} \right) \check{S}_{xx}(z) \right]$$

$$\begin{array}{ll} (7). \quad \check{\mathsf{S}}_{\mathsf{ty}}(z) \triangleq \operatorname{Z}\mathsf{R}_{\mathsf{ty}}(m) \triangleq \operatorname{Z}\mathsf{E}\left[\mathsf{t}^*(0)\,\mathsf{y}^*(m)\right] &= \operatorname{Z}\mathsf{E}\left[\mathsf{t}^*(0)\left(\sum_{k\in\mathbb{Z}}\mathsf{h}(k)\,\mathsf{x}(m-k)\right)^*\right] \\ &= \operatorname{Z}\sum_{k\in\mathbb{Z}}\mathsf{h}^*(k)\,\operatorname{E}\left[\mathsf{t}^*(0)\,\mathsf{x}^*(m-k)\right] &\triangleq \operatorname{Z}\sum_{k\in\mathbb{Z}}\mathsf{h}^*(k)\,\mathsf{R}_{\mathsf{tx}}(m-k) \\ &\triangleq \operatorname{Z}\left[\mathsf{h}^*(m)\star\mathsf{R}_{\mathsf{tx}}(m)\right] &= \left[\operatorname{Z}\mathsf{h}^*(m)\right]\left[\mathsf{Z}\mathsf{R}_{\mathsf{tx}}(m)\right] &= \check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{S}}_{\mathsf{tx}}(z) \\ &\quad \check{\mathsf{S}}_{\mathsf{xy}}(z) \triangleq \check{\mathsf{S}}_{\mathsf{ty}}(z)\big|_{\mathsf{t=x}} &= \check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{S}}_{\mathsf{tx}}(z)\big|_{\mathsf{t=x}} &= \left[\check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\right] \\ &\quad \check{\mathsf{S}}_{\mathsf{yy}}(z) = \check{\mathsf{S}}_{\mathsf{yy}}\left(\frac{1}{z}\right) \triangleq \check{\mathsf{S}}_{\mathsf{ty}}\left(\frac{1}{z}\right)\Big|_{\mathsf{t=y}} &= \check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{S}}_{\mathsf{tx}}\left(\frac{1}{z}\right)\Big|_{\mathsf{t=y}} &= \check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{S}}_{\mathsf{yx}}\left(\frac{1}{z}\right) \\ &= \left[\check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{S}}_{\mathsf{xy}}(z)\right] &= \check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z) &= \left[\check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\right] \\ &= \left[\check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{S}}_{\mathsf{xy}}(z)\right] &= \check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z) &= \left[\check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\right] \\ &= \left[\check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\right] &= \left[\check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\right] \\ &= \left[\check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\right] \\ &= \left[\check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{H}}^*\left(\frac{1}{z^*}\right)\check{\mathsf{K}}_{\mathsf{xx}}(z)\right] \\ &= \left[\check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}_{\mathsf{xx}}(z)\right] \\ &= \left[\check{\mathsf{H}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}_{\mathsf{xx}}(z)\right] \\ &= \left[\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}_{\mathsf{xx}}(z)\right] \\ &= \left[\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}_{\mathsf{xx}}(z)\right] \\ &= \left[\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}_{\mathsf{xx}}(z)\right] \\ &= \left[\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z^*\right)\check{\mathsf{K}}^*\left(z$$

6

BISKA

\

$$\begin{split} (8). \quad \check{\mathsf{S}}_{\mathsf{yt}}(z) &\triangleq \operatorname{Z}\mathsf{R}_{\mathsf{yt}}(m) &\triangleq \operatorname{Z}\operatorname{E}\left[\mathsf{y}^*(m)\operatorname{t}^*(0)\right] &= \operatorname{Z}\operatorname{E}\left[\left(\sum_{k\in\mathbb{Z}} \operatorname{h}^*(k)\operatorname{x}^*(m-k)\right)\operatorname{t}^*(0)\right] \\ &= \operatorname{Z}\sum_{k\in\mathbb{Z}} \operatorname{h}^*(k)\operatorname{E}\left[\operatorname{x}^*(m-k)\operatorname{t}^*(0)\right] &\triangleq \operatorname{Z}\sum_{k\in\mathbb{Z}} \operatorname{h}^*(k)\operatorname{R}_{\mathsf{xt}}(m-k) \\ &\triangleq \operatorname{Z}\left[\operatorname{h}(m) \star \operatorname{R}_{\mathsf{xt}}(m)\right] &= \operatorname{Z}\left[\operatorname{h}(m) \star \operatorname{R}_{\mathsf{xt}}(m)\right] \\ &= \check{\mathrm{H}}(z)\,\check{\mathsf{S}}_{\mathsf{xt}}(z) &= \left[\operatorname{Z}\operatorname{h}(m)\right]\left[\operatorname{Z}\operatorname{R}_{\mathsf{xt}}(m)\right] \\ &= \check{\mathsf{H}}(z)\,\check{\mathsf{S}}_{\mathsf{xt}}(z) &= \left[\operatorname{\check{\mathsf{H}}}(m)\right]_{\mathsf{t}=\mathsf{x}} \\ &= \check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{S}}_{\mathsf{xt}}\left(\frac{1}{z}\right)\Big|_{\mathsf{t}=\mathsf{x}} &= \check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{S}}_{\mathsf{xx}}\left(\frac{1}{z}\right) &= \left[\operatorname{\check{\mathrm{H}}}\left(\frac{1}{z}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\right] \\ &= \left[\operatorname{\check{\mathsf{S}}}_{\mathsf{yy}}(z)\right] \triangleq \check{\mathsf{S}}_{\mathsf{yt}}(z)\Big|_{\mathsf{t}=\mathsf{y}} &= \operatorname{\check{\mathrm{H}}}(z)\,\check{\mathsf{S}}_{\mathsf{xt}}(z)\Big|_{\mathsf{t}=\mathsf{y}} &= \left[\operatorname{\check{\mathrm{H}}}(z)\,\check{\mathsf{S}}_{\mathsf{xy}}(z)\right] &= \left[\operatorname{\check{\mathrm{H}}}(z)\,\check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\right] \\ &= \left[\operatorname{\check{\mathrm{H}}}(z)\,\check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\Big|_{\mathsf{t}=\mathsf{y}}\right] \\ &= \left[\operatorname{\check{\mathrm{H}}}(z)\,\check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\right] \\ &= \left[\operatorname{\check{\mathrm{H}}}(z)\,\check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\right] \\ &= \left[\operatorname{\check{\mathrm{H}}}(z)\,\check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\Big|_{\mathsf{t}=\mathsf{y}}\right] \\ &= \left[\operatorname{\check{\mathrm{H}}}(z)\,\check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\Big|_{\mathsf{t}=\mathsf{y}}\right] \\ &= \left[\operatorname{\check{\mathrm{H}}}(z)\,\check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{S}}_{\mathsf{xx}}(z)\Big|_{\mathsf{x}=\mathsf{y}}\right] \\ &= \left[\operatorname{\check{\mathrm{H}}}(z)\,\check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{X}}_{\mathsf{x}}(z)\Big|_{\mathsf{x}=\mathsf{y}}\right] \\ &= \left[\operatorname{\check{\mathrm{H}}}(z)\,\check{\mathrm{H}}\left(\frac{1}{z}\right)\check{\mathsf{H}}\left(\frac{1}{z}\right)\check{\mathsf{K}}\left(\frac{1}{z}\right)\check{\mathsf{K}}\left(\frac{1}{z}\right)\check{\mathsf{K}}\left(\frac{1}{z}\right)\Big|_{\mathsf{x}=\mathsf{y}}\right]$$

Remark.Note that in several cases, the results listed in Proposition 2 can be "simplified" (as measured by the number of glyphs required to render it on a page) by the use of Proposition 1. For example, (1) in Proposition 2 can be simplified from

from $\check{S}_{xy}(z) = \check{H}^* \left(\frac{1}{z^*}\right) \check{S}_{xx}(z)$ to $\check{S}_{yx}(z) = \check{H}(z) \check{S}_{xx}(z)$. However, such simplification arguably obfuscates the relations comparisons listed in Remark 3.

Corollary 2. Let (1)–(8) below correspond to the eight definitions of $R_{xy}(m)$ in Definition 2.

$$\begin{array}{l} (1) \implies \tilde{S}_{xy}(\omega) = \tilde{H}^{*}(\ \omega)\tilde{S}_{xx}(\omega) \ and \ \tilde{S}_{yy}(\omega) = \tilde{H}(\ \omega)\tilde{S}_{xy}(\omega) = |\tilde{H}(\ \omega)|^{2} \qquad \tilde{S}_{xx}(\omega) \\ (2) \implies \tilde{S}_{xy}(\omega) = \tilde{H}(\ \omega)\tilde{S}_{xx}(\omega) \ and \ \tilde{S}_{yy}(\omega) = \tilde{H}^{*}(\ \omega)\tilde{S}_{xy}(\omega) = |\tilde{H}(\ \omega)|^{2} \qquad \tilde{S}_{xx}(\omega) \\ (3) \implies \tilde{S}_{xy}(\omega) = \tilde{H}^{*}(-\omega)\tilde{S}_{xx}(\omega) \ and \ \tilde{S}_{yy}(\omega) = \tilde{H}(-\omega)\tilde{S}_{xy}(\omega) = |\tilde{H}(\ -\omega)|^{2} \qquad \tilde{S}_{xx}(\omega) \\ (4) \implies \tilde{S}_{xy}(\omega) = \tilde{H}(\ -\omega)\tilde{S}_{xx}(\omega) \ and \ \tilde{S}_{yy}(\omega) = \tilde{H}^{*}(-\omega)\tilde{S}_{xy}(\omega) = |\tilde{H}(\ -\omega)|^{2} \qquad \tilde{S}_{xx}(\omega) \\ (5) \implies \tilde{S}_{xy}(\omega) = \tilde{H}(\ -\omega)\tilde{S}_{xx}(\omega) \ and \ \tilde{S}_{yy}(\omega) = \tilde{H}(\ -\omega)\tilde{S}_{xy}(\omega) = \tilde{H}(\ -\omega)\tilde{H}(\ -\omega)\tilde{S}_{xx}(\omega) \\ (6) \implies \tilde{S}_{xy}(\omega) = \tilde{H}(\ -\omega)\tilde{S}_{xx}(\omega) \ and \ \tilde{S}_{yy}(\omega) = \tilde{H}(\ \omega)\tilde{S}_{xy}(\omega) = \tilde{H}(\ \omega)\tilde{H}(\ -\omega)\tilde{S}_{xx}(\omega) \\ (7) \implies \tilde{S}_{xy}(\omega) = \tilde{H}^{*}(\ -\omega)\tilde{S}_{xx}(\omega) \ and \ \tilde{S}_{yy}(\omega) = \tilde{H}^{*}(\ \omega)\tilde{S}_{xy}(\omega) = \tilde{H}^{*}(\ \omega)\tilde{H}(\ -\omega)\tilde{S}_{xx}(\omega) \\ (8) \implies \tilde{S}_{xy}(\omega) = \tilde{H}(\ -\omega)\tilde{S}_{xx}(\omega) \ and \ \tilde{S}_{yy}(\omega) = \tilde{H}(\ \omega)\tilde{S}_{xy}(\omega) = \tilde{H}(\ \omega)\tilde{H}(\ -\omega)\tilde{S}_{xx}(\omega) \\ \end{array}$$

The other seven sets of proofs follow in like manner.

4 Real-valued x(n) and y(n)

Corollary 3. Let (1)–(8) below correspond to the eight definitions of $R_{xy}(m)$ in Definition 2.

 $\begin{cases} If (x(n)) and (y(n)) are$ **real-valued** $, then \\ \begin{cases} each of (1)-(8) \implies \mathsf{R}_{xy}^*(m) = \mathsf{R}_{xy} (m) \text{ and } \mathsf{R}_{xx}^*(m) = \mathsf{R}_{xx}(m) \text{ (real-valued) and} \\ each of (1)-(8) \implies \mathsf{R}_{yx}(m) = \mathsf{R}_{xy}(-m) \text{ and } \mathsf{R}_{xx}(-m) = \mathsf{R}_{xx}(m) \text{ (symmetric) }. \end{cases} \end{cases}$

Proof. This follows directly from the real-valued hypothesis, Definition 2, and Lemma 1

Proposition 3.Let (1)–(8) below correspond to the eight definitions of $R_{xy}(m)$ in Definition 2.

If $(\mathfrak{x}(n))$ and $(\mathfrak{y}(n))$ are **real-valued**, then each of $(1)-(8) \implies \check{\mathsf{S}}_{\mathsf{x}\mathsf{y}}(z) = \check{\mathsf{S}}_{\mathsf{x}\mathsf{y}}^{*}(z^{*}) = \check{\mathsf{S}}_{\mathsf{y}\mathsf{x}}\left(\frac{1}{z}\right)$ and $\check{\mathsf{S}}_{\mathsf{x}\mathsf{x}}(z) = \check{\mathsf{S}}_{\mathsf{x}\mathsf{x}}^{*}(z^{*}) = \check{\mathsf{S}}_{\mathsf{x}\mathsf{x}}\left(\frac{1}{z}\right)$.

$$\begin{split} \overline{\check{\mathsf{S}}_{\mathsf{xy}}^*(z^*)} & \triangleq \left[\sum_{m \in \mathbb{Z}} \mathsf{R}_{\mathsf{xy}}(m)(z^*)^{-m} \right]^* & \text{by definition of } \check{\mathsf{S}}_{\mathsf{xy}} & (\text{Definition 1 page 1}) \\ & = \sum_{m \in \mathbb{Z}} \mathsf{R}_{\mathsf{xy}}^*(m)z^{-m} & \text{by antiautomorphic property of *-algebras} & (\text{Definition 11 page 24}) \\ & = \sum_{m \in \mathbb{Z}} \mathsf{R}_{\mathsf{xy}}(m)z^{-m} & \text{by real-valued hypothesis} \\ & \triangleq \left[\check{\mathsf{S}}_{\mathsf{xy}}(z) \right] & \text{by definition of } \check{\mathsf{S}}_{\mathsf{xy}}(z) & (\text{Definition 1 page 1}) \\ & \triangleq \sum_{m \in \mathbb{Z}} \mathsf{R}_{\mathsf{xy}}(m)z^{-m} & \text{by definition of } \check{\mathsf{S}}_{\mathsf{xy}}(z) & (\text{Definition 1 page 1}) \\ & \triangleq \sum_{m \in \mathbb{Z}} \mathsf{R}_{\mathsf{xy}}(m)z^{-m} & \text{by definition of } \check{\mathsf{S}}_{\mathsf{xy}}(z) & (\text{Definition 1 page 1}) \\ & = \sum_{m \in \mathbb{Z}} \mathsf{R}_{\mathsf{yx}}(m)z^{-m} & \text{by real-valued hypothesis and Lemma 1 page 3} \\ & = \sum_{m \in \mathbb{Z}} \mathsf{R}_{\mathsf{yx}}(p)z^p & \text{where } p \triangleq -m \\ & = \sum_{p \in \mathbb{Z}} \mathsf{R}_{\mathsf{yx}}(p)z^p & \text{because } (\mathfrak{x}(n)), (\mathfrak{y}(n)) \in \ell_{\mathbb{C}}^2 & (\text{Definition 8 page 20}) \\ & = \sum_{p \in \mathbb{Z}} \mathsf{R}_{\mathsf{yx}}(p)\left(\frac{1}{z}\right)^{-p} & \text{by definition of } \check{\mathsf{S}}_{\mathsf{yx}}(z) & (\text{Definition 1 page 1}) \\ & \triangleq \left[\check{\mathsf{S}}_{\mathsf{yx}}\left(\frac{1}{z}\right) \right] & \text{by definition of } \check{\mathsf{S}}_{\mathsf{yx}}(z) & (\text{Definition 1 page 1}) \\ & = \left[\check{\mathsf{S}}_{\mathsf{yx}}\left(\frac{1}{z}\right) \right] & \text{by definition of } \check{\mathsf{S}}_{\mathsf{yx}}(z) & (\text{Definition 1 page 1}) \\ & = \left[\check{\mathsf{S}}_{\mathsf{yx}}\left(\frac{1}{z}\right) \right] & \text{by definition of } \check{\mathsf{S}}_{\mathsf{yx}}(z) & (\text{Definition 1 page 1}) \\ & = \left[\check{\mathsf{S}}_{\mathsf{yx}}\left(\frac{1}{z}\right) \right] & \text{by definition of } \check{\mathsf{S}}_{\mathsf{yx}}(z) & (\text{Definition 1 page 1}) \\ & = \left[\check{\mathsf{S}}_{\mathsf{yx}}\left(\frac{1}{z}\right) \right] & \text{by definition of } \check{\mathsf{S}}_{\mathsf{yx}}(z) & (\text{Definition 1 page 1}) \\ & = \left[\check{\mathsf{S}}_{\mathsf{yx}}\left(\frac{1}{z}\right) \right] & \text{by definition of } \check{\mathsf{S}}_{\mathsf{yx}}(z) & (\text{Definition 1 page 1}) \\ & = \left[\check{\mathsf{S}}_{\mathsf{yx}}\left(\frac{1}{z}\right) \right] & \text{by definition of } \check{\mathsf{S}}_{\mathsf{yx}}(z) & (\text{Definition 1 page 1}) \\ & = \left[\check{\mathsf{S}}_{\mathsf{yx}}\left(\frac{1}{z}\right) \right] & \text{by definition of } \check{\mathsf{S}}_{\mathsf{yx}}(z) & (\text{Definition 1 page 1}) \\ & = \left[\mathsf{S}_{\mathsf{yx}}\left(\frac{1}{z}\right) \right] & \text{by definition of } \check{\mathsf{S}}_{\mathsf{yx}}(z) & (\text{Definition 1 page 1}) \\ & = \left[\mathsf{S}_{\mathsf{yx}}\left(\frac{1}{z}\right) \right] &$$

Proposition 4. Let (1)–(8) below correspond to the eight definitions of $R_{xy}(m)$ in Definition 2.

If $(\mathbf{x}(n))$ and $(\mathbf{y}(n))$ are **real-valued**, then (1),(4),(6), or (8) $\Longrightarrow \check{\mathsf{S}}_{xy}(z) = \check{\mathrm{H}}(\frac{1}{z})\check{\mathsf{S}}_{xx}(z)$ and $\check{\mathsf{S}}_{yy}(z) = \check{\mathrm{H}}(z)\check{\mathsf{S}}_{xy}(z)$ and (2),(3),(5), or (7) $\Longrightarrow \check{\mathsf{S}}_{xy}(z) = \check{\mathrm{H}}(z)\check{\mathsf{S}}_{xx}(z)$ and $\check{\mathsf{S}}_{yy}(z) = \check{\mathrm{H}}(\frac{1}{z})\check{\mathsf{S}}_{xy}(z)$ and each of (1)-(8) $\Longrightarrow \check{\mathsf{S}}_{yy}(z) = \check{\mathrm{H}}(z)\check{\mathrm{H}}(\frac{1}{z})\check{\mathsf{S}}_{xx}(z) = \check{\mathrm{H}}(z)\check{\mathrm{H}}^{*}(\frac{1}{z^{*}})\check{\mathsf{S}}_{xx}(z)$.

$$\begin{aligned} (1). \quad \left[\ddot{\mathbf{S}}_{xy}(z) \right] &= \ddot{\mathbf{S}}_{xy}^{*} (z^{*}) \\ &= \ddot{\mathbf{H}} \left(\frac{1}{z} \right) \ddot{\mathbf{S}}_{xx}^{*} (z^{*}) \\ &= \left[\ddot{\mathbf{H}} \left(\frac{1}{z} \right) \ddot{\mathbf{S}}_{xx}(z) \right] \\ &= \left[\ddot{\mathbf{H}}(z) \ddot{\mathbf{H}} \left(\frac{1}{z} \right) \ddot{\mathbf{S}}_{xx}(z) \right] \\ &= \left[\ddot{\mathbf{H}}(z) \ddot{\mathbf{H}}^{*} \left(\frac{1}{z^{*}} \right) \ddot{\mathbf{S}}_{xx}(z) \right] \\ \end{aligned}$$

$$(2). \quad \left[\ddot{\mathbf{S}}_{xy}(z) \right] &= \left[\ddot{\mathbf{H}}(z) \ddot{\mathbf{S}}_{xx}(z) \right] \\ &= \left[\ddot{\mathbf{H}}(z) \ddot{\mathbf{S}}_{xx}(z) \right] \\ &= \left[\ddot{\mathbf{H}} \left(\frac{1}{z} \right) \ddot{\mathbf{S}}_{xx}(z) \right] \\ &= \left[\ddot{\mathbf{H}} \left(\frac{1}{z} \right) \ddot{\mathbf{S}}_{xy} (z^{*}) \right] \\ &= \left[\ddot{\mathbf{H}}(z) \ddot{\mathbf{H}} \left(\frac{1}{z} \right) \ddot{\mathbf{S}}_{xx}(z) \right] \\ &= \left[\ddot{\mathbf{H}}(z^{*}) \ddot{\mathbf{H}}^{*} \left(\frac{1}{z^{*}} \right) \ddot{\mathbf{S}}_{xx}^{*} (z^{*}) \\ &= \left[\ddot{\mathbf{H}}(z) \ddot{\mathbf{H}}^{*} \left(\frac{1}{z^{*}} \right) \ddot{\mathbf{S}}_{xx}(z) \right] \\ &= \left[\ddot{\mathbf{H}}(z) \ddot{\mathbf{H}}^{*} \left(\frac{1}{z^{*}} \right) \ddot{\mathbf{S}}_{xx}(z) \right] \\ \end{aligned}$$

by Proposition 3
by Proposition 2 $_{\rm page}$ 4
by Proposition 3
by Proposition 2 $_{\rm page}$ 4
by $\check{S}_{xy}(z)$ result
by Lemma 5 $_{\rm page}$ 23
by Proposition 2 $_{\rm page}$ 4
by Proposition 3
by Proposition 2 $_{\rm page}$ 4
by Proposition 3
by $\check{S}_{xy}(z)$ result
by Proposition $\frac{3}{2}$
by Proposition 3
by Proposition 3
by Lemma 5 $_{\rm page}$ 23

Corollary 4. Let (1)–(8) below correspond to the eight definitions of $R_{xy}(m)$ in Definition 2.

If (x(n)) and (y(n)) are **real-valued**, then $(1),(4),(6), \text{ or } (8) \implies \tilde{S}_{xy}(\omega) = \tilde{H}^*(\omega)\tilde{S}_{xx}(\omega) \text{ and } \tilde{S}_{yy}(\omega) = \tilde{H}(\omega)\tilde{S}_{xy}(\omega) \text{ and}$ $(2),(3),(5), \text{ or } (7) \implies \tilde{S}_{xy}(\omega) = \tilde{H}(\omega)\tilde{S}_{xx}(\omega) \text{ and } \tilde{S}_{yy}(\omega) = \tilde{H}^*(\omega)\tilde{S}_{xy}(\omega) \text{ and}$ $each \text{ of } (1)-(8) \implies \tilde{S}_{yy}(\omega) = \left|\tilde{H}(\omega)\right|^2 \tilde{S}_{xx}(\omega)$

 $\boldsymbol{v}(n)$

 $\mathbf{y}(n)$

Proof.

(1).
$$\tilde{S}_{xy}(\omega) = \check{S}_{xy}(z)|_{z=e^{i\omega}}$$
 by definition of $DTFT$ (Definition 1 page 1)
 $= \check{H}\left(\frac{1}{z}\right)\check{S}_{xx}(z)\Big|_{z=e^{i\omega}}$ by Proposition 4
 $= \check{H}\left(e^{-i\omega}\right)\check{S}_{xx}\left(e^{i\omega}\right)$
 $= \tilde{H}(-\omega)\check{S}_{xx}(\omega)$ by definition of $DTFT$ (Definition 1 page 1)
 $= \check{H}^{*}(\omega)\check{S}_{xx}(\omega)$ by Lemma 6 page 24

The remainder of the proof for Corollary 4 follows in similar fashion.

5 Case studies

It has been suggested by the giants that the usefulness of a mathematical idea can be measured by

- how useful it is in applications⁴ and
- how well it connects and is connected to the larger web of mathematical ideas.⁵

As such, this section which presents applications, may prove useful in gauging the usefulness of the preceding sections.

5.1 Case study: Additive noise

Proposition 5. Let S be the system	illustrated to	o the right,	where T is an	<i>i</i> operator	
that is not necessarily linear.				:	$\mathbf{x}(n)$

$$\left\{ \begin{array}{ll} \text{(A). } \mathbf{x}(n) \text{ is } WSS & \text{and} \\ \text{(B). } \mathbf{x}(n) \text{ and } \mathbf{v}(n) \text{ are } uncorrelated & \text{and} \\ \text{(C). } \mathbf{v}(n) \text{ is } zero-mean \end{array} \right\} \implies \left\{ \begin{array}{ll} \mathsf{R}_{\mathsf{xy}}(m) = \mathsf{R}_{\mathsf{xx}}(m) & \text{and} \\ \tilde{\mathsf{S}}_{\mathsf{xy}}(z) = \check{\mathsf{S}}_{\mathsf{xx}}(z) & \text{and} \\ \tilde{\mathsf{S}}_{\mathsf{xy}}(\omega) = \tilde{\mathsf{S}}_{\mathsf{xx}}(\omega) & \text{and} \\ \mathsf{R}_{\mathsf{yy}}(m) = \mathsf{R}_{\mathsf{xx}}(m) + \check{\mathsf{S}}_{\mathsf{vv}}(z) & \text{and} \\ \tilde{\mathsf{S}}_{\mathsf{yy}}(z) = \check{\mathsf{S}}_{\mathsf{xx}}(z) + \check{\mathsf{S}}_{\mathsf{vv}}(z) & \text{and} \\ \tilde{\mathsf{S}}_{\mathsf{yy}}(\omega) = \check{\mathsf{S}}_{\mathsf{xx}}(\omega) + \check{\mathsf{S}}_{\mathsf{vv}}(\omega) \end{array} \right\} \quad \text{for all}$$

Proof.

(1).
$$\mathsf{R}_{xy}(m) \triangleq \mathrm{E}[\mathbf{x}(m)\,\mathbf{y}^*(0)]$$
 by (A) and Papoulis' definition of R_{xy} (Definition 2 page 2)
 $\triangleq \mathrm{E}(\mathbf{x}(m)[\mathbf{x}(0) + \mathbf{v}(0)]^*)$ by definition of y
 $= \mathrm{E}[\mathbf{x}(m)\,\mathbf{x}^*(0)] + \mathrm{E}[\mathbf{x}(m)\,\mathbf{v}^*(0)]$ by *linearity* of E (Proposition 11 page 20)
 $= \mathrm{E}[\mathbf{x}(m)\,\mathbf{x}^*(0)] + \mathrm{E}[\mathbf{x}(m)]\,\mathrm{E}[\mathbf{v}^*(0)]$ by *uncorrelated* hypothesis (B)
 $= \mathrm{E}[\mathbf{x}(m)\,\mathbf{x}^*(0)] + \mathrm{E}[\mathbf{x}(m)]\,\mathrm{E}[\mathbf{v}^*(0)]^*$ by zero-mean hypothesis (C)
 $= \mathsf{R}_{xx}(m)$ by definition of R_{xx} (Definition 2 page 2)

⁴ "I regard as quite useless the reading of large treatises of pure analysis: too large a number of methods pass at once before the eyes. It is in the works of applications that one must study them; one judges their ability there and one apprises the manner of making use of them." —Joseph Louis Lagrange (1736–1813). [23, page xi]

⁵ "The "seriousness" of a mathematical theorem lies, not in its practical consequences, which are usually negligible, but in the *significance* of the mathematical ideas which it connects. We may say, roughly, that a mathematical idea is "significant" if it can be connected, in a natural illuminating way, with a large complex of other mathematical ideas." —G.H. Hardy (1877–1947). [9]

$R_{yy}(m) \triangleq \mathrm{E}\left[\mathrm{y}(m)\mathrm{y}^*(0)\right]$	by (A) and Papoulis' definition of R_{yy}
$\triangleq \mathbf{E} \left[(\mathbf{x}(m) + \mathbf{v}(m))(\mathbf{x}(0) + \mathbf{v}(0))^* \right]$	by definition of y
$= E[x(m) x^{*}(0)] + E[x(m) v^{*}(0)] + E[v(m) x^{*}(0)] + E[v(m) v^{*}(0)] + E[v(m) v^$	(0)]
$= E[x(m) x^{*}(0)] + E x(m) E v^{*}(0) + E v(m) E x^{*}(0) + E[v(m) v$	(0)] by <i>uncorrelated</i> hypothesis (B)
$= E[x(m) x^{*}(0)] + Ex(m)Ev^{*}(0) + Ev(m)Ex^{*}(0) + E[v(m) v^{*}(m)]$ = R _{xx} (m) + R _{vv} (m)	*(0)] by zero-mean hypothesis (C) by Papoulis' definition of R_{xx}

(2).	$R_{xy}(m) \triangleq \mathrm{E}\left[\mathbf{x}^*(0)\mathbf{y}(m)\right]$	$\triangleq \mathbf{E}\left(\mathbf{x}^*(0)[\mathbf{x}(m) + \mathbf{v}(m)]\right)$	$= \mathbf{E} \left[\mathbf{x}^*(0) \mathbf{x}(m) \right] + \mathbf{E} \left[\mathbf{x}^*(0) \mathbf{v}(m) \right]$	$=R_{xx}(m)$
(3).	$R_{xy}(m) \triangleq \mathrm{E}\left[\mathbf{x}(0)\mathbf{y}^*(m)\right]$	$\triangleq \mathbf{E} \left(\mathbf{x}(0) [\mathbf{x}(m) + \mathbf{v}(m)]^* \right)$	$= \mathbf{E} \left[\mathbf{x}(0) \mathbf{x}^*(m) \right] + \mathbf{E} \left[\mathbf{x}(0) \mathbf{v}^*(m) \right]$	$=R_{xx}(m)$
(4).	$R_{xy}(m) \triangleq \mathrm{E}\left[\mathbf{x}^*(m)\mathbf{y}(0)\right]$	$\triangleq \mathbf{E}\left(\mathbf{x}^*(m)[\mathbf{x}(0) + \mathbf{v}(0)]\right)$	$= \mathbf{E} \left[\mathbf{x}^*(m) \mathbf{x}(0) \right] + \mathbf{E} \left[\mathbf{x}^*(m) \mathbf{v}(0) \right]$	$=R_{xx}(m)$
(5).	$R_{xy}(m) \triangleq \mathrm{E}\left[\mathbf{x}(0)\mathbf{y}(m)\right]$	$\triangleq \mathbf{E}\left(\mathbf{x}(0)[\mathbf{x}(m) + \mathbf{v}(m)]\right)$	$= \mathbf{E} \left[\mathbf{x}(0) \mathbf{x}(m) \right] + \mathbf{E} \left[\mathbf{x}(0) \mathbf{v}(m) \right]$	$=R_{xx}(m)$
(6).	$R_{xy}(m) \triangleq \mathrm{E}\left[\mathbf{x}(m)\mathbf{y}(0)\right]$	$\triangleq \mathbf{E}\left(\mathbf{x}(m)[\mathbf{x}(0) + \mathbf{v}(0)]\right)$	$= \mathbf{E} \left[\mathbf{x}(m) \mathbf{x}(0) \right] + \mathbf{E} \left[\mathbf{x}(m) \mathbf{v}(0) \right]$	$=R_{xx}(0)$
(7).	$R_{xy}(m) \triangleq \mathrm{E}\left[\mathbf{x}^*(0)\mathbf{y}^*(m)\right]$	$\triangleq \mathbf{E} \left(\mathbf{x}^*(0) [\mathbf{x}^*(m) + \mathbf{v}^*(m)] \right)$	$= E[x^{*}(0) x(m)] + E[x^{*}(0) v^{*}(m)]$	$=R_{xx}(m)$
(8).	$R_{xy}(m) \triangleq \mathrm{E}\left[\mathbf{x}^*(m)\mathbf{y}^*(0)\right]$	$\triangleq \mathbf{E}\left(\mathbf{x}^*(m)[\mathbf{x}^*(0) + \mathbf{v}^*(0)]\right)$	$= E[x^{*}(m) x(0)] + E[x^{*}(m) v^{*}(0)]$	$=R_{xx}(m)$

(2).	$R_{yy}(m) \triangleq \mathrm{E}\left[\mathbf{y}^*(0)\mathbf{y}(m)\right]$	$\stackrel{\Delta}{=} \mathrm{E}\left([\mathbf{x}(0) + \mathbf{v}(0)]^*[\mathbf{x}(m) + \mathbf{v}(m)]\right)$	$= R_{xx}(m) + R_{xx}(m) + R_{xx}(m) + R_{vv}(m)$	$= R_{xx}(m) + R_{vv}(m)$
(3).	$R_{yy}(m) \triangleq \mathrm{E}\left[\mathrm{y}(0)\mathrm{y}^*(m)\right]$	$\stackrel{\Delta}{=} \mathrm{E}\left([\mathbf{x}(0) + \mathbf{v}(0)][\mathbf{x}(m) + \mathbf{v}(m)]^*\right)$	$= R_{xx}(m) + R_{xv}(m) + \overset{0}{R}_{vx}(m) + \overset{0}{R}_{vv}(m)$	$= R_{xx}(m) + R_{vv}(m)$
(4).	$R_{yy}(m) \triangleq \mathrm{E}\left[\mathbf{y}^*(m)\mathbf{y}(0)\right]$	$\stackrel{\Delta}{=} \mathrm{E}\left([\mathbf{x}(m) + \mathbf{v}(m)]^* [\mathbf{x}(0) + \mathbf{v}(0)]\right)$	$= R_{xx}(m) + R_{xv}(m) + \overset{0}{R}_{vx}(m) + \overset{0}{R}_{vv}(m)$	$= R_{xx}(m) + R_{vv}(m)$
(5).	$R_{yy}(m) \triangleq \mathrm{E}\left[\mathbf{y}(0) \mathbf{y}(m) \right]$	$\stackrel{\Delta}{=} \mathrm{E}\left([\mathbf{x}(0) + \mathbf{v}(0)][\mathbf{x}(m) + \mathbf{v}(m)]\right)$	$= R_{xx}(m) + R_{xv}(m) + \overset{0}{R}_{vx}(m) + \overset{0}{R}_{vv}(m)$	$= R_{xx}(m) + R_{vv}(m)$
(6).	$R_{yy}(m) \triangleq \mathrm{E}\left[\mathbf{y}(m) \mathbf{y}(0) \right]$	$\stackrel{\Delta}{=} \mathrm{E}\left([\mathbf{x}(m) + \mathbf{v}(m)][\mathbf{x}(0) + \mathbf{v}(0)]\right)$	$= R_{xx}(m) + R_{xv}(m) + R_{vx}(m) + R_{vv}(m)$	$= R_{xx}(m) + R_{vv}(m)$
(7).	$R_{yy}(m) \triangleq \mathrm{E}\left[\mathbf{y}^*(0)\mathbf{y}^*(m)\right]$	$\stackrel{\Delta}{=} \mathrm{E}\left([\mathbf{x}(0) + \mathbf{v}(0)]^* [\mathbf{x}(m) + \mathbf{v}(m)]^*\right)$	$= R_{xx}(m) + R_{xv}(m) + \overset{0}{R}_{vx}(m) + \overset{0}{R}_{vv}(m)$	$= R_{xx}(m) + R_{vv}(m)$
(8).	$R_{yy}(m) \triangleq \mathrm{E}\left[\mathrm{y}^*(m)\mathrm{y}^*(0)\right]$	$\stackrel{\Delta}{=} \mathrm{E}\left([\mathbf{x}(m) + \mathbf{v}(m)]^* [\mathbf{x}(0) + \mathbf{v}(0)]^*\right)$	$= R_{xx}(m) + R_{xx}(m) + R_{xx}(m) + R_{vx}(m)$	$= R_{xx}(m) + R_{vv}(m)$

$$\begin{array}{ll} (1). & $\mathbb{R}_{sy}(m)$ &\triangleq E[s(m)\,y^*(0)] & by Papoulis' definition of R_{xy} (Definition 2 page 2) \\ &\triangleq E\left([t(m)+t(m)][x(0)+v(0)]^*\right) & by definition of S \\ &= E\left[t(m)\,x^*(0)\right] + E\left[t(m)\,v^*(0)\right] + E\left[t(m)\,x^*(0)\right] + E\left[t(m)\,v^*(0)\right] \\ &= E\left[t(m)\,x^*(0)\right] + E\,t(m)\,E\,v^*(0) & by uncorrelated hypotheses (B), (C), and (D) \\ &= E\left[t(m)\,x^*(0)\right] + E\,t(m)E\,v^*(0)^{-0} \\ &\quad + E\,t(m)E\,x^*(0) + E\,t(m)E\,v^*(0) & by zero-mean hypothesis (E) \\ &\triangleq \boxed{\mathsf{R}_{rx}(m)} & by definition of R_{rx} (Definition 2 page 2) \\ \end{array}$$

5.3 Case study: Parallel operators

Proposition 7. Let S be the system illustrated to the right, where T is not

necessarily linear. Let $(h(n)) \triangleq H \bar{\delta}(n) \triangleq \sum_{m \in \mathbb{Z}} h(m) \bar{\delta}(n-m)$ be the impulse response of H.

	$\int \check{S}_{wy}(z) = \check{H}(z)$	$\check{S}_{xy}(z)$ for (1),(3),(5),(6) and
$ \left\{ \begin{array}{l} \text{(A). } \mathbf{x}(n) \text{ is } WSS \text{ and} \\ \text{(B). } \mathbf{H} \text{ is } LTI \end{array} \right\} \implies \mathbf{A} $	$\int \frac{\tilde{S}_{wy}(\omega) = \tilde{H}(\omega)}{\tilde{S}_{wy}(z) = \check{H}^{*}(z^{*})}$	$\frac{\tilde{S}_{xy}(\omega) \text{ for } (1), (3), (5), (6) \text{ and}}{\tilde{S}_{xy}(z) \text{ for } (2), (4), (7), (8) \text{ and}} $
	$\tilde{S}_{wy}(\omega) = \tilde{H}^*(-\omega)$	$\tilde{S}_{xy}(\omega) \text{ for } (2), (4), (7), (8)$

(2).	$R_{wy}(m) \triangleq \mathrm{E}\left[\mathrm{t}^*(0)\right.$	$\mathbf{y}(m)$] $\triangleq \mathbf{E}([$	$\mathrm{Hx}]^*(0)\mathrm{y}(m)\big)$	$= H^* (I)$	$\mathbf{E}\left[\mathbf{x}^*(0)\mathbf{y}(m)\right]\right)$	$\triangleq \operatorname{H}^* R_{xy}(m)$	$= [\mathbf{h}^* \star R_{xy}](m)$
(3).	$R_{wy}(m) \triangleq \mathrm{E}\left[\mathrm{t}(0)\mathrm{y}\right]$	$v^*(m)$] $\triangleq \mathbf{E}\left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \right)$	$\operatorname{Hx}](0)\operatorname{y}^*(m))$	= H(E)	$\mathrm{E}[\mathrm{x}(0)\mathrm{y}^*(m)])$	$\triangleq \operatorname{H}R_{xy}(m)$	$= [\mathbf{h} \star R_{xy}](m)$
(4).	$R_{wy}(m) \triangleq \mathrm{E}\left[\mathrm{t}^*(m)\right]$	$(\mathbf{y}(0)) = \mathbf{E} \left(\begin{bmatrix} \mathbf{z} & \mathbf{z} \\ \mathbf{z} & \mathbf{z} \end{bmatrix} \right)$	$\mathrm{Hx}]^*(m)\mathrm{y}(0)\big)$	$= \mathrm{H}^{*}(\mathbf{I})$	$\mathbf{E}\left[\mathbf{x}^{*}(m)\mathbf{y}(0)\right]\right)$	$\triangleq \mathbf{H}^* \operatorname{R_{xy}}(m)$	$= [\mathbf{h}^* \star R_{xy}](m)$
(5).	$R_{wy}(m) \triangleq \mathrm{E}\left[\mathrm{t}(0)\mathrm{y}\right]$	$r(m)$] $\triangleq E([$	$\operatorname{Hx}](0)\operatorname{y}(m))$	= H(E)	$\mathrm{E}[\mathrm{x}(0)\mathrm{y}(m)])$	$\triangleq \operatorname{H}R_{xy}(m)$	$= [\mathbf{h} \star R_{xy}](m)$
(6).	$R_{wy}(m) \triangleq \mathrm{E}\left[\mathrm{t}(m)\right.$	$\mathbf{y}(0)$] $\triangleq \mathbf{E}(\mathbf{z})$	$\operatorname{Hx}](m)\mathrm{y}(0))$	= H(E	$\mathrm{E}[\mathrm{x}(m)\mathrm{y}(0)])$	$\triangleq \operatorname{H}R_{xy}(m)$	$= [\mathbf{h} \star R_{xy}](m)$
(7).	$R_{wy}(m) \triangleq \mathrm{E}\left[\mathrm{t}^*(0)\right.$	$\mathbf{y}^*(m)$] $\triangleq \mathbf{E}\left(\begin{bmatrix} \\ \end{bmatrix} \right)$	$\mathrm{Hx}]^*(0)\mathrm{y}^*(m)\big)$	$= \mathrm{H}^{*}(\mathbf{I})$	$\mathrm{E}\left[\mathrm{x}^*(0)\mathrm{y}^*(m)\right]\right)$	$\triangleq \mathbf{H}^* \operatorname{R_{xy}}(m)$	$= [\mathbf{h}^* \star R_{xy}](m)$
(8).	$R_{wy}(m) \triangleq \mathrm{E}\left[\mathrm{t}^*(m)\right]$	$(\mathbf{y}^{*}(0)) \triangleq \mathbf{E}(\mathbf{z})$	$\mathrm{Hx}]^*(m)\mathrm{y}^*(0)\big)$	$= H^* (I)$	$\mathrm{E}\left[\mathrm{x}^{*}(m)\mathrm{y}^{*}(0)\right]\right)$	$\triangleq \operatorname{H}^* R_{xy}(m)$	$= [\mathbf{h}^* \star R_{xy}](m)$
(1)	$(3), (5), (6). \check{S}_{wy}$	$(z) \triangleq \operatorname{Z} R_{wy}(m)$	$= \mathrm{Z} [\mathrm{h} \star R_{x y}] ($	m)	$= \check{\mathrm{H}}(z)\check{S}_{xy}(z)$		
(2)	$(4), (7), (8). \check{S}_{wy}$	$(z) \triangleq \operatorname{Z} R_{wy}(m)$	$= \mathrm{Z} \left[\mathrm{h}^{*} \star R_{xy} \right]$	(m)	$= \check{\operatorname{H}}^{*}\left(z^{*}\right) \check{\operatorname{S}}_{xy}(z)$	by Proposit	tion 12 page 21
(1)	$, (3), (5), (6). \tilde{S}_{wy}($	$(\omega) \triangleq \breve{\mathbf{F}} R_{wy}(m)$	$=\breve{\mathrm{F}}[\mathrm{h}\star R_{xy}]($	m)	$= \tilde{H}(\omega)\tilde{S}_{xy}(\omega)$		
(2)	$, (4), (7), (8). \tilde{S}_{wy}($	$(\omega) \triangleq \breve{\mathbf{F}} R_{wy}(m)$	$=\breve{\mathrm{F}}\left[\mathrm{h}^{*}\starR_{xy}\right]$	(m)	$= \tilde{\textbf{H}}^{*}(-\omega)\tilde{\textbf{S}}_{xy}(\omega)$	by Proposit	tion 12 page 21

5.4 Case study: Operator with measurement noise

$R_{xy}(m) \triangleq \mathrm{E}\left[\mathrm{x}(m)\mathrm{y}^*(0)\right]$	by	definition of R_{xy}	(Definition $2 \text{ page } 2$)
$\triangleq \mathbf{E} \left[\mathbf{x}(m) (\mathbf{q}(0) + \right.$	$v(0))^*]$ by	definition of S	
$= \mathbf{E} \left[\mathbf{x}(m) \mathbf{q}^*(0) \right. +$	$p(m) \mathbf{v}^*(0)$] by	distributive property of $(\mathbb{C}, +, \cdot, 0, 1)$	
$= \mathbf{E} \left[\mathbf{x}(m) \mathbf{q}^*(0) \right] +$	$+ \operatorname{E}\left[\mathbf{x}(m) \mathbf{v}^*(0)\right] \qquad \text{by}$	<i>linearity</i> of E	(Proposition 11 page 20)
$= \mathbf{E} \left[\mathbf{x}(m) \mathbf{q}^*(0) \right] +$	$+ [\operatorname{E} \mathbf{x}(m)][\operatorname{E} \mathbf{v}^*(0)] $ by	uncorrelated hypothesis	(B)
$= \mathbf{E} \left[\mathbf{x}(m) \mathbf{q}^*(0) \right] + \\ = R_{xg}(m)$	$+ \operatorname{E}[\mathbf{p}(m)] \operatorname{E}[\mathbf{v}^{*}(0)]^{\bullet} $ by by	<i>zero-mean</i> hypothesis definition of R_{xq}	(C) (Definition 2 page 2)
$= \mathbf{E} \left[\mathbf{x}(m) \mathbf{q}^*(0) \right] - \mathbf{R}_{xq}(m)$	$+ \operatorname{E}\left[\mathbf{p}(m)\right] \underbrace{\mathbb{E}\left[\mathbf{v}^{*}(0)\right]^{-0}}_{\text{by}} $ by	zero-mean hypothesis definition of R_{xq}	(C) (Definition 2 page 2)

$$\begin{array}{ll} (2). & \mathsf{R}_{\mathsf{xy}}(m) \triangleq \mathrm{E}\left[\mathsf{x}^{*}(0) \, \mathsf{y}(m)\right] & \triangleq \mathrm{E}\left(\mathsf{x}^{*}(0)[\mathsf{q}(m) + \mathsf{v}(m)]\right) & \triangleq \mathrm{E}\left[\mathsf{x}^{*}(0) \, \mathsf{q}(m)\right] + \mathrm{E}\left[\mathsf{x}^{*}(0)[[\mathsf{E}\,\boldsymbol{v}(m)]]^{\bullet}^{\bullet}\right] & = \mathsf{R}_{\mathsf{xq}}(m) \\ (3). & \mathsf{R}_{\mathsf{xy}}(m) \triangleq \mathrm{E}\left[\mathsf{x}(0) \, \mathsf{y}^{*}(m)\right] & \triangleq \mathrm{E}\left(\mathsf{x}(0)[\mathsf{q}(m) + \mathsf{v}(m)]^{*}\right) & \triangleq \mathrm{E}\left[\mathsf{x}(0) \, \mathsf{q}^{*}(m)\right] + \mathrm{E}\left[\mathsf{x}^{*}(0)[[\mathsf{E}\,\boldsymbol{v}^{*}(m)]]^{\bullet}^{\bullet}\right] & = \mathsf{R}_{\mathsf{xq}}(m) \\ (4). & \mathsf{R}_{\mathsf{xy}}(m) \triangleq \mathrm{E}\left[\mathsf{x}^{*}(m) \, \mathsf{y}(0)\right] & \triangleq \mathrm{E}\left(\mathsf{x}^{*}(m)[\mathsf{q}(0) + \mathsf{v}(0)]\right) & \triangleq \mathrm{E}\left[\mathsf{x}^{*}(m) \, \mathsf{q}(0)\right] + \mathrm{E}\left[\mathsf{x}^{*}(m)[[\mathsf{E}\,\boldsymbol{v}(\theta)]]^{\bullet}^{\bullet}\right] & = \mathsf{R}_{\mathsf{xq}}(m) \\ (5). & \mathsf{R}_{\mathsf{xy}}(m) \triangleq \mathrm{E}\left[\mathsf{x}(0) \, \mathsf{y}(m)\right] & \triangleq \mathrm{E}\left(\mathsf{x}(0)[\mathsf{q}(m) + \mathsf{v}(m)]\right) & \triangleq \mathrm{E}\left[\mathsf{x}(0) \, \mathsf{q}(m)\right] + \mathrm{E}\left[\mathsf{x}(0)[[\mathsf{E}\,\boldsymbol{v}(m)]]^{\bullet}^{\bullet}\right] & = \mathsf{R}_{\mathsf{xq}}(m) \\ (6). & \mathsf{R}_{\mathsf{xy}}(m) \triangleq \mathrm{E}\left[\mathsf{x}(m) \, \mathsf{y}(0)\right] & \triangleq \mathrm{E}\left(\mathsf{x}(m)[\mathsf{q}(0) + \mathsf{v}(0)]\right) & \triangleq \mathrm{E}\left[\mathsf{x}(m) \, \mathsf{q}(0)\right] + \mathrm{E}\left[\mathsf{x}(m)[[\mathsf{E}\,\boldsymbol{v}(\theta)]]^{\bullet}^{\bullet}\right] & = \mathsf{R}_{\mathsf{xq}}(m) \\ (7). & \mathsf{R}_{\mathsf{xy}}(m) \triangleq \mathrm{E}\left[\mathsf{x}^{*}(0) \, \mathsf{y}^{*}(m)\right] & \triangleq \mathrm{E}\left(\mathsf{x}^{*}(0)[\mathsf{q}(m) + \mathsf{v}(m)]^{*}\right) & \triangleq \mathrm{E}\left[\mathsf{x}^{*}(0) \, \mathsf{q}^{*}(m)\right] + \mathrm{E}\left[\mathsf{x}^{*}(0)[[\mathsf{E}\,\boldsymbol{v}^{*}(m)]\right]^{\bullet}^{\bullet}\right] & = \mathsf{R}_{\mathsf{xq}}(m) \\ (8). & \mathsf{R}_{\mathsf{xy}}(m) \triangleq \mathrm{E}\left[\mathsf{x}^{*}(m) \, \mathsf{y}^{*}(0)\right] & \triangleq \mathrm{E}\left(\mathsf{x}^{*}(m)[\mathsf{q}(0) + \mathsf{v}(0)]^{*}\right) & \triangleq \mathrm{E}\left[\mathsf{x}^{*}(m) \, \mathsf{q}^{*}(0)\right] + \mathrm{E}\left[\mathsf{x}^{*}(m)[[\mathsf{E}\,\boldsymbol{v}^{*}(0)]\right]^{\bullet}^{\bullet}\right] & = \mathsf{R}_{\mathsf{xq}}(m) \\ \end{cases}$$

Lemma 3.Let S be the system illustrated to the right, where T is not necessarily linear.

$ \begin{cases} \text{(A). } \mathbf{x}(n) \text{ is} \\ \text{(B). } \mathbf{u}(n) \text{ is} \\ \text{(C). } \mathbf{x}(n) \text{ and } \mathbf{u}(n) \text{ ar} \end{cases} $	WSS zero-me e uncorrel	and and and ated	$ ightarrow \Longrightarrow \Biggl\{$	$\left. \begin{array}{l} R_{xy}(m) = R_{py}(m) \text{ and } \\ \check{S}_{xy}(z) = \check{S}_{py}(z) \text{ and } \\ \check{S}_{xy}(\omega) = \check{S}_{py}(\omega) \end{array} \right\}$	for all (1) – (8)
--	------------------------------	------------------	---------------------------------------	--	-----------------------

$R_{xy}(m)$	$\triangleq \mathbf{E}\left[\mathbf{x}(m)\mathbf{y}^*(0)\right]$	by definition of R_{py}	(Definition 2 page 2)
	$\triangleq \mathbf{E}\left(\left[\mathbf{p}(m) + \mathbf{u}(m)\right]\mathbf{y}^*(0)\right)$	by definition of S	
	$= E[p(m) y^{*}(0) + u(m) y^{*}(0)]$	by distributive property of $(\mathbb{C}, +, \cdot, 0, 1)$	
	$= E[p(m) y^{*}(0)] + E[u(m) y^{*}(0)]$	because E is a <i>linear operator</i>	(Proposition 11 page 20)
	$= E[p(m) y^{*}(0)] + E[u(m)] E[y^{*}(0)]$	by <i>uncorrelated</i> hypothesis	(C)
	$= E[p(m) y^{*}(0)] + E[u(m)]E[y^{*}(0)]^{-0}$	by <i>zero-mean</i> hypothesis	(B)
	$\triangleq R_{py}(m)$	by definition of R_{xy}	(Definition $2 \text{ page } 2$)

$$\begin{array}{lll} (2). & \mathsf{R}_{xy}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0)\,\mathrm{y}(m)\right] & \triangleq \mathrm{E}\left(\left[\mathrm{p}(0)+\mathrm{u}(0)\right]^{*}\,\mathrm{y}(m)\right) & = \mathrm{E}\left[\mathrm{p}^{*}(0)\,\mathrm{y}(m)\right] + \mathrm{E}\left[\mathrm{u}^{*}(0)\right]^{*}\mathrm{E}\left[\mathrm{y}(m)\right] & = \mathsf{R}_{\mathsf{py}}(m) \\ (3). & \mathsf{R}_{xy}(m) \triangleq \mathrm{E}\left[\mathrm{x}(0)\,\mathrm{y}^{*}(m)\right] & \triangleq \mathrm{E}\left(\left[\mathrm{p}(0)+\mathrm{u}(0)\right]\,\mathrm{y}^{*}(m)\right) & = \mathrm{E}\left[\mathrm{p}(0)\,\mathrm{y}^{*}(m)\right] + \mathrm{E}\left[\mathrm{u}^{*}(0)\right]^{*}\mathrm{E}\left[\mathrm{y}^{*}(m)\right] & = \mathsf{R}_{\mathsf{py}}(m) \\ (4). & \mathsf{R}_{xy}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m)\,\mathrm{y}(0)\right] & \triangleq \mathrm{E}\left(\left[\mathrm{p}(m)+\mathrm{u}(m)\right]^{*}\,\mathrm{y}(0)\right) & = \mathrm{E}\left[\mathrm{p}^{*}(m)\,\mathrm{y}(0)\right] + \mathrm{E}\left[\mathrm{u}^{*}(m)\right]^{*}\mathrm{E}\left[\mathrm{y}(0)\right] & = \mathsf{R}_{\mathsf{py}}(m) \\ (5). & \mathsf{R}_{xy}(m) \triangleq \mathrm{E}\left[\mathrm{x}(0)\,\mathrm{y}(m)\right] & \triangleq \mathrm{E}\left(\left[\mathrm{p}(0)+\mathrm{u}(0)\right]\,\mathrm{y}(m)\right) & = \mathrm{E}\left[\mathrm{p}(0)\,\mathrm{y}(m)\right] + \mathrm{E}\left[\mathrm{u}(0)\right]^{*}\mathrm{E}\left[\mathrm{y}(m)\right] & = \mathsf{R}_{\mathsf{py}}(m) \\ (6). & \mathsf{R}_{xy}(m) \triangleq \mathrm{E}\left[\mathrm{x}(m)\,\mathrm{y}(0)\right] & \triangleq \mathrm{E}\left(\left[\mathrm{p}(m)+\mathrm{u}(m)\right]\,\mathrm{y}(0)\right) & = \mathrm{E}\left[\mathrm{p}(m)\,\mathrm{y}(0)\right] + \mathrm{E}\left[\mathrm{u}(m)\right]^{*}\mathrm{E}\left[\mathrm{y}(0)\right] & = \mathsf{R}_{\mathsf{py}}(m) \\ (7). & \mathsf{R}_{xy}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0)\,\mathrm{y}^{*}(m)\right] & \triangleq \mathrm{E}\left(\left[\mathrm{p}(0)+\mathrm{u}(0)\right]^{*}\,\mathrm{y}^{*}(m)\right) & = \mathrm{E}\left[\mathrm{p}^{*}(0)\,\mathrm{y}^{*}(m)\right] + \mathrm{E}\left[\mathrm{u}^{*}(0)\right]^{*}\mathrm{E}\left[\mathrm{y}^{*}(m)\right] & = \mathsf{R}_{\mathsf{py}}(m) \\ (8). & \mathsf{R}_{xy}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m)\,\mathrm{y}^{*}(0)\right] & \triangleq \mathrm{E}\left(\left[\mathrm{p}(m)+\mathrm{u}(m)\right]^{*}\,\mathrm{y}^{*}(0)\right) & = \mathrm{E}\left[\mathrm{p}^{*}(m)\,\mathrm{y}^{*}(0)\right] + \mathrm{E}\left[\mathrm{u}^{*}(m)\right]^{*}\mathrm{E}\left[\mathrm{y}^{*}(0)\right] & = \mathsf{R}_{\mathsf{py}}(m) \\ \end{array}$$

$$\begin{cases} \text{(A). } \mathbf{x}(n) \text{ is } WSS & \text{and} \\ \text{(B). } \mathbf{u}(n) \text{ is } zero-mean \text{ and} \\ \text{(C). } \mathbf{v}(n) \text{ is } zero-mean \text{ and} \\ \text{(D). } \mathbf{x}(n), \mathbf{t}(n), \mathbf{v}(n) \text{ are } uncorrelated \end{cases} \implies \begin{cases} \mathsf{R}_{\mathsf{pq}}(m) = \mathsf{R}_{\mathsf{py}}(m) = \mathsf{R}_{\mathsf{xq}}(m) = \mathsf{R}_{\mathsf{xy}}(m) \text{ and} \\ \tilde{\mathsf{S}}_{\mathsf{pq}}(z) = \check{\mathsf{S}}_{\mathsf{py}}(z) = \check{\mathsf{S}}_{\mathsf{xq}}(z) = \check{\mathsf{S}}_{\mathsf{xy}}(z) \text{ and} \\ \tilde{\mathsf{S}}_{\mathsf{pq}}(\omega) = \tilde{\mathsf{S}}_{\mathsf{py}}(\omega) = \check{\mathsf{S}}_{\mathsf{xq}}(\omega) = \check{\mathsf{S}}_{\mathsf{xy}}(\omega) \end{cases} \end{cases} \quad \text{for all}$$

$$\begin{aligned} \mathsf{R}_{\mathsf{pq}}(m) &= \mathsf{R}_{\mathsf{py}}(m) & \text{by Lemma 2 page 14} \\ \mathsf{R}_{\mathsf{pq}}(m) &= \mathsf{R}_{\mathsf{xq}}(m) & \text{by Lemma 3 page 15} \\ \mathsf{R}_{\mathsf{xy}}(m) &\triangleq \mathrm{E}\left[\mathrm{x}(m)\,\mathrm{y}^*(0)\right] & \text{by definition } \mathsf{R}_{\mathsf{xy}} & (\text{Definition 2 page 2}) \\ &\triangleq \mathrm{E}\left(\left[\mathrm{p}(m) + \mathrm{t}(m)\right]\,\mathrm{y}^*(0)\right) & \text{by definition } \mathrm{S} \\ &= \mathrm{E}\left[\mathrm{p}(m)\,\mathrm{y}^*(0) + \mathrm{t}(m)\,\mathrm{y}^*(0)\right] \\ &= \mathrm{E}\left[\mathrm{p}(m)\,\mathrm{y}^*(0)\right] + \mathrm{E}\left[\mathrm{t}(m)\,\mathrm{y}^*(0)\right] & \text{by linearity of } \mathrm{E} & (\text{Proposition 11 page 20}) \\ &= \mathrm{E}\left[\mathrm{p}(m)\,\mathrm{y}^*(0)\right] + \mathrm{E}\left[\mathrm{t}(m)\,\mathrm{y}^*(0)\right] & \text{by uncorrelated hypothesis} & (\mathrm{D}) \\ &= \mathsf{R}_{\mathsf{py}}(m) & \text{by definition of } \mathsf{R}_{\mathsf{py}} & (\mathrm{Definition 2 page 2}) \end{aligned}$$

5.5 Case study: Parallel operators with measurement noise

Proposition 9.Let S be the system illustrated to the right, where T is an operator that is not necessarily linear.

$$\begin{array}{ll} (1), (3), (5), (6). & \tilde{\mathsf{S}}_{\mathsf{sy}}(z) = \tilde{\mathsf{S}}_{\mathsf{rq}}(z) & \text{by Proposition 6 page 12} & \text{and (B), (C) and (D)} \\ & = \tilde{\mathsf{H}}(z) \, \tilde{\mathsf{S}}_{\mathsf{pq}}(z) & \text{by Proposition 7 page 13} & \text{and (A)} \\ & = \tilde{\mathsf{H}}(z) \, \tilde{\mathsf{S}}_{\mathsf{xq}}(z) & \text{by Lemma 3 page 15} & \\ & = \tilde{\mathsf{H}}(z) \, \tilde{\mathsf{S}}_{\mathsf{xy}}(z) & \text{by Lemma 2 page 14} & \\ (1), (3), (5), (6). & \tilde{\mathsf{S}}_{\mathsf{sy}}(\omega) = \tilde{\mathsf{S}}_{\mathsf{sy}}(z) \big|_{z=e^{i\omega}} & \text{by definition of Z} & (\text{Definition 10 page 21}) \\ & = \tilde{\mathsf{H}}(z) \, \tilde{\mathsf{S}}_{\mathsf{xy}}(\omega) & \\ & = \tilde{\mathsf{H}}(\omega) \, \tilde{\mathsf{S}}_{\mathsf{xy}}(\omega) & \\ \end{array}$$

$$\begin{array}{c} (2), (4), (7), (8). & \tilde{\mathsf{S}}_{\mathsf{sy}}(z) = \tilde{\mathsf{S}}_{\mathsf{rq}}(z) & \text{by Proposition 6 page 12} & \text{and (B), (C) and (D)} \\ & = \tilde{\mathsf{H}}^*(z^*) \, \tilde{\mathsf{S}}_{\mathsf{xq}}(z) & \text{by Proposition 6 page 12} & \text{and (B), (C) and (D)} \\ & = \tilde{\mathsf{H}}^*(z^*) \, \tilde{\mathsf{S}}_{\mathsf{xq}}(z) & \text{by Proposition 7 page 13} & \text{and (A)} & \\ & = \tilde{\mathsf{H}}^*(z^*) \, \tilde{\mathsf{S}}_{\mathsf{xq}}(z) & \text{by Lemma 3 page 15} & \\ & = \tilde{\mathsf{H}}^*(z^*) \, \tilde{\mathsf{S}}_{\mathsf{xy}}(z) & \text{by Lemma 2 page 14} & \\ \end{array}$$

$$\begin{array}{c} (2), (4), (7), (8). & \tilde{\mathsf{S}}_{\mathsf{sy}}(\omega) = \, \tilde{\mathsf{S}}_{\mathsf{sy}}(z) \big|_{z=e^{i\omega}} & \text{by definition of Z} & (\text{Definition 10 page 21}) \\ & = \, \tilde{\mathsf{H}}^*(z^*) \, \tilde{\mathsf{S}}_{\mathsf{xy}}(z) & \text{by Lemma 2 page 14} & \\ \end{array}$$

$$\begin{array}{c} (2), (4), (7), (8). & \tilde{\mathsf{S}}_{\mathsf{sy}}(\omega) = \, \tilde{\mathsf{S}}_{\mathsf{sy}}(z) \big|_{z=e^{i\omega}} & \text{by definition of Z} & (\text{Definition 10 page 21}) \\ & = \, \tilde{\mathsf{H}}^*(z^*) \, \tilde{\mathsf{S}}_{\mathsf{xy}}(\omega) \Big|_{z=e^{i\omega}} & \text{by previous result} & (1) \\ & = \, \tilde{\mathsf{H}}^*(-\omega) \, \tilde{\mathsf{S}}_{\mathsf{xy}}(\omega) & \text{by Proposition 12 page 21} & \end{array}$$

5.6 Case study: Non-linear system identification

Fig. 1 Least Square estimation (Proposition 10 page 18)

Remark. The definition of "best" or "optimal" is given by a cost function $C(\hat{H})$. There are several possible cost functions. One possibility is to define an error $p(n) \triangleq q(n) - t(n)$. We note that if \hat{H} is closely tuned to match T, then not only should p(n) be close to 0 for all $n \in \mathbb{Z}$, but the *auto-correlation* $\hat{R}_{ee}(m)$ of p(n) should also be close to 0 for all $m \in \mathbb{Z}$. Moreover by extension, the *auto-spectral density* $\tilde{S}_{vv}(\omega) \triangleq \check{F} \hat{R}_{ee}(m)$ should also be close to 0. As such, we can define an arguably relevant cost function for the system S of Figure 1 (page 17) in terms of \tilde{S}_{xx} , \tilde{S}_{yy} and \tilde{S}_{xy} . In the case of Papoulis's $R_{xy}(m)$, the development of such a cost function $C(\hat{H})$ might look something like this:

$$\begin{array}{ll} (1). & C_{rq}\left(\hat{H}\right) \\ &\triangleq \check{F} E\left([t(n) - q(n)][t(0) - q(0)]^*\right) & \text{by definition of } C_{rq} & (\text{Definition 3 page 18}) \\ &= \check{F} \left[E\left[t(n) t^*(0)\right] - E\left[t(n) q^*(0)\right] - E\left[q(n) t^*(0)\right] + E\left[q(n) q^*(0)\right]\right] & \text{by linearity of } E & (\text{Proposition 11 page 20}) \\ &\triangleq \check{F} \left[R_{rr}(m) - R_{rq}(m) - R_{qr}(m) + R_{qq}(m)\right] & \text{by definition of } R_{xy} & (\text{Definition 2 page 2}) \\ &\triangleq \left[\tilde{S}_{rr}(\omega) - \tilde{S}_{rq}(\omega) - \tilde{S}_{qr}(\omega) + \tilde{S}_{qq}(\omega)\right] & \text{by definition of } \tilde{S}_{xy} & (\text{Definition 1 page 1}) \end{array}$$

Taking cue from the result of Remark 5.6, we arrive at a definition of cost:

Definition 3.Let S be a system defined as in Figure 1 (page 17). Define the following cost functions for spectral least-squares estimates:

 $\mathbf{C}_{\mathrm{rq}}(\hat{\mathsf{H}}) \triangleq \tilde{\mathsf{S}}_{\mathsf{rr}}(\omega) - \tilde{\mathsf{S}}_{\mathsf{rq}}(\omega) - \tilde{\mathsf{S}}_{\mathsf{qr}}(\omega) + \tilde{\mathsf{S}}_{\mathsf{qq}}(\omega)$

Remark.Note that by Corollary 1 (page 4), $\tilde{S}_{qr} = \tilde{S}_{rq}^*$ for (1)–(4)... and thus the cost function C for (1)–(4) is *real-valued*. This in general is *not* true for (5)–(8). This in itself provides an argument, however weak that argument may be, for *not* selecting any of (5)–(8) as a standard for the definition of $R_{xy}(m)$.

Now for each of the eight $R_{xy}(m)$ definitions, we can transform the expression of $C_{rq}(\hat{H})$ as given by Definition 3 into expressions involving \hat{H} (next lemma). In doing so, one might hope to be in a good position to take partial derivatives of the real and imaginary parts of \hat{H} to find an optimal *least-squares-like* solution for \hat{H} .

Lemma 4.Let $C_{rq}(\hat{H})$ be defined as in Definition 3. Let (1)–(8) below correspond to the eight definitions of $R_{xy}(m)$ in Definition 2.

	by Definition 3 and Corollary 1 page 4	by Corollary 2 page 7 and Proposition 9 page 16
(1).	$\mathrm{C}_{\mathrm{rq}}\left(\hat{H}\right) = \overline{\tilde{S}_{rr}(\omega) - \tilde{S}_{rq}(\omega) - \tilde{S}_{rq}^{*}(\omega) + \tilde{S}_{qq}(\omega)}$	$= \tilde{S}_{pp}(\omega) \left \hat{H}(\omega) \right ^2 - \tilde{S}_{py}(\omega) \hat{H}(\omega) - \tilde{S}_{py}^{*}(\omega) \hat{H}^{*}(\omega) + \tilde{S}_{qq}(\omega)$
(2).	$\mathrm{C}_{\mathrm{rq}}\left(\hat{H}\right) = \tilde{S}_{rr}(\omega) - \tilde{S}_{rq}(\omega) - \tilde{S}_{rq}^{*}(\omega) + \tilde{S}_{qq}(\omega)$	$= \tilde{S}_{pp}(\omega) \left \hat{H}(\omega) \right ^2 - \tilde{S}_{py}(\omega) \hat{H}^*(-\omega) - \tilde{S}_{py}^{}*}(\omega) \hat{H}(-\omega) + \tilde{S}_{qq}(\omega)$
(3).	$\mathrm{C}_{\mathrm{rq}}\left(\hat{H}\right) = \tilde{S}_{rr}(\omega) - \tilde{S}_{rq}(\omega) - \tilde{S}_{rq}^{*}(\omega) + \tilde{S}_{qq}(\omega)$	$= \tilde{S}_{pp}(\omega) \left \hat{H}(-\omega) \right ^2 - \tilde{S}_{py}(\omega) \hat{H}(\omega) - \tilde{S}_{py}^{\ *}(\omega) \hat{H}^*(\omega) + \tilde{S}_{qq}(\omega)$
(4).	$\mathrm{C}_{\mathrm{rq}}\left(\hat{H}\right) = \tilde{S}_{rr}(\omega) - \tilde{S}_{rq}(\omega) - \tilde{S}_{rq}^{*}(\omega) + \tilde{S}_{qq}(\omega)$	$= \tilde{S}_{pp}(\omega) \left \hat{H}(-\omega) \right ^2 - \tilde{S}_{py}(\omega) \hat{H}^*(-\omega) - \tilde{S}_{py}^{}*}(\omega) \hat{H}(-\omega) + \tilde{S}_{qq}(\omega)$
(5).	$\mathrm{C}_{\mathrm{rq}}\left(\hat{H}\right) = \tilde{S}_{rr}(\omega) - \tilde{S}_{rq}(\omega) - \tilde{S}_{rq}(-\omega) + \tilde{S}_{qq}(\omega)$	$= \tilde{S}_{pp}(\omega)\hat{H}(\omega)\hat{H}(-\omega) - \tilde{S}_{py}(\omega)\hat{H}(\omega) - \tilde{S}_{py}(-\omega)\hat{H}(-\omega) + \tilde{S}_{qq}(\omega)$
(6).	$\mathrm{C}_{\mathrm{rq}}\left(\hat{H}\right) = \tilde{S}_{rr}(\omega) - \tilde{S}_{rq}(\omega) - \tilde{S}_{rq}(-\omega) + \tilde{S}_{qq}(\omega)$	$= \tilde{S}_{pp}(\omega)\hat{H}(\omega)\hat{H}(-\omega) - \tilde{S}_{py}(\omega)\hat{H}(\omega) - \tilde{S}_{py}(-\omega)\hat{H}(-\omega) + \tilde{S}_{qq}(\omega)$
(7).	$\mathrm{C}_{\mathrm{rq}}\left(\hat{H}\right) = \tilde{S}_{rr}(\omega) - \tilde{S}_{rq}(\omega) - \tilde{S}_{rq}(-\omega) + \tilde{S}_{qq}(\omega)$	$= \tilde{S}_{pp}(\omega) \hat{H}^*(\omega) \hat{H}^*(-\omega) - \tilde{S}_{py}(\omega) \hat{H}(\omega) - \tilde{S}_{py}(-\omega) \hat{H}^*(\omega) + \tilde{S}_{qq}(\omega)$
(8).	$\mathbf{C}_{\mathrm{rq}}\left(\hat{H}\right) = \tilde{S}_{rr}(\omega) - \tilde{S}_{rq}(\omega) - \tilde{S}_{rq}(-\omega) + \tilde{S}_{qq}(\omega)$	$= \tilde{S}_{pp}(\omega)\hat{H}(\omega)\hat{H}(-\omega) - \tilde{S}_{py}(\omega)\hat{H}^*(-\omega) - \tilde{S}_{py}(-\omega)\hat{H}(-\omega) + \tilde{S}_{qq}(\omega)$

For the Papoulis $\mathsf{R}_{xy}(m)$ definition (1), the C_{rq} expression demonstrated in Lemma 4 is very useful. In particular, we can set the partial derivatives $\frac{\partial}{\partial \hat{\mathsf{H}}_R} \hat{\mathsf{H}}(\omega)$ and $\frac{\partial}{\partial \hat{\mathsf{H}}_I} \hat{\mathsf{H}}(\omega)$ of the real and imaginary parts of $\hat{\mathsf{H}}(\omega)$ to zero and solve the resulting two equations to find an optimal $\hat{\mathsf{H}}$ (as in Proposition 10 page 18).

However, this becomes troublesome in the case when encountering $\hat{H}(-\omega)$ and the *impulse response* of \hat{H} is *complex-valued*—in which case in general $\hat{H}(-\omega) \neq \hat{H}^*(\omega)$.

Note that except for (1), all of the expressions demonstrated in Lemma 4 contain an $\hat{H}(-\omega)$ and/or $\hat{H}^*(-\omega)$.

This trouble provides an argument, however a weak one it might be, for choosing (1) as the standard definition of $R_{xy}(m)$.

Proposition 10. Let S be the system illustrated in Figure 1 page 17.

$ \begin{cases} (A). \ {\rm x, \ u, \ and \ v \ are \ WSS} \\ (B). \ {\rm x, \ u, \ and \ v \ are \ uncorrelated} \\ (C). \ {\rm u \ and \ v \ are \ zero-mean} \\ (D). \ \hat{{\sf H}} \ is \ {\rm LTI} \end{cases} $	and and and	$ \label{eq:constraint} \left\{ \begin{array}{l} \arg\min \mathrm{C}_{\mathrm{rq}}(\hat{H}) = \\ \stackrel{\hat{H}}{ for \ (1) } \end{array} \right. $	$\left.\frac{\tilde{S}_{xy}^{*}(\omega)}{\tilde{S}_{xx}(\omega)-\tilde{S}_{uu}(\omega)}\right\}$
--	-------------------	--	--

$$(1). \quad 0 = \frac{\partial}{\partial \hat{H}_R} \operatorname{C}_{\mathrm{rq}} \left[\hat{H}(\omega) \right] \qquad = 2 \,\hat{H}_R(\omega) \,\tilde{\mathsf{S}}_{\mathsf{pp}}(\omega) - \tilde{\mathsf{S}}_{\mathsf{py}}(\omega) - \tilde{\mathsf{S}}_{\mathsf{py}}^{*}(\omega) + \frac{\partial}{\partial \hat{H}_R} \tilde{\mathsf{S}}_{\mathsf{qq}}(\omega) \qquad \Longrightarrow \quad \hat{\mathsf{H}}_R(\omega) = \frac{\operatorname{R}_{\mathsf{e}} \,\tilde{\mathsf{S}}_{\mathsf{py}}^{*}(\omega)}{\tilde{\mathsf{S}}_{\mathsf{pp}}(\omega)} \\ 0 = \frac{\partial}{\partial \hat{H}_I} \operatorname{C}_{\mathrm{rq}} \left[\hat{H}(\omega) \right] \qquad = 2 \,\hat{\mathsf{H}}_I(\omega) \,\tilde{\mathsf{S}}_{\mathsf{pp}}(\omega) - i \,\tilde{\mathsf{S}}_{\mathsf{py}}(\omega) + i \,\tilde{\mathsf{S}}_{\mathsf{py}}^{*}(\omega) + \frac{\partial}{\partial \hat{H}_R} \tilde{\mathsf{S}}_{\mathsf{qq}}(\omega) \qquad \Longrightarrow \quad \hat{\mathsf{H}}_I(\omega) = \frac{\operatorname{I}_{\mathsf{m}} \,\tilde{\mathsf{S}}_{\mathsf{pp}}(\omega)}{\tilde{\mathsf{S}}_{\mathsf{pp}}(\omega)}$$

=

$$\Rightarrow \hat{\mathsf{H}}(\omega) \triangleq \hat{\mathsf{H}}_{R}(\omega) + i \hat{\mathsf{H}}_{I}(\omega) \frac{\mathrm{R}_{e} \tilde{\mathsf{S}}_{pp}^{*}(\omega)}{\tilde{\mathsf{S}}_{pp}(\omega)} + \frac{i \mathrm{I}_{m} \tilde{\mathsf{S}}_{pp}^{*}(\omega)}{\tilde{\mathsf{S}}_{pp}(\omega)}$$

$$= \frac{\tilde{\mathsf{S}}_{py}^{*}(\omega)}{\tilde{\mathsf{S}}_{pp}(\omega)}$$

$$= \frac{\tilde{\mathsf{S}}_{xx}^{*}(\omega)}{\tilde{\mathsf{S}}_{xx}(\omega) - \tilde{\mathsf{S}}_{uu}(\omega)}$$
by Proposition 5 page 11

It follows immediately from Proposition 10 that, for (1) and in the special case of no input noise (u(n) = 0), the standard estimate⁶ \hat{H}_1 is the optimal least-squares estimate of \tilde{H} (next).

Corollary 5.Let S be the system illustrated in Figure 1 page 17.

$$\begin{cases} \text{(1). hypotheses of Proposition 10 and} \\ \text{(2). } u(n) = 0 \end{cases} \implies \left\{ \hat{\mathsf{H}}(\omega) = \hat{\mathsf{H}}_{1}(\omega) \triangleq \frac{\tilde{\mathsf{S}}_{\mathsf{xy}}^{*}(\omega)}{\tilde{\mathsf{S}}_{\mathsf{xx}}(\omega)} \right\} \qquad \text{for (1)}$$

6 Which one?

Which definition of $R_{xy}(m)$ should we use? Any one of them is perfectly acceptable—as long as a clear definition is provided and that definition is used consistently. That being said, note the following:

1. The *expectation* operator $E(XY^*)$ is an *inner product*. As such, it would seem the most natural to follow the convention of other inner product definitions and thus put the conjugate * on y (i.e. follow Papoulis):

- $\langle \mathbf{x}(t) | \mathbf{y}(t) \rangle \triangleq \int_{t \in \mathbb{R}} \mathbf{x}(t) \mathbf{y}^{*}(t) \mathbf{t}$ • $\langle \mathbf{x}(n) | \mathbf{y}(n) \rangle \triangleq \sum_{n \in \mathbb{Z}} \mathbf{x}(n) \mathbf{y}^{*}(n)$ • $\langle \mathbf{X} | \mathbf{Y} \rangle \triangleq \mathbf{E} (\mathbf{X} \mathbf{Y}^{*})$
- 2. If we view $\mathsf{R}_{xy}(m)$ as an *analysis* of y in terms of x (or as a *projection* of y onto x), then it would seem more natural to put the conjugate on x (i.e. follow Kay). This is what is done in Fourier analysis when projecting a function f(t) onto the set of basis functions $\{e^{i\omega n}|\omega \in \mathbb{R}\}$, as in

$$\begin{split} \breve{\mathbf{F}} \left[\mathbf{y}(n) \right](\omega) &\triangleq \left\langle \mathbf{y}(n) \mid e^{i\omega n} \right\rangle & (project \ \mathbf{y}(n) \ \text{onto} \ e^{i\omega n} \ \text{for some} \ \omega \in \mathbb{R}) \\ &\triangleq \sum_{n \in \mathbb{Z}} \mathbf{y}(n) \left[e^{+i\omega n} \right]^* \\ &\triangleq \sum_{n \in \mathbb{Z}} \mathbf{y}(n) e^{-i\omega n} \end{split}$$

But arguably, a "projection of y onto x" would better be served by the use of $R_{yx}(m)$ rather than $R_{xy}(m)$.

3.As demonstrated in Section 5.6 (page 17), the Papoulis definition (1) is arguably more convenient for performing least-squares-like optimization.

Appendix A Random Sequences

Definition 4.[19, page 104], [2, page 30], [4, page 49] Let $(\Omega, \mathbb{E}, \mathsf{P})$ be a probability space and X a random variable on $(\Omega, \mathbb{E}, \mathsf{P})$ with probability density function p_X .

The expectation operator \mathbf{E}_{x} on \mathbf{X} is defined as $\mathbf{E}_{\mathsf{x}} \mathbf{X} \triangleq \int_{x \in \mathbb{F}} x p_{\mathsf{x}}(x) \mathbf{x}.$

 $^{^{6}\,}$ [2, pages 98–100], [3, pages 106–109], [4, pages 187–190]

Proposition 11(*Linearity of* E). [19, page 107], [2, page 30], Let X be a random variable on a probability space $(\Omega, \mathbb{E}, \mathsf{P})$.

 $\mathbf{E}_{\mathsf{x}}(a\,\mathbf{X}+b\,\mathbf{Y}+c) = (a\,\mathbf{E}_{\mathsf{x}}\,\mathbf{X}) + (b\,\mathbf{E}_{\mathsf{x}}\,\mathbf{Y}) + c\,\forall a, b, c \in \mathbb{R} \text{ (linear)}$

Proof.

$$\begin{split} \mathbf{E}_{\mathbf{x}\mathbf{y}}(a\,\mathbf{X} + b\,\mathbf{Y} + c) &\triangleq \int_{x \in \mathbb{R}} \int_{y \in \mathbb{R}} [ax + by + c] p_{\mathbf{x}\mathbf{y}}(x, y) \,\mathbf{y} \,\mathbf{x} \qquad \text{by definition of E (Definition 4 page 19)} \\ &= \int_{x \in \mathbb{R}} \int_{y \in \mathbb{R}} ax p_{\mathbf{x}\mathbf{y}}(x, y) \,\mathbf{y} \,\mathbf{x} + \int_{x \in \mathbb{R}} \int_{y \in \mathbb{R}} by p_{\mathbf{x}\mathbf{y}}(x, y) \,\mathbf{y} \,\mathbf{x} + \int_{x \in \mathbb{R}} \int_{y \in \mathbb{R}} c p_{\mathbf{x}\mathbf{y}}(x, y) \,\mathbf{y} \,\mathbf{x} \\ &= \int_{x \in \mathbb{R}} ax \underbrace{\int_{y \in \mathbb{R}} p_{\mathbf{x}\mathbf{y}}(x, y) \,\mathbf{y} \,\mathbf{x} + \int_{y \in \mathbb{R}} by \underbrace{\int_{x \in \mathbb{R}} p_{\mathbf{x}\mathbf{y}}(x, y) \,\mathbf{x} \,\mathbf{y} + c}_{p_{\mathbf{x}}(x)} \underbrace{\int_{y \in \mathbb{R}} f_{\mathbf{x}\mathbf{y}\mathbf{y}}(x, y) \,\mathbf{y} \,\mathbf{x} + \int_{y \in \mathbb{R}} by \underbrace{\int_{x \in \mathbb{R}} p_{\mathbf{x}\mathbf{y}}(x, y) \,\mathbf{x} \,\mathbf{y} + c}_{p_{\mathbf{y}}(y)} \underbrace{\int_{x \in \mathbb{R}} x p_{\mathbf{x}}(x) \,\mathbf{x} + b \underbrace{\int_{y \in \mathbb{R}} y p_{\mathbf{y}}(y) \,\mathbf{y} + c}_{\mathbf{E}\mathbf{Y}}}_{\mathbf{E}\mathbf{Y}} \\ &= (a \,\mathbf{E}_{\mathbf{x}} \,\mathbf{X}) + (b \,\mathbf{E}_{\mathbf{y}} \,\mathbf{Y}) + c \end{split}$$

Definition 5. [19, page 220], [4, pages 109–111], [2, page 3] Let $(x(n))_{n \in \mathbb{Z}}$ be a random sequence.

 $\begin{array}{ll} (\mathbf{x}(n)) & is \textit{ wide sense stationary (WSS) if} \\ (1). & \mathbf{E} \, \mathbf{x}(n) = \mathbf{E} \, \mathbf{x}(k) & \forall n, k \in \mathbb{Z} \\ (2). & \mathbf{E} \, [\mathbf{x}(n+m) \, \mathbf{x}(n)] = \mathbf{E} \, [\mathbf{x}(k+m) \, \mathbf{x}(k)] \, \forall n, k, m \in \mathbb{Z} \end{array}$

Definition 6. [19, page 221] Let $(|\mathbf{x}(n)|)_{n \in \mathbb{Z}}$ and $(|\mathbf{y}(n)|)_{n \in \mathbb{Z}}$ be random sequences.

Appendix B Operations on Sequences

B.1 Convolution operation

Definition 7.[6, page 1], [24, page 23], [11, page 31] Let X^Y be the set of all functions from a set Y to a set X. Let \mathbb{Z} be the set of integers.

A function f in X^Y is a sequence over X if $Y = \mathbb{Z}$. A sequence may be denoted in the form $(x_n)_{n \in \mathbb{Z}}$ or simply as (x_n) .

Definition 8. [13, page 347] Let $(\mathbb{C}, +, \cdot, 0, 1)$ be the field of complex numbers.

The space of all absolutely square summable sequences
$$\ell^2_{\mathbb{C}}$$
 over \mathbb{C} is defined as
$$\ell^2_{\mathbb{C}} \triangleq \left\{ \|x_n\|_{n \in \mathbb{Z}} |\sum_{n \in \mathbb{Z}} |x_n|^2 < \infty \right\}$$

Definition 9.

The convolution operation \star is defined as $(x_n) \star (y_n) \triangleq (\sum_{m \in \mathbb{Z}} x_m y_{n-m})_{n \in \mathbb{Z}} \quad \forall (x_n)_{n \in \mathbb{Z}}, (y_n)_{n \in \mathbb{Z}} \in \ell_{\mathbb{C}}^2$

B.2 Z-transform

Definition 10.⁷ Let $(\mathbf{x}(n))_{n \in \mathbb{Z}}$ be a sequence.

The z-transform Z of (x(n)) is defined as $[Z(x(n))](z) \triangleq \sum_{n \in \mathbb{Z}} x(n) z^{-n} \quad \forall (x(n)) \in \ell_{\mathbb{C}}^2$

Proposition 12. Let $X(z) \triangleq \operatorname{Zx}(n)$ be the z-transform of x(n).

$$\underbrace{\left\{ \check{\mathbf{x}}(z) \triangleq \mathbf{Z}(\!|\!\mathbf{x}(n)\!|\!\right\}}_{(Definition \ 10 \ page \ 21)} \implies \left\{ \begin{array}{l} (1). \ \mathbf{Z}(\!|\!\mathbf{\alpha} \mathbf{x}(n)\!|\!) = \alpha \check{\mathbf{x}}(z) \quad \forall (\!|\!\mathbf{x}_n\!|\!) \in \ell_{\mathbb{C}}^2 \ and \\ (2). \ \mathbf{Z}(\!|\!\mathbf{x}[n-k]\!|\!) = z^{-k} \check{\mathbf{x}}(z) \quad \forall (\!|\!\mathbf{x}_n\!|\!) \in \ell_{\mathbb{C}}^2 \ and \\ (3). \ \mathbf{Z}(\!|\!\mathbf{x}(-n)\!|\!) = \check{\mathbf{x}} \left(\frac{1}{z}\right) \quad \forall (\!|\!\mathbf{x}_n\!|\!) \in \ell_{\mathbb{C}}^2 \ and \\ (4). \ \mathbf{Z}(\!|\!\mathbf{x}^*(n)\!|\!) = \check{\mathbf{x}}^*(z^*) \quad \forall (\!|\!\mathbf{x}_n\!|\!) \in \ell_{\mathbb{C}}^2 \ and \\ (5). \ \mathbf{Z}(\!|\!\mathbf{x}^*(-n)\!|\!) = \check{\mathbf{x}}^*\left(\frac{1}{z^*}\right) \quad \forall (\!|\!\mathbf{x}_n\!|\!) \in \ell_{\mathbb{C}}^2 \end{array} \right\}$$

⁷ Laurent series: [1, page 49]

Proposition 13(Convolution Theorem). Let * be the convolution operator (Definition 9 page 20).

Ζ	$\underbrace{(\langle\!\!\langle x_n\rangle\!\!\rangle\star\langle\!\!\langle y_n\rangle\!\!\rangle)}$	$= \underbrace{(\mathbf{Z}(\!(x_n)\!))}_{(\mathbf{Z}(\!(y_n)\!))}$	$\forall (x_n)_{n \in \mathbb{Z}}, (y_n)_{n \in \mathbb{Z}} \in \ell^2_{\mathbb{C}}$
8	equence convolution	series multiplication	

Proof.

$$\begin{aligned} [\mathbf{Z}(x \star y)](z) &\triangleq \mathbf{Z}\left(\sum_{m \in \mathbb{Z}} x_m y_{n-m}\right) & \text{by Definition 9 page 20} \\ &\triangleq \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} x_m y_{n-m} z^{-n} & \text{by Definition 10 page 21} \\ &= \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} x_m y_{n-m} z^{-n} & \\ &= \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} x_m y_{n-m} z^{-n} & \\ &= \sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} x_m y_k z^{-(m+k)} & \text{where } k = n-m \iff n = m+k \\ &= \left[\sum_{m \in \mathbb{Z}} x_m z^{-m}\right] \left[\sum_{k \in \mathbb{Z}} y_k z^{-k}\right] & \\ &\triangleq (\mathbf{Z}(x_n)) \ (\mathbf{Z}(y_n)) & \text{by Definition 10 page 21} \end{aligned}$$

Lemma 5. Let H be a linear time-invariant operator with impulse response (h(n)). Let $(y(n)) \triangleq (H x(n))$.

 $\begin{cases} (A). (\mathfrak{x}(n)) \text{ and } (\mathfrak{y}(n)) \text{ are real-valued and} \\ (B). (\mathfrak{x}(n)) \text{ and } (\mathfrak{h}(n)) \text{ are in } \ell^2_{\mathbb{C}} & \text{and} \\ (C). (\mathfrak{x}(n)) \neq (\cdots, 0, 0, 0, \cdots) \text{ and} \\ (D). (\mathfrak{h}(n)) \text{ is linear time-invariant} \end{cases} \implies \begin{cases} (1). (\mathfrak{h}(n)) \text{ is real-valued and} \\ (2). \check{\mathrm{H}}(z) = \check{\mathrm{H}}^*(z^*) \end{cases}$

Proof. 1.Let $h_R(n)$ and $h_I(n)$ be the *real-part* and *imaginary-part*, respectively, of h(n). 2.lemma: $\sum_{m \in \mathbb{Z}} h_I(m) x(n-m) = 0$

$$\begin{split} &\sum_{m\in\mathbb{Z}} h_R(m) \, \mathbf{x}(n-m) + i \sum_{m\in\mathbb{Z}} h_I(m) \, \mathbf{x}(n-m) \\ &= \sum_{m\in\mathbb{Z}} h(m) \, \mathbf{x}(n-m) & \text{by definitions of } h_R \text{ and } h_I & \text{item (1)} \\ &= y(n) & \text{because H is } LTI & \text{hypothesis (D)} \\ &= y^*(n) & \text{because y is } real-valued & \text{hypothesis (A)} \\ &= \left(\sum_{m\in\mathbb{Z}} h(m) \, \mathbf{x}(n-m)\right)^* & \text{because H is } LTI & \text{hypothesis (D)} \\ &= \sum_{m\in\mathbb{Z}} h^*(m) \, \mathbf{x}^*(n-m) & \text{by antiautomorphic property} & (\text{Definition 11 page 24}) \\ &= \sum_{m\in\mathbb{Z}} h^*(m) \, \mathbf{x}(n-m) & \text{because y is } real-valued & \text{hypothesis (A)} \\ &= \sum_{m\in\mathbb{Z}} h_R(m) \, \mathbf{x}(n-m) - i \sum_{m\in\mathbb{Z}} h_I(m) \, \mathbf{x}(n-m) & \text{by definitions of } h_R \text{ and } h_I & \text{item (1)} \\ &\Rightarrow \boxed{\sum h_I(m) \, \mathbf{x}(n-m) = 0} \end{split}$$

3.Notes:

 $m{\in}\mathbb{Z}$

(a)Without hypothesis (C), it is trivial to satisfy (2) lemma.

(b)Without hypothesis (B), it is simple to satisfy (2) lemma with $h(n) = (\cdots, 0, 0, 0, i, -i, 0, 0, 0, \cdots)$ and $x(n) = (\cdots, 1, 1, 1, \cdots)$

(c)Without hypothesis (D), it is trivial to satisfy (2) lemma with $\operatorname{Hx}(n) \triangleq \operatorname{R}_{e}\left(\sum_{m \in \mathbb{Z}} \operatorname{h}(m) \operatorname{x}(n-m)\right)$ 4.Proof that $\operatorname{h}(n)$ is *real-valued*:

(2) lemma $\implies \check{H}_{I}(z)\check{X}(z) = 0$ by Convolution Theorem (Proposition 13 page 23) $\implies \check{H}_{I}(z) = 0$ because $\mathbf{x}(n) \neq (\cdots, 0, 0, 0, \cdots)$ hypothesis (C) $\implies \mathbf{h}_{I}(n) = (\cdots, 0, 0, 0, \cdots)$ $\implies \mathbf{h}(n) \triangleq \mathbf{h}_{R}(n) + i \, \mathbf{h}_{I}(n)$ is real-valued

5.Proof that $\check{\mathrm{H}}(z) = \check{\mathrm{H}}^*(z^*)$:

$\check{\mathbf{H}}(z) \triangleq \mathbf{Z}(\mathbf{x}(n))$	by definition of $\check{\mathrm{H}}(z)$	
$= \mathbf{Z}(\!\!(\mathbf{x}^*(n))\!\!)$	because $\mathbf{x}(n)$ is <i>real-valued</i>	(item (4) page 24)
$= \check{\mathrm{H}}^{*}\left(z^{*}\right)$	by Proposition 12	

Lemma 6.Let $\tilde{H}(\omega)$ be the DTFT (Definition 1 page 1) of a sequence h(n).

 $\{ h(n) \text{ is real-valued} \} \implies \{ \tilde{H}(-\omega) = \tilde{H}^*(\omega) \text{ (conjugate symmetric)} \}$

Proof.

$$\begin{split} \tilde{\mathsf{H}}(-\omega) &\triangleq \sum_{n \in \mathbb{Z}} \mathsf{h}(n) e^{-i(-\omega)n} & \text{by definition of } \tilde{\mathsf{H}}(\omega) & (\text{Definition 1 page 1}) \\ &= \sum_{n \in \mathbb{Z}} \mathsf{h}(n) e^{i\omega n} \\ &= \left[\sum_{n \in \mathbb{Z}} \mathsf{h}^*(n) e^{i\omega n}\right]^* & \text{by antiautomorphic property of *-algebras} & (\text{Definition 11 page 24}) \\ &= \left[\sum_{n \in \mathbb{Z}} \mathsf{h}(n) e^{-i\omega n}\right]^* & \text{by real-valued hypothesis} \\ &\triangleq \tilde{\mathsf{H}}^*(\omega) & \text{by definition of } \tilde{\mathsf{H}}(\omega) & (\text{Definition 1 page 1}) \end{split}$$

Appendix C Normed Algebras

Definition 11.[21, page 178], [8, page 241] xsym]* Let A be an algebra.

The pair $(\mathbb{A}, *)$ is a *-algebra, or "star-algebra", if 1. $(x + y)^* = x^* + y^* \forall x, y \in \mathbb{A}$ (distributive) and 2. $(\alpha x)^* = \overline{\alpha} x^* \quad \forall x \in \mathbb{A}, \alpha \in \mathbb{C}$ (conjugate linear) and 3. $(xy)^* = y^* x^* \quad \forall x, y \in \mathbb{A}$ (antiautomorphic) and 4. $x^{**} = x \quad \forall x \in \mathbb{A}$ (involutory) The operator * is called an involution on the algebra \mathbb{A} .

Definition 12(Hermitian components). [18, page 430], [21, page 179], [8, page 242] Let $(X, \|\cdot\|)$ be a *-algebra (Definition 11 page 24).

For $x \in X$, the real part of x is defined as $\operatorname{R}_{e} x \triangleq \frac{1}{2} \left(x + x^{*} \right)$ For $x \in X$, the imaginary part of x is defined as $\operatorname{I}_{m} x \triangleq \frac{1}{2i} \left(x - x^{*} \right)$

Example 1.[14, pages 106–107] Let \mathbb{C} be the set of complex numbers and $* : \mathbb{C} \to \mathbb{C}$ the conjugate operator. The pair $(\mathbb{C}, *)$ is an *-algebra.

References

- Yuri A. Abramovich and Charalambos D. Aliprantis. An Invitation to Operator Theory. American Mathematical Society, Providence, Rhode Island, 2002. ISBN 0-8218-2146-6. URL http://books.google.com/books?vid= ISBN0821821466.
- Julius S. Bendat and Allan G. Piersol. Engineering Applications of Correlation and Spectral Analysis. John Wiley & Sons, 1980. ISBN 9780471058878. URL http://www.amazon.com/dp/0471058874.
- [3] Julius S. Bendat and Allan G. Piersol. Engineering Applications of Correlation and Spectral Analysis. Wiley-Interscience, 2 edition, 1993. ISBN 9780471570554. URL http://www.amazon.com/dp/0471570559.
- [4] Julius S. Bendat and Allan G. Piersol. Random Data: Analysis and Measurement Procedures, volume 729 of Wiley Series in Probability and Statistics. John Wiley & Sons, 4 edition, 2010. ISBN 9781118210826. URL http://books. google.com/books?vid=ISBN1118210824.
- [5] Ronald Newbold Bracewell. The Fourier transform and its applications. McGraw-Hill electrical and electronic engineering series. McGraw-Hill, 2, illustrated, international student edition edition, 1978. ISBN 9780070070134. URL http://books.google.com/books?vid=ISBN007007013X.
- [6] Thomas John I'Anson Bromwich. An Introduction to the Theory of Infinite Series. Macmillan and Company, 1 edition, 1908. ISBN 9780821839768. URL http://www.archive.org/details/anintroductiont00bromgoog.
- [7] James A. Cadzow. Foundations of Digital Signal Processing and Data Analysis. Macmillan Publishing Company, New York, 1987. ISBN 0023180102. URL https://books.google.com/books?vid=ISBN9780023180101.
- [8] Israel M. Gelfand and Mark A. Naimark. Normed rings with an involution and their representations. In *Commutative Normed Rings*, number 170 in AMS Chelsea Publishing Series, pages 240–274. Chelsea Publishing Company, Bronx, 1964. ISBN 9780821820223. URL http://books.google.com/books?vid=ISBN0821820222.
- [9] Godfrey H. Hardy. A Mathematician's Apology. Cambridge University Press, Cambridge, 1940. URL http://www.math.ualberta.ca/~mss/misc/A%20Mathematician's%20Apology.pdf.
- [10] Carl W. Helstrom. Probability and Stochastic Processes for Engineers. Maxwell Macmillan international editions in engineering. Macmillan, 2 edition, 1991. ISBN 9780023535710. URL http://books.google.com/books?vid= ISBN0023535717.
- K. D. Joshi. Applied Discrete Structures. New Age International, New Delhi, 1997. ISBN 8122408265. URL http://books.google.com/books?vid=ISBN8122408265.
- [12] Steven M. Kay. Modern Spectral Estimation: Theory and Application. Prentice-Hall signal processing series. Prentice Hall, 1988. ISBN 9788131733561. URL http://books.google.com/books?vid=ISBN8131733564.
- [13] Carlos S. Kubrusly. The Elements of Operator Theory. Springer, 2 edition, 2011. ISBN 9780817649975. URL http://books.google.com/books?vid=ISBN0817649972.
- [14] Edmund Landau. Foundations of analysis: the arithmetic of whole, rational, irrational, and complex numbers. A supplement to textbooks on the differential and integral calculus. AMS Chelsea Publishing, Providence, Rhode Island, USA, 3 edition, 1966. URL http://books.google.com/books?vid=ISBN082182693X. 1966 English translation of the German text Grundlagen der Analysis.
- [15] J. Leuridan, J. De Vis, and Van der Auweraer H. F. Lembregts D. "a comparison of some frequency response function measurement techniques. In *Proceedings of the 4th International Modal Analysis Conference IMAC*, pages 908–918, Los Angeles, CA, 1986. URL https://www.researchgate.net/publication/283994172.
- [16] MatLab. cpsd: Cross power spectral density. *MatLab*, accessed 2018 November 26 2018. URL https://www.mathworks. com/help/signal/ref/cpsd.html.
- [17] MatLab. xcorr: Cross-correlation. MatLab, accessed 2018 November 26 2018. URL https://www.mathworks.com/ help/signal/ref/xcorr.html.
- [18] Anthony N. Michel and Charles J. Herget. Applied Algebra and Functional Analysis. Dover Publications, Inc., 1993. ISBN 048667598X. URL http://books.google.com/books?vid=ISBN048667598X. original version published by Prentice-Hall in 1981.
- [19] Anthanasios Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill Series in Electrical Engineering. McGraw-Hill Book Company, New York, 2 edition, 1984. ISBN 9780070484689. URL http://books. google.com/books?vid=ISBN0070484686.
- [20] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing: Principles, Algorithms, and Applications. Prentice Hall international editions. Prentice Hall, 3 edition, 1996. ISBN 9780133737622. URL http://books.google. com/books?vid=ISBN0133737624.
- [21] Charles Earl Rickart. General Theory of Banach Algebras. University series in higher mathematics. D. Van Nostrand Company, Yale University, 1960. URL http://books.google.com/books?id=PVrvAAAAMAAJ.
- [22] Kihong Shin and Joseph Hammond. Fundamentals of Signal Processing for Sound and Vibration Engineers. John Wiley & Sons, 2008. ISBN 9780470725641. URL https://archive.org/details/FubdamentalsOfSignalShinHammond/.
- [23] Jeffrey Stopple. A Primer of Analytic Number Theory: From Pythagoras to Riemann. Cambridge University Press, Cambridge, June 2003. ISBN 0521012538. URL http://books.google.com/books?vid=ISBN0521012538.
- [24] Brian S. Thomson, Andrew M. Bruckner, and Judith B. Bruckner. Elementary Real Analysis. www.classicalrealanalysis.com, 2 edition, 2008. ISBN 9781434843678. URL http://classicalrealanalysis.info/com/ Elementary-Real-Analysis.php.
- [25] Eric W. Weisstein. CRC Concise Encyclopedia of Mathematics. CRC Press, 2, revised edition, 2002. ISBN 9781420035223. URL http://books.google.com/books?vid=ISBN1420035223.