The Effects of the Assorted Cross-Correlation Definitions

Daniel J. Greenhoe
Holland Charter Township, MI 49464 USA

Received: 11 Jul 2019, Accepted: 20 Jan 2023
Published online: 22 Mar 2023

Abstract

The literature offers varying and in general incompatible definitions of the cross-correlation function $\mathrm{R}_{\mathrm{xy}}(n, m)$ and its jointly wide-sense stationary special case $\mathrm{R}_{\mathrm{xy}}(m)$. The choice of definition has consequences for results involving the cross-spectral density function $\tilde{S}_{x y}(\omega)$, and the more general Z-transform density $\check{S}_{x y}(z)$. In some stochastic processing systems involving simple additive noise or even additive noise combined with non-linear operations, these varying definitions lead to identical results. In some other systems involving nonlinear and linear parallel operations, including those involving system identification problems, results differ.

1 Introduction

The literature offers varying and in general incompatible definitions of the cross-correlation function $\mathrm{R}_{\mathrm{xy}}(n, m)$ and its jointly wide-sense stationary (Definition 6 page 20) special case $\mathrm{R}_{\mathrm{xy}}(m)$. The choice of definition has consequences for results involving the cross-spectral density function $\tilde{S}_{\mathrm{xy}}(\omega)$, which is defined as the Discrete-time Fourier Transform of $\mathrm{R}_{\mathrm{xy}}(m)$, as well as the more general $\check{S}_{x y}(z)$, which is defined as the Z - Transform of $\mathrm{R}_{\mathrm{xy}}(m)$:

Definition 1.[19, page 265], [12, page 52], [2, page 50], [4, page 118]
$\check{S}_{x y}(z) \triangleq \underbrace{\mathrm{Z} \mathrm{R}_{\mathrm{xy}}(m) \triangleq \sum_{m \in \mathbb{Z}} \mathrm{R}_{\mathrm{xy}}(m) z^{-m}}_{\text {Z-Transform of } \mathrm{R}_{\mathrm{xy}}(m)}$

$$
\tilde{\mathrm{S}}_{\mathrm{xy}}(\omega) \triangleq \underbrace{\stackrel{\mathrm{F}}{ } \mathrm{R}_{\mathrm{xy}}(m) \triangleq \sum_{m \in \mathbb{Z}} \mathrm{R}_{\mathrm{xy}}(m) e^{-i \omega m}}_{\text {Discrete-time Fourier Transform of } \mathrm{R}_{\mathrm{xy}}(m)}
$$

2 Definitions

Here is a very limited overview of definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ in the literature:
References that put the conjugate $*$ on y :

- Papoulis
- Cadzow
- MatLab
[19, page 263]
[7, page 341]
$[16,17]$
References that put the conjugate $*$ on x :
- Kay [12, page 52]
- Weisstein
- Weisstern

$$
\begin{aligned}
R_{x y}(m) & \triangleq E\left\{\mathrm{x}(m) \mathrm{y}^{*}(0)\right\} \\
r_{x y}(m) & \triangleq E\left[\mathrm{x}(m) \mathrm{y}^{*}(0)\right] \\
R_{x y}(m) & \triangleq E\left\{x_{n+m} y_{n}^{*}\right\}
\end{aligned}
$$

$$
r_{x y}[m] \triangleq \mathcal{E}\left\{x^{*}[0] y[m]\right\}
$$

$$
f \star g \triangleq \int_{-\infty}^{\infty} \bar{f}(\tau) g(t+\tau) \tau
$$

- Leuridan et al.

References that use no conjugate:

- Bendat and Piersol
- Helstrom
- Proakis and Manolakis
- Shin and Hammond
- Bracewell
[15, page 2](7)
[4, page 111]
[10, page 369]
[20, page A4]
[22, page 280]
$[5 \text {, page } 46]^{2}$

$$
\begin{aligned}
G X Y_{1} & \triangleq \sum X_{1}^{*} Y \\
R_{x y}(m) & \triangleq E[\mathrm{x}(0) \mathrm{y}(m)] \\
\mathrm{R}_{\mathrm{xy}}\left(t_{1}, t_{2}\right) & \triangleq E\left[\mathrm{x}\left(t_{1}\right) \mathrm{y}\left(t_{2}\right)\right] \\
\gamma_{x y}\left(t_{1}, t_{2}\right) & \triangleq E\left(X_{t_{1}} Y_{t_{2}}\right) \\
R_{x y}(\tau) & \triangleq E[x(t) y(t+\tau)] \\
g^{*} \star h & \triangleq \int_{-\infty}^{\infty} g^{*}(u) h(u+x) \mathrm{u}
\end{aligned}
$$

In this paper, each sequence (Definition 7 page 20) mentioned hereafter is assumed to be an element of the space of all absolutely square summable sequences $\ell_{\mathbb{C}}^{2}$ (Definition 8 page 20). Furthermore, the random sequences $(\mathbb{x}(n))_{n \in \mathbb{Z}}$ and $(\mathrm{y}(n))_{n \in \mathbb{Z}}$ are assumed to be jointly wide-sense stationary (Definition 6 page 20).

In terms of the expectation operator E (Definition 4 page 19), there are a total of eight choices for defining the crosscorrelation $\mathrm{R}_{\mathrm{xy}}(m)$ of complex-valued jointly wide-sense stationary (Definition 6 page 20) sequences $\left(\mathrm{x}(n) D_{n \in \mathbb{Z}}\right.$ and $\left(\mathrm{y}(n) D_{n \in \mathbb{Z}}\right.$. There are eight because each of the two sequences may be defined with or without the conjugate operator $*$, and one sequence may lead or lag the other $(2 \times 2 \times 2=8)$. Definition 2 (next) provides a formalized list of the eight possible definitions.

Definition 2.

P	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}(m) \mathrm{y}^{*}(0)\right]$	(5). Bendat	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}[\mathrm{x}(0) \mathrm{y}(m)]$
(2). Kay:	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}(m)\right]$	(6). $\boldsymbol{a l t}-\boldsymbol{B P}$:	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}[\mathrm{x}(m) \mathrm{y}(0)]$
(3). alt-Papo	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}(0) \mathrm{y}^{*}(m)\right]$	(7). BP-star:	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}^{*}(m)\right]$
(4). alt-Kay:	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}(0)\right]$	(8). alt-BP-star:	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}^{*}(0)\right]$

3 Results

Remark.

The 8 definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ listed in Definition 2 yield.

- 2 relations on the pair $\left(\mathrm{R}_{\mathrm{yx}}(m), \mathrm{R}_{\mathrm{xy}}(m) \quad\right.$) (Lemma 1 page 3)
-2 relations on the pair $\left(\check{S}_{x y}(z), \check{S}_{y x}(z) \quad\right.$ (Proposition 1 page 3)
- 4 relations on the triple $\left(\check{S}_{x y}(z), \check{H}(z), \quad \check{S}_{x x}(z)\right) \quad$ (Proposition 2 page 4)
- 3 relations on the triple $\left(\tilde{S}_{y y}(\omega), \tilde{H}(\omega), \tilde{S}_{x x}(\omega)\right) \quad$ (Corollary 2 page 7)
- only 4 cases in which $\tilde{S}_{x x}(\omega)$ is guarenteed to be real-valued (Corollary 1 page 4)

Remark.
Moreover, if $(\mathrm{x}(n))$ and $(\mathrm{y}(n))$ are real-valued, the 8 definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ yield \ldots

- 1 relation on $\left(\mathrm{R}_{x y}(m), \mathrm{R}_{y x}(m) \quad\right.$) (Corollary 3 page 8)
- 1 relation on ($\check{S}_{x y}(z), \check{S}_{y x}(z)$ (Proposition 3 page 8)
- 2 relations on ($\left.\check{\mathrm{S}}_{x y}(z), \check{\mathrm{H}}(z), \check{\mathrm{S}}_{x x}(z)\right)$ (Proposition 4 page 9)
- 2 relations on $\left(\tilde{S}_{x y}(\omega), \tilde{H}(\omega), \tilde{S}_{x x}(\omega)\right)$ (Corollary 4 page 10)
- 1 relation on ($\left.\check{S}_{\text {Syy }}(z), \underset{\sim}{\mathrm{H}}(z), \check{\mathrm{S}}_{x \times x}(z)\right)$ (Proposition 4 page 9)
- 1 relation on $\left(\tilde{S}_{y y}(\omega), \tilde{H}(\omega), \tilde{S}_{x x}(\omega)\right)$ (Corollary 4 page 10)

[^0]Lemma 1.Let (1)-(8) below correspond to the eight definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ in Definition 2.

$$
\text { (1), (2), (3), or (4) } \Longrightarrow \mathrm{R}_{\mathrm{yx}}(m)=\mathrm{R}_{\mathrm{xy}}{ }^{*}(-m) \text { and } \mathrm{R}_{x x}(-m)=\mathrm{R}_{\mathrm{xx}}{ }^{*}(m) \text { (conjugate symmetric) }
$$

$$
(5),(6),(7) \text {, or }(8) \Longrightarrow \mathrm{R}_{\mathrm{yx}}(m)=\mathrm{R}_{\mathrm{xy}}(-m) \text { and } \mathrm{R}_{\mathrm{xx}}(-m)=\mathrm{R}_{\mathrm{xx}}(m) \text { (symmetric) }
$$

Proof.
(1).

$$
\begin{array}{rlrl}
\mathrm{R}_{\mathrm{yx}}(m) & \triangleq \mathrm{E}\left[\mathrm{y}(m) \mathrm{x}^{*}(0)\right] & & \text { by Papoulis' definition of } \mathrm{R}_{\mathrm{xy}}(m) \\
& =\left(\mathrm{E}\left[\mathrm{x}(0) \mathrm{y}^{*}(m)\right]\right)^{*} & & \text { by antiautomorphic property of } * \text {-algebras } \\
& =\left(\mathrm{E}\left[\mathrm{x}(0-m) \mathrm{y}^{*}(m-m)\right]\right)^{*} & & \text { by wide sense stationary property } \\
& \triangleq \mathrm{R}_{\mathrm{xy}}{ }^{*}(-m) & & \text { by Papoulis' definition of } \mathrm{R}_{\mathrm{xy}}(m) \\
\mathrm{R}_{\mathrm{xx}}(-m) & \left.\triangleq \mathrm{R}_{\mathrm{xy}}(-m)\right|_{\mathrm{y}=\mathrm{x}}=\left.\mathrm{R}_{\mathrm{yx}}{ }^{*}(m)\right|_{\mathrm{y}=\mathrm{x}} & =\mathrm{R}_{\mathrm{xx}}^{*}(m)
\end{array}
$$

$$
\text { (Definition } 2 \text { page 2) }
$$

$$
\text { (Definition } 11 \text { page 24) }
$$

(Definition 2 page 2)
(2). $\quad \mathrm{R}_{\mathrm{yx}}(m) \triangleq \mathrm{E}\left[\mathrm{y}^{*}(0) \mathrm{x}(m)\right]$

$$
\text { (3). } \quad \mathrm{R}_{\mathrm{yx}}(m) \triangleq \mathrm{E}\left[\mathrm{y}(0) \mathrm{x}^{*}(m)\right]
$$

$$
\mathrm{R}_{\mathrm{yx}}(m) \triangleq \mathrm{E}\left[\mathrm{y}^{*}(m) \mathrm{x}(0)\right]
$$

$$
\text { (6). } \quad \mathrm{R}_{\mathrm{yx}}(m) \triangleq \mathrm{E}[\mathrm{y}(m) \mathrm{x}(0)]
$$

$$
\begin{array}{lll}
=\left(\mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}(0)\right]\right)^{*} & =\left(\mathrm{E}\left[\mathrm{x}^{*}(m-m) \mathrm{y}(0-m)\right]\right)^{*} & \\
=\left(\mathrm{E}\left[\mathrm{x}(m) \mathrm{y}^{*}(0)\right]\right)^{*} & =\left(\mathrm{E}\left[\mathrm{x}(m-m) \mathrm{y}_{\mathrm{xy}}{ }^{*}(0-m)\right]\right)^{*} & \\
=\left(\mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}(m)\right]\right)^{*} & & \triangleq\left(\mathrm{E}\left[\mathrm{x}_{\mathrm{xy}}{ }^{*}(-m) \mathrm{y}(0)\right]\right)^{*}(-m) \\
=\mathrm{E}[\mathrm{x}(m) \mathrm{y}(0)] & & \triangleq \mathrm{E}[\mathrm{x}(m-m) \mathrm{y}(0-m)] \\
=\mathrm{E}[\mathrm{x}(0) \mathrm{y}(m)] & & \triangleq \mathrm{R}_{\mathrm{xy}}{ }^{*}(-m) \\
=\mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}^{*}(0)\right] & & =\mathrm{E}[\mathrm{x}(0-m) \mathrm{y}(m-m)] \\
=\mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}^{*}(m)\right] & & \triangleq \mathrm{x}_{\mathrm{xy}}(-m) \\
& =\mathrm{E}\left[\mathrm{x}^{*}(0-m) \mathrm{y}^{*}(0-m)\right] & \\
\left.\mathrm{y}^{*}(m-m)\right] & & \triangleq \mathrm{R}_{\mathrm{xy}}(-m) \\
\mathrm{R}_{\mathrm{xy}}(-m)
\end{array}
$$

(7). $\quad \mathrm{R}_{\mathrm{yx}}(m) \triangleq \mathrm{E}\left[\mathrm{y}^{*}(0) \mathrm{x}^{*}(m)\right]$

Proposition 1.Let (1)-(8) correspond to the eight definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ in Definition 2. Let H be a linear time-invariant (LTI) operator with impulse response ($\mathrm{h}(n) D$ on a widesense stationary sequence $(\mathrm{x}(n))$ yielding a sequence $(\mathrm{y}(n)) \triangleq(\mathrm{Hx}(n))$. Let $\check{\mathrm{H}}(z)$ be the
 Z-Transform of $(\mathrm{h}(n))$.

$$
\begin{aligned}
& (1),(2),(3), \text { or }(4) \Longrightarrow \check{S}_{y x}(z)=\check{S}_{x y}^{*}\left(\frac{1}{z^{*}}\right) \text { and } \check{S}_{x x}(z)=\check{S}_{x \times x}^{*}\left(\frac{1}{z^{*}}\right) \\
& (5),(6),(7), \text { or }(8) \Longrightarrow \check{S}_{y x}(z)=\check{S}_{x y}\left(\frac{1}{z}\right) \text { and } \mathrm{S}_{x x}(z)=\check{S}_{x x}\left(\frac{1}{z}\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& (1)-(4): \check{S}_{\mathrm{yx}}(z) \triangleq \mathrm{Z} \mathrm{R}_{\mathrm{yx}}(m) \quad \text { by definition of } \check{\mathrm{S}}_{\mathrm{xy}}(z) \\
& \triangleq \sum_{m \in \mathbb{Z}} \mathrm{R}_{\mathrm{yx}}(m) z^{-m} \\
& =\sum_{m \in \mathbb{Z}} \mathrm{R}_{\mathrm{xy}}{ }^{*}(-m) z^{-m} \quad \text { by conjugate symmetry property } \\
& =\left[\sum_{m \in \mathbb{Z}} \mathrm{R}_{\mathrm{xy}}(-m)\left(z^{*}\right)^{-m}\right]^{*} \quad \text { by antiautomorphic property of } *_{\text {-algebras }} \quad \text { (Definition } 11 \text { page 24) } \\
& =\left[\sum_{-p \in \mathbb{Z}} \mathrm{R}_{\mathrm{xy}}(p)\left(z^{*}\right)^{p}\right]^{*} \quad \text { where } p \triangleq-m \quad \Longrightarrow m=-p \\
& =\left[\sum_{p \in \mathbb{Z}} \mathrm{R}_{\mathrm{xy}}(p)\left(z^{*}\right)^{p}\right]^{*} \quad \text { because }(\mathrm{x}(n)),(\mathrm{y}(n)) \in \ell_{\mathbb{C}}^{2} \quad \text { (Definition } 8 \text { page 20) } \\
& =\left[\sum_{p \in \mathbb{Z}} \mathrm{R}_{\mathrm{xy}}(p)\left(\frac{1}{z^{*}}\right)^{-p}\right]^{*} \\
& \triangleq \check{S}_{x y}^{*}\left(\frac{1}{z^{*}}\right) \quad \text { by definition of } \check{S}_{\mathrm{Xy}}(z)
\end{aligned}
$$

$(1)-(4): \check{\mathrm{S}}_{\mathrm{xx}}^{*}(z) \triangleq\left[\check{\mathrm{S}}_{\mathrm{yx}}(z)\right]_{\mathrm{y}=\mathrm{x}}^{*}$
$=\left[\check{S}_{x y}^{*}\left(\frac{1}{z^{*}}\right)\right]_{y=x}^{*}=\left[\check{S}_{x x}^{*}\left(\frac{1}{z^{*}}\right)\right]^{*}$
$=\check{S}_{x x}\left(\frac{1}{z^{*}}\right)$
(5) - (8) : $\check{\mathrm{S}}_{\mathrm{yx}}(z)=\sum_{m \in \mathbb{Z}} \mathrm{R}_{\mathrm{xy}}(-m) z^{-m}$
$=\sum_{-p \in \mathbb{Z}} \mathrm{R}_{\mathrm{xy}}(p) z^{p}$
$=\sum_{p \in \mathbb{Z}} \mathrm{R}_{\mathrm{xy}}(p)\left(\frac{1}{z}\right)^{-p}$
$\triangleq \check{S}_{x y}\left(\frac{1}{z}\right)$
(5) - (8) : $\check{\mathrm{S}}_{\mathrm{xx}}(z)=\left.\check{\mathrm{S}}_{\mathrm{yx}}(z)\right|_{\mathrm{y}=\mathrm{x}}$
$=\left.\check{S}_{x y}\left(\frac{1}{z}\right)\right|_{y=x}$
$\left.=\check{S}_{x \times}\left(\frac{1}{z}\right) \right\rvert\,$
$=\check{S}_{x x}\left(\frac{1}{z}\right)$

Corollary 1.Let $\(1),(2), \cdots(8)), \mathrm{H},(\mathrm{h}(n)),(\mathrm{x}(n))$, and $\ \mathrm{y}(n))$ be defined as in Proposition 1. Let $\tilde{\mathrm{H}}(\omega)$ be the DTFT (Definition 1 page 1) of $(\mathrm{h}(n))$.

$$
\begin{aligned}
& \{(1),(2),(3), \text { or }(4)\} \Longrightarrow\left\{\tilde{S}_{x x}^{*}(\omega)=\tilde{S}_{x x}(\omega) \quad\left(\tilde{S}_{x x}(\omega) \text { is real-valued) }\right\}\right. \\
& \{(1),(2),(3), \text { or }(4)\} \Longrightarrow\left\{\tilde{S}_{y x}(\omega)=\tilde{S}_{x y}^{*}(\omega)\right. \\
& \{(5),(6),(7), \text { or }(8)\} \Longrightarrow\left\{\tilde{S}_{y x}(\omega)=\tilde{S}_{x y}(-\omega)\right.
\end{aligned}
$$

Proof.

(1)-(4) $\quad \tilde{S}_{x x}{ }^{*}(\omega)=\left.\check{S}_{x x}{ }^{*}(z)\right|_{z=e^{i \omega}}$
$=\left.\check{S}_{\times x}{ }^{*}\left(\frac{1}{z^{*}}\right)\right|_{z=e^{i \omega}}$
$\overbrace{=\left.\check{S}_{x x}(z)\right|_{z=e^{i \omega}}}^{\text {by Proposition 1 }}=\tilde{S}_{x x}(\omega)$
(1)-(4) $\quad \tilde{S}_{y x}(\omega)=\left.\check{S}_{y x}(z)\right|_{z=e^{i \omega}}$
$=\left.\check{S}_{\mathrm{xy}}^{*}\left(\frac{1}{z^{*}}\right)\right|_{z=e^{i \omega}}$
$=\check{S}_{x y}{ }^{*}\left(e^{i \omega}\right) \quad=\tilde{\mathrm{S}}_{\mathrm{xy}}{ }^{*}(\omega)$
(5)-(8) $\quad \tilde{\mathrm{S}}_{\mathrm{yx}}(\omega)=\left.\check{\mathrm{S}}_{\mathrm{yx}}(z)\right|_{z=e^{i \omega}}$
$=\underbrace{\left.\check{S}_{x y}\left(\frac{1}{z}\right)\right|_{z=e^{i \omega}}}_{\text {by Proposition 1 }} \quad=\check{S}_{x y}\left(e^{-i \omega}\right) \quad=\tilde{S}_{x y}(-\omega)$

Proposition 2.Let (1)-(8) below correspond to the eight definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ in Definition 2.

Proof.

(2). $\quad \check{\mathrm{S}}_{\mathrm{ty}}(z) \triangleq \mathrm{ZR} \mathrm{R}_{\mathrm{ty}}(m)$

$$
=\mathrm{ZE}\left[\mathrm{t}^{*}(0)\left(\sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{x}(m-k)\right)\right]
$$

$$
\triangleq \mathrm{Z}\left(\mathrm{~h}(m) \star \mathrm{R}_{\mathrm{tx}}(m)\right)
$$

$$
\left.\check{S}_{x y}(z) \triangleq \check{S}_{\mathrm{ty}}\right|_{\mathrm{t}=\mathrm{x}}
$$

$$
\left.\check{\mathrm{S}}_{\mathrm{yy}}(z) \triangleq \check{\mathrm{S}}_{\mathrm{ty}}(z)\right|_{\mathrm{t} \triangleq \mathrm{y}}=\left.\check{\mathrm{S}}_{\mathrm{yt}}^{*}\left(\frac{1}{z^{*}}\right)\right|_{\mathrm{t} \triangleq \mathrm{y}}
$$

$$
=\check{\mathrm{H}}(z) \check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{\mathrm{xx}}^{*}\left(\frac{1}{z^{*}}\right)
$$

$$
\triangleq \mathrm{Z} \mathrm{E}\left[\mathrm{t}^{*}(0) \mathrm{y}(m)\right] \quad=\mathrm{ZE}\left[\mathrm{t}^{*}(0)(\mathrm{h}(m) \star \mathrm{x}(m))\right]
$$

$$
=\mathrm{Z}\left(\sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{E}\left[\mathrm{t}^{*}(0) \mathrm{x}(m-k)\right]\right) \triangleq \mathrm{Z}\left(\sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{R}_{\mathrm{tx}}(m-k)\right)
$$

$$
=[\mathrm{Z} \mathrm{~h}(m)]\left[\mathrm{Z} \mathrm{R}_{\mathrm{tx}}(m)\right] \quad \triangleq \check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{tx}}(z)
$$

$$
=\left.\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{tx}}(z)\right|_{\mathrm{t}=\mathrm{x}}
$$

$$
=\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xx}}(z)
$$

$$
=\left.\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{tx}}(z)\right|_{\mathrm{t} \triangleq \mathrm{y}}=\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{yx}}(z)
$$

$$
=\check{\mathrm{H}}(z) \check{\mathrm{S}}_{x y}^{*}\left(\frac{1}{z^{*}}\right)
$$

$$
=\check{\mathrm{H}}(z) \check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z)
$$

by Proposition 1

(3). $\quad \check{\mathrm{S}}_{\mathrm{ty}}(z) \triangleq \mathrm{ZR}_{\mathrm{ty}}(m) \triangleq \mathrm{ZE}\left[\mathrm{t}(0) \mathrm{y}^{*}(m)\right]$

$$
=\mathrm{Z} \mathrm{E}\left[\mathrm{t}(0) \sum_{k \in \mathbb{Z}} \mathrm{~h}^{*}(k) \mathrm{x}^{*}(m-k)\right] \quad=\mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}^{*}(k) \mathrm{E}\left[\mathrm{t}(0) \mathrm{x}^{*}(m-k)\right] \quad \triangleq \mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}^{*}(k) \mathrm{R}_{\mathrm{tx}}(m-k)
$$

$$
\triangleq \mathrm{Z}\left[\mathrm{~h}^{*}(m) \star \mathrm{R}_{\mathrm{tx}}(m)\right]
$$

$$
\left.\check{\mathrm{S}}_{\mathrm{xy}}(z) \triangleq \check{\mathrm{S}}_{\mathrm{ty}}(z)\right|_{\mathrm{t}=\mathrm{x}}
$$

(4). $\check{\mathrm{S}}_{\mathrm{yt}}(z) \triangleq \mathrm{ZR}_{\mathrm{yt}}(m)$

$$
\begin{aligned}
& =\mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}^{*}(k) \mathrm{E}\left[\mathrm{x}^{*}(m-k) \mathrm{t}(0)\right] \\
& =\left[\mathrm{Z} \mathrm{~h}^{*}(m)\right][\mathrm{ZR} \mathrm{Xxt}(m)] \\
\check{\mathrm{S}}_{\mathrm{xy}}(z) & =\check{\mathrm{S}}_{\mathrm{yx}}{ }^{*}\left(\frac{1}{z^{*}}\right)
\end{aligned}
$$

$$
\triangleq \check{\mathrm{H}}\left(\frac{1}{z}\right) \check{S}_{x x}{ }^{*}\left(\frac{1}{z^{*}}\right)
$$

$$
\left.\check{\mathrm{S}}_{\mathrm{yy}}(z) \triangleq \check{\mathrm{S}}_{\mathrm{yt}}(z)\right|_{\mathrm{t}=\mathrm{y}}=\left.\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{xt}}(z)\right|_{\mathrm{t}=\mathrm{y}}
$$

(5). $\quad \check{\mathrm{S}}_{\mathrm{ty}}(z) \triangleq \mathrm{ZR}_{\mathrm{ty}}(m)$

$$
\begin{aligned}
& =\mathrm{ZE}\left[\mathrm{t}(0)\left(\sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{x}(m-k)\right)\right] \\
& \triangleq \mathrm{Z}\left[\mathrm{~h}(m) \star \mathrm{R}_{\mathrm{tx}}(m)\right] \\
\check{S}_{\mathrm{Sx}}(z) & \left.\triangleq \check{S}_{\mathrm{ty}}(z)\right|_{\mathrm{t}=\mathrm{x}} \\
\check{S}_{\mathrm{yy}}(z) & =\left.\check{S}_{\mathrm{yy}}\left(\frac{1}{z}\right) \triangleq \check{S}_{\mathrm{ty}}\left(\frac{1}{z}\right)\right|_{\mathrm{t}=\mathrm{y}} \\
& =\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\mathrm{xy}}(z)
\end{aligned}
$$

(6). $\quad \check{\mathrm{S}}_{\mathrm{yt}}(z) \triangleq \mathrm{ZR}_{\mathrm{yt}}(m)$

$$
\begin{aligned}
& =\mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{E}[\mathrm{x}(m-k) \mathrm{t}(0)] \\
& \triangleq \mathrm{Z}\left[\mathrm{~h}(m) \star \mathrm{R}_{\mathrm{xt}}(m)\right]
\end{aligned}
$$

$$
\overleftarrow{\check{S}_{x y}(z)}=\left.\check{S}_{y x}\left(\frac{1}{z}\right) \triangleq \check{S}_{y t}\left(\frac{1}{z}\right)\right|_{\mathrm{t}=\mathrm{x}}
$$

$$
\left.\check{\mathrm{S}}_{\mathrm{yy}}(z) \triangleq \check{\mathrm{S}}_{\mathrm{yt}}(z)\right|_{\mathrm{t}=\mathrm{y}}=\left.\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xt}}(z)\right|_{\mathrm{t}=\mathrm{y}}
$$

$$
\begin{aligned}
& \triangleq \mathrm{ZE}\left[\mathrm{y}^{*}(m) \mathrm{t}(0)\right]=\mathrm{ZE}\left[\left[\sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{x}(m-k)\right]^{*} \mathrm{t}(0)\right] \\
& =\mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}^{*}(k) \mathrm{R}_{\mathrm{xt}}(m-k) \quad \triangleq \mathrm{Z}\left[\mathrm{~h}^{*}(m) \star \mathrm{R}_{\mathrm{xt}}(m)\right] \\
& =\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{xt}}(z) \\
& \left.\triangleq \check{\mathrm{S}}_{\mathrm{yt}}^{*}\left(\frac{1}{z^{*}}\right)\right|_{\mathrm{t}=\mathrm{x}} \quad \text { by Proposition } 12 \text { page } 21 \\
&
\end{aligned} \quad=\left.\mathrm{H}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\mathrm{xt}}^{*}\left(\frac{1}{z^{*}}\right)\right|_{\mathrm{t}=\mathrm{x}} .
$$

$$
=\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{S}_{\mathrm{xx}}(z)
$$

$$
=\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{xy}}(z)
$$

$$
=\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\times x}(z)
$$

$\triangleq \mathrm{ZE}[\mathrm{t}(0) \mathrm{y}(m)]$

$$
\triangleq \mathrm{ZE}[\mathrm{y}(m) \mathrm{t}(0)] \quad=\mathrm{ZE}\left[\left(\sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{x}(m-k)\right) \mathrm{t}(0)\right]
$$

$$
\triangleq \mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{R}_{\mathrm{xt}}(m-k)
$$

$$
=\mathrm{Z}[\mathrm{~h}(m)]\left[\mathrm{Z} \mathrm{R}_{\mathrm{xt}}(m)\right] \quad=\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xt}}(z)
$$

$$
=\left.\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{S}_{\mathrm{X} \mathrm{t}}\left(\frac{1}{z}\right)\right|_{\mathrm{t}=\mathrm{x}}=\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{S}_{\mathrm{Xx}}\left(\frac{1}{z}\right)=\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{S}_{\mathrm{Xx}}(z)
$$

$$
=\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xy}}(z)
$$

$$
=\check{\mathrm{H}}(z) \check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{x x}(z)
$$

$$
\begin{aligned}
& =\mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{E}[\mathrm{t}(0) \mathrm{x}(m-k)] \quad \triangleq \mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{R}_{\mathrm{tx}}(m-k) \\
& {[\mathrm{Zh}(m)]\left[\mathrm{ZR} \mathrm{R}_{\mathrm{tx}}(m)\right] \quad=\check{\mathrm{H}}(z) \check{S}_{\mathrm{tx}}(z)} \\
& =\left.\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{tx}}(z)\right|_{\mathrm{t}=\mathrm{x}} \quad=\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xx}}(z) \\
& =\left.\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\mathrm{tx}}\left(\frac{1}{z}\right)\right|_{\mathrm{t}=\mathrm{y}} \quad=\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\mathrm{yx}}\left(\frac{1}{z}\right) \\
& =\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xx}}(z) \quad=\check{\mathrm{H}}(z) \check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z)
\end{aligned}
$$

(7). $\quad \check{\mathrm{S}}_{\mathrm{ty}}(z) \triangleq \mathrm{ZR} \mathrm{ty}_{\mathrm{ty}}(m) \triangleq \mathrm{ZE}\left[\mathrm{t}^{*}(0) \mathrm{y}^{*}(m)\right] \quad=\mathrm{ZE}\left[\mathrm{t}^{*}(0)\left(\sum_{k \in \mathbb{Z}} \mathrm{~h}(k) \mathrm{x}(m-k)\right)^{*}\right]$

$$
\begin{array}{rlrl}
& =\mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}^{*}(k) \mathrm{E}\left[\mathrm{t}^{*}(0) \mathrm{x}^{*}(m-k)\right] & \triangleq \mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}^{*}(k) \mathrm{R}_{\mathrm{tx}}(m-k) & \\
& \triangleq \mathrm{Z}\left[\mathrm{~h}^{*}(m) \star \mathrm{R}_{\mathrm{tx}}(m)\right] & =\left[\mathrm{Z} \mathrm{~h}^{*}(m)\right]\left[\mathrm{Z} \mathrm{R}_{\mathrm{tx}}(m)\right] & \\
=\left.\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{tx}}(z)\right|_{\mathrm{t}=\mathrm{x}}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{tx}}(z) \\
\check{\mathrm{S}}_{\mathrm{xy}}(z) & \left.\triangleq \check{\mathrm{S}}_{\mathrm{ty}}(z)\right|_{\mathrm{t}=\mathrm{x}} & & =\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z) \\
\check{\mathrm{S}}_{\mathrm{yy}}(z) & =\left.\check{\mathrm{S}}_{\mathrm{yy}}\left(\frac{1}{z}\right) \triangleq \check{\mathrm{S}}_{\mathrm{ty}}\left(\frac{1}{z}\right)\right|_{\mathrm{t}=\mathrm{y}} & & =\left.\check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{\mathrm{tx}}\left(\frac{1}{z}\right)\right|_{\mathrm{t}=\mathrm{y}} \\
& =\check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{S}_{\mathrm{xy}}(z) & & =\check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{\mathrm{yx}}\left(\frac{1}{z}\right) \\
& & \check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z) & \\
\end{array}
$$

$$
\begin{aligned}
& \text { (8). } \quad \check{\mathrm{S}}_{\mathrm{yt}}(z) \triangleq \mathrm{ZR}_{\mathrm{yt}}(m) \\
& \triangleq \mathrm{ZE}\left[\mathrm{y}^{*}(m) \mathrm{t}^{*}(0)\right] \quad=\mathrm{ZE}\left[\left(\sum_{k \in \mathbb{Z}} \mathrm{~h}^{*}(k) \mathrm{x}^{*}(m-k)\right) \mathrm{t}^{*}(0)\right] \\
& =\mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}^{*}(k) \mathrm{E}\left[\mathrm{x}^{*}(m-k) \mathrm{t}^{*}(0)\right] \triangleq \mathrm{Z} \sum_{k \in \mathbb{Z}} \mathrm{~h}^{*}(k) \mathrm{R}_{\mathrm{xt}}(m-k) \\
& \triangleq \mathrm{Z}\left[\mathrm{~h}(m) \star \mathrm{R}_{\mathrm{xt}}(m)\right] \\
& =\mathrm{Z}\left[\mathrm{~h}(m) \star \mathrm{R}_{\mathrm{xt}}(m)\right] \\
& =[\mathrm{Z} \mathrm{~h}(m)]\left[\mathrm{Z} \mathrm{R}_{\mathrm{xt}}(m)\right] \\
& =\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xt}}(z) \\
& \check{\mathrm{S}}_{\mathrm{xy}}(z)=\left.\check{\mathrm{S}}_{\mathrm{yx}}\left(\frac{1}{z}\right) \triangleq \check{\mathrm{S}}_{\mathrm{yt}}\left(\frac{1}{z}\right)\right|_{\mathrm{t}=\mathrm{x}} \\
& \left.\check{\mathrm{~S}}_{\mathrm{yy}}(z) \triangleq \check{\mathrm{S}}_{\mathrm{yt}}(z)\right|_{\mathrm{t}=\mathrm{y}} \\
& \begin{array}{l}
=\left.\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\mathrm{xt}}\left(\frac{1}{z}\right)\right|_{\mathrm{t}=\mathrm{x}}=\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\mathrm{xx}}\left(\frac{1}{z}\right)=\check{\mathrm{H}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z)} \\
=\left.\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xt}}(z)\right|_{\mathrm{t}=\mathrm{y}}=\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xy}}(z)
\end{array}
\end{aligned}
$$

Remark.Note that in several cases, the results listed in Proposition 2 can be "simplified" (as measured by the number of glyphs required to render it on a page) by the use of Proposition 1. For example, (1) in Proposition 2 can be simplified from

$$
\check{\mathrm{S}}_{\mathrm{xy}}(z)=\check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z) \quad \text { to } \quad \check{\mathrm{S}}_{\mathrm{yx}}(z)=\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xx}}(z)
$$

However, such simplification arguably obfuscates the relations comparisons listed in Remark 3.

Corollary 2. Let (1)-(8) below correspond to the eight definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ in Definition 2.

Proof.
(1).

$$
\begin{aligned}
& \tilde{\mathrm{S}}_{\mathrm{xy}}(\omega)=\left.\check{\mathrm{S}}_{\mathrm{xy}}(z)\right|_{z=e^{i \omega}} \\
& =\left.\check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z)\right|_{z=e^{i \omega}} \\
& =\check{\mathrm{H}}^{*}\left(e^{i \omega}\right) \check{\mathrm{S}}_{\mathrm{xx}}\left(e^{i \omega}\right) \\
& =\tilde{H}^{*}(\omega) \tilde{\mathrm{S}}_{x \times}(\omega) \\
& \tilde{S}_{y y}(\omega)=\left.\check{S}_{y y}(z)\right|_{z=e^{i \omega}} \\
& =\left.\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xy}}(z)\right|_{z=e^{i \omega}} \\
& =\check{\mathrm{H}}\left(e^{i \omega}\right) \check{\mathrm{S}}_{\mathrm{xy}}\left(e^{i \omega}\right) \\
& =\tilde{\mathrm{H}}(\omega) \tilde{\mathrm{S}}_{\mathrm{xy}}(\omega) \\
& \tilde{\mathrm{S}}_{\mathrm{yy}}(\omega)=\left.\check{\mathrm{S}}_{\mathrm{yy}}(z)\right|_{z=e^{i \omega}} \\
& =\left.\check{\mathrm{H}}(z) \check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{\mathrm{xx}}{ }^{*}\left(\frac{1}{z^{*}}\right)\right|_{z=e^{i \omega}} \\
& =\check{\mathrm{H}}\left(e^{i \omega}\right) \check{\mathrm{H}}^{*}\left(\frac{1}{e^{-i \omega}}\right) \check{\mathrm{S}}_{\mathrm{xx}}{ }^{*}\left(\frac{1}{e^{-i \omega}}\right) \\
& =\check{\mathrm{H}}\left(e^{i \omega}\right) \check{\mathrm{H}}^{*}\left(e^{i \omega}\right) \check{\mathrm{S}}_{x \times}{ }^{*}\left(e^{i \omega}\right) \quad=\tilde{\mathrm{H}}(\omega) \tilde{\mathrm{H}}^{*}(\omega) \tilde{\mathrm{S}}_{\mathrm{xx}}{ }^{*}(\omega) \\
& \text { because } \tilde{S}_{x x}(\omega) \text { is real-valued } \\
& \text { (evaluation around unit circle in } z \text {-plane) } \\
& \text { by definition of DTFT } \\
& \text { (Definition } 1 \text { page 1) } \\
& =|\tilde{H}(\omega)|^{2} \tilde{S}_{x x}(\omega) \\
& \text { by } \check{S}_{x y}(z) \text { result } \\
& \text { (Proposition } 2 \text { page 4) } \\
& \text { (Definition } 1 \text { page 1) } \\
& =\tilde{H}(\omega) \tilde{H}^{*}(\omega) \tilde{S}_{x x}(\omega) \\
& =|\tilde{\mathrm{H}}(\omega)|^{2} \tilde{\mathrm{~S}}_{x x}{ }^{*}(\omega) \\
& \text { because } \tilde{S}_{x x}(\omega) \text { is real-valued }
\end{aligned}
$$

The other seven sets of proofs follow in like manner.

4 Real-valued $x(n)$ and $y(n)$

Corollary 3.Let (1)-(8) below correspond to the eight definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ in Definition 2.
If $(\mathrm{x}(n))$ and $(\mathrm{y}(n))$ are real-valued, then
$\left\{\begin{array}{l}\text { each of }(1)-(8) \Longrightarrow \mathrm{R}_{x y}{ }^{*}(m)=\mathrm{R}_{\mathrm{xy}}(m) \text { and } \mathrm{R}_{\mathrm{xx}}{ }^{*}(m)=\mathrm{R}_{\mathrm{xx}}(m) \text { (real-valued) and } \\ \text { each of }(1)-(8) \Longrightarrow \mathrm{R}_{\mathrm{yx}}(m)=\mathrm{R}_{\mathrm{xy}}(-m) \text { and } \mathrm{R}_{\mathrm{xx}}(-m)=\mathrm{R}_{\mathrm{xx}}(m) \text { (symmetric). }\end{array}\right\}$

Proof.This follows directly from the real-valued hypothesis, Definition 2, and Lemma 1

Proposition 3.Let (1)-(8) below correspond to the eight definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ in Definition 2.
If $(\mathrm{x}(n) D$ and $(\mathrm{y}(n) D$ are real-valued, then

$$
\text { each of }(1)-(8) \Longrightarrow \check{S}_{x y}(z)=\check{S}_{x y}^{*}\left(z^{*}\right)=\check{S}_{y x}\left(\frac{1}{z}\right) \text { and } \check{S}_{x x}(z)=\check{S}_{x x}^{*}\left(z^{*}\right)=\check{S}_{x x}\left(\frac{1}{z}\right)
$$

Proof.

Proposition 4.Let (1)-(8) below correspond to the eight definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ in Definition 2.
If $(\mathrm{x}(n))$ and $(\mathrm{y}(n))$ are real-valued, then
(1), (4), (6), or (8$) \Longrightarrow \check{S}_{x y}(z)=\check{H}\left(\frac{1}{z}\right) \check{S}_{x x}(z)$ and $\check{S}_{y y}(z)=\check{\mathrm{H}}(z) \check{S}_{x y}(z) \quad$ and (2), (3), (5), or (7) $\Longrightarrow \check{S}_{x y}(z)=\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xx}}(z)$ and $\check{\mathrm{S}}_{\mathrm{yy}}(z)=\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{S}_{\mathrm{xy}}(z) \quad$ and each of (1)-(8) $\Longrightarrow \check{S}_{y y}(z)=\check{\mathrm{H}}(z) \check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z)=\check{\mathrm{H}}(z) \check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z)$.

Proof.

(1).
$\check{S}_{\mathrm{xy}}(z)=\check{S}_{\mathrm{xy}}{ }^{*}\left(z^{*}\right)$
by Proposition 3
by Proposition 2 page 4
by Proposition 3
by Proposition 2 page 4
by $\check{S}_{\mathrm{xy}}(z)$ result
by Lemma 5 page 23
by Proposition 2 page 4
by Proposition 3
by Proposition 2 page 4
by Proposition 3
$=\check{\mathrm{H}}(z) \check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{x \times}(z)$
by $\check{S}_{x y}(z)$ result

$$
\check{\mathrm{S}}_{\mathrm{yy}}(z)=\check{\mathrm{S}}_{\mathrm{yy}}^{*}\left(z^{*}\right)
$$

$$
=\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{x \times}^{*}\left(z^{*}\right)
$$

by Proposition 3
$=\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z) \quad$ by Proposition 3
$=\check{\mathrm{H}}(z) \check{\mathrm{H}}^{*}\left(\frac{1}{z^{*}}\right) \check{\mathrm{S}}_{\mathrm{Xx}}(z)$
by Lemma 5 page 23

Corollary 4.Let (1)-(8) below correspond to the eight definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ in Definition 2.
If $(\mathrm{x}(n))$ and $(\mathrm{y}(n))$ are real-valued, then (1), (4), (6), or (8) $\Longrightarrow \tilde{S}_{x y}(\omega)=\tilde{H}^{*}(\omega) \tilde{S}_{x x}(\omega)$ and $\tilde{S}_{y y}(\omega)=\tilde{H}(\omega) \tilde{S}_{x y}(\omega)$ and (2), (3), (5), or (7) $\Longrightarrow \tilde{S}_{x y}(\omega)=\tilde{H}(\omega) \tilde{S}_{x x}(\omega)$ and $\tilde{S}_{y y}(\omega)=\tilde{H}^{*}(\omega) \tilde{S}_{x y}(\omega)$ and each of $(1)-(8) \Longrightarrow \tilde{S}_{y y}(\omega)=|\tilde{H}(\omega)|^{2} \tilde{S}_{x x}(\omega)$

Proof.

$$
\text { (1). } \begin{array}{rlrl}
\tilde{\mathrm{S}}_{\mathrm{xy}}(\omega) & =\left.\check{\mathrm{S}}_{x \mathrm{x}}(z)\right|_{z=e^{i \omega}} & & \text { by definition of DTFT } \\
& =\left.\check{\mathrm{H}}\left(\frac{1}{z}\right) \check{\mathrm{S}}_{\mathrm{xx}}(z)\right|_{z=e^{i \omega}} & & \text { by Proposition 4 } \\
& =\check{\mathrm{H}}\left(e^{-i \omega}\right) \check{\mathrm{S}}_{x x}\left(e^{i \omega}\right) & & \\
& =\tilde{\mathrm{H}}(-\omega) \tilde{\mathrm{S}}_{x x}(\omega) & & \\
& =\tilde{\mathrm{H}}^{*}(\omega) \tilde{\mathrm{S}}_{x \mathrm{x}}(\omega) & & \text { by defininition 1 page 1) } \\
\text { (Definition 1 page 1) } \\
& & \text { by Lemma } 6 \text { page } 24 &
\end{array}
$$

The remainder of the proof for Corollary 4 follows in similar fashion.

5 Case studies

It has been suggested by the giants that the usefulness of a mathematical idea can be measured by

- how useful it is in applications ${ }^{4}$ and
- how well it connects and is connected to the larger web of mathematical ideas. ${ }^{5}$

As such, this section which presents applications, may prove useful in gauging the usefulness of the preceding sections.

5.1 Case study: Additive noise

Proposition 5.Let S be the system illustrated to the right, where T is an operator that is not necessarily linear.

$\left\{\begin{array}{lc}(\mathrm{A}) \cdot \mathrm{x}(n) \text { is } & \text { WSS } \\ \begin{array}{l}\text { (B). } \\ \left.\begin{array}{l}\mathrm{x}(n)\end{array}\right) \text { and } \mathrm{v}(n) \\ (\mathrm{C}) \cdot \mathrm{v}(n) \text { are } \\ \text { uncorrelated }\end{array} \\ \text { zero-mean }\end{array}\right\} \Longrightarrow$		for all $(1)-(8)$

Proof.

$$
\begin{array}{rlrl}
\text { (1). } \quad \begin{aligned}
\mathrm{R}_{\mathrm{xy}}(m) & \triangleq \mathrm{E}\left[\mathrm{x}(m) \mathrm{y}^{*}(0)\right] & & \text { by (A) and Papoulis' definition of } \mathrm{R}_{\mathrm{xy}} \\
& \triangleq \mathrm{E}\left(\mathrm{x}(m)[\mathrm{x}(0)+\mathrm{v}(0)]^{*}\right) & & \text { (Definition 2 page 2) } \\
& =\mathrm{E}\left[\mathrm{x}(m) \mathrm{x}^{*}(0)\right]+\mathrm{E}\left[\mathrm{x}(m) \mathrm{v}^{*}(0)\right] & & \text { by definearition of } \mathrm{y} \\
& =\mathrm{E}\left[\mathrm{x}(m) \mathrm{x}^{*}(0)\right]+\mathrm{E}[\mathrm{x}(m)] \mathrm{E}\left[\mathrm{v}^{*}(0)\right] & & \text { by } \text { uncorrelated hypothesis }
\end{aligned} \\
& =\mathrm{E}\left[\mathrm{x}(m) \mathrm{x}^{*}(0)\right]+\mathrm{E}[\mathrm{x}(m)] \mathrm{E}\left[\mathrm{v}^{*}(0)\right]^{0} & & \text { (Proposition 11 page 20) } \\
& =\mathrm{R}_{\mathrm{xx}}(m) & & \text { bero-mean hypothesis }
\end{array}
$$

[^1]\[

$$
\begin{aligned}
\mathrm{R}_{\mathrm{yy}}(m) & \triangleq \mathrm{E}\left[\mathrm{y}(m) \mathrm{y}^{*}(0)\right] & & \text { by (A) and Papoulis' definition } \\
& \triangleq \mathrm{E}\left[(\mathrm{x}(m)+\mathrm{v}(m))(\mathrm{x}(0)+\mathrm{v}(0))^{*}\right] & & \text { by definition of } \mathrm{y} \\
& =\mathrm{E}\left[\mathrm{x}(m) \mathrm{x}^{*}(0)\right]+\mathrm{E}\left[\mathrm{x}(m) \mathrm{v}^{*}(0)\right]+\mathrm{E}\left[\mathrm{v}(m) \mathrm{x}^{*}(0)\right]+\mathrm{E}\left[\mathrm{v}(m) \mathrm{v}^{*}(0)\right] & & \\
& =\mathrm{E}\left[\mathrm{x}(m) \mathrm{x}^{*}(0)\right]+\mathrm{Ex}(m) \mathrm{Ev}^{*}(0)+\mathrm{Ev}(m) \mathrm{Ex}^{*}(0)+\mathrm{E}\left[\mathrm{v}(m) \mathrm{v}^{*}(0)\right] & & \text { by uncorrelated hypothesis (B) } \\
& =\mathrm{E}\left[\mathrm{x}(m) \mathrm{x}^{*}(0)\right]+\mathrm{Ex}(m) \mathrm{E}^{*}(0)^{*}+\mathrm{Ev}(m) \mathrm{Ex}^{*}(0)+\mathrm{E}\left[\mathrm{v}(m) \mathrm{v}^{*}(0)\right] & & \text { by zero-mean hypothesis }(\mathrm{C}) \\
& =\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{vv}}(m) & & \text { by Papoulis' definition of } \mathrm{R}_{\mathrm{xx}}
\end{aligned}
$$
\]

by (A) and Papoulis' definition of R_{yy} by definition of y
by Papoulis' definition of R_{xx}
(2). $\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}(m)\right]$
$\triangleq \mathrm{E}\left(\mathrm{x}^{*}(0)[\mathrm{x}(m)+\mathrm{v}(m)]\right)$

$$
=\mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{x}(m)\right]+\mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{v}(m)\right] \quad=\mathrm{R}_{\mathrm{xx}}(m)
$$

$$
=\mathrm{E}\left[\mathrm{x}(0) \mathrm{x}^{*}(m)\right]+\mathrm{E}\left[\mathrm{x}(0) \mathrm{v}^{*}(m)\right] \quad=\mathrm{R}_{\mathrm{xx}}(m)
$$

$$
=\mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{x}(0)\right]+\mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{v}(0)\right] \quad=\mathrm{R}_{\mathrm{xx}}(m)
$$

$$
=\mathrm{E}[\mathrm{x}(0) \mathrm{x}(m)]+\mathrm{E}[\mathrm{x}(0) \mathrm{v}(m)] \quad=\mathrm{R}_{\mathrm{xx}}(m)
$$

$$
=\mathrm{E}[\mathrm{x}(m) \mathrm{x}(0)]+\mathrm{E}[\mathrm{x}(m) \mathrm{v}(0)] \quad=\mathrm{R}_{\mathrm{xx}}(0)
$$

$$
=\mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{x}(m)\right]+\mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{v}^{*}(m)\right] \quad=\mathrm{R}_{\mathrm{xx}}(m)
$$

$$
=\mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{x}(0)\right]+\mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{v}^{*}(0)\right] \quad=\mathrm{R}_{\mathrm{xx}}(m)
$$

(2). $\quad \mathrm{R}_{\mathrm{yy}}(m) \triangleq \mathrm{E}\left[\mathrm{y}^{*}(0) \mathrm{y}(m)\right] \quad \triangleq_{\mathrm{E}}\left([\mathrm{x}(0)+\mathrm{v}(0)]^{*}[\mathrm{x}(m)+\mathrm{v}(m)]\right.$
(3). $\quad \mathrm{R}_{\mathrm{yy}}(m) \triangleq \mathrm{E}\left[\mathrm{y}(0) \mathrm{y}^{*}(m)\right]$
$\triangleq_{\mathrm{E}}\left([\mathrm{x}(0)+\mathrm{v}(0)][\mathrm{x}(m)+\mathrm{v}(m)]^{*}\right)$
$\triangleq_{\mathrm{E}}\left([\mathrm{x}(m)+\mathrm{v}(m)]^{*}[\mathrm{x}(0)+\mathrm{v}(0)]\right)$
$\triangleq_{\mathrm{E}}([\mathrm{x}(0)+\mathrm{v}(0)][\mathrm{x}(m)+\mathrm{v}(m)])$
$\triangleq_{\mathrm{E}}([\mathrm{x}(m)+\mathrm{v}(m)][\mathrm{x}(0)+\mathrm{v}(0)])$
$\triangleq_{\mathrm{E}}\left([\mathrm{x}(0)+\mathrm{v}(0)]^{*}[\mathrm{x}(m)+\mathrm{v}(m)]^{*}\right)$
$\triangleq_{\mathrm{E}}\left([\mathrm{x}(m)+\mathrm{v}(m)]^{*}[\mathrm{x}(0)+\mathrm{v}(0)]^{*}\right)$

$$
\begin{aligned}
& =\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{xv}}(m)+{ }^{0} \mathrm{R}_{\mathrm{vx}}(m)+\mathrm{R}_{\mathrm{wv}}^{0}(m)=\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{vv}}(m) \\
& =\mathrm{R}_{\mathrm{xx}}(m)+\underline{\mathrm{R}}_{\mathrm{xv}}(m)+\mathrm{R}_{\mathrm{vx}}(m)+\mathrm{R}_{\mathrm{wv}}^{0}(m)=\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{vv}}(m) \\
& =\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{xv}}(m)+{ }^{0} \mathrm{R}_{\mathrm{vx}}(m)+{ }^{2} \mathrm{R}_{\mathrm{vv}}(m) \quad=\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{vv}}(m)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{R}_{x x}(m)+\mathrm{R}_{x v}(m) \nmid{ }^{\circ} \mathrm{R}_{\mathrm{vx}}(m) \nmid \mathrm{R}_{\mathrm{wv}}(m)=\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{vv}}(m) \\
& =\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{xv}}(m)+{ }^{0} \mathrm{R}_{\mathrm{vx}}(m)+{ }^{0} \mathrm{R}_{\mathrm{vv}}(m)=\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{vv}}(m) \\
& =\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{xv}}(m)+{ }^{0} \mathrm{R}_{\mathrm{vx}}(m)+{ }_{\mathrm{R}}^{\mathrm{R}}(m) \quad=\mathrm{R}_{\mathrm{xx}}(m)+\mathrm{R}_{\mathrm{vv}}(m)
\end{aligned}
$$

5.2 Case study: Dual additive noise

Proposition 6. Let S be the system illustrated to the right.

(A). $\mathrm{x}(n)$ and $\mathrm{t}(n)$ are wide sense stationary and
(B). $\mathrm{x}(n)$ and $\mathrm{t}(n)$ are uncorrelated
(C). $\mathrm{t}(n)$ and $\mathrm{v}(n)$ are uncorrelated
(D). $\mathrm{t}(n)$ and $\mathrm{v}(n)$ are uncorrelated
(E). $\mathrm{v}(n)$ and $\mathrm{t}(n)$ are zero-mean
$\left.\begin{array}{l}\text { and } \\ \text { and } \\ \text { and }\end{array}\right\} \Longrightarrow\left\{\begin{aligned} \mathrm{R}_{\mathrm{sy}}(m) & =\mathrm{R}_{\mathrm{rx}}(m) \text { and } \\ \check{\mathrm{S}}_{\mathrm{sy}}(z) & =\check{\mathrm{S}}_{\mathrm{rx}}(z) \text { and } \\ \tilde{\mathrm{S}}_{\mathrm{sy}}(\omega) & =\tilde{\mathrm{S}}_{\mathrm{rx}}(\omega)\end{aligned}\right\}$
for all
(1)-(8)

Proof.
(1).

$$
\mathrm{R}_{\mathrm{sy}}(m) \triangleq \mathrm{E}\left[\mathrm{~s}^{*}(0) \mathrm{y}(m)\right]
$$

$$
=\mathrm{E}\left([\mathrm{t}(0)+\mathrm{t}(0)]^{*}[\mathrm{x}(m)+\mathrm{v}(m)]\right)
$$

$$
=R_{r x}(m)+R_{w v}(m)+\underline{K}_{w x}(m)+{ }^{0} \underline{R}_{w v}(m)^{0} \triangleq R_{r x}(m)
$$

(3). $\quad \mathrm{R}_{\mathrm{sy}}(m) \triangleq \mathrm{E}\left[\mathrm{s}(0) \mathrm{y}^{*}(m)\right]$
$=\mathrm{E}\left([\mathrm{t}(0)+\mathrm{t}(0)][\mathrm{x}(m)+\mathrm{v}(m)]^{*}\right)$
$=R_{r x}(m)+\underline{R}_{r v}(m) \nmid{ }^{2}{ }_{w x}(m)+{ }^{0} \hat{R}_{w v}(m)^{0} \triangleq R_{r x}(m)$
(4). $\quad \mathrm{R}_{\mathrm{sy}}(m) \triangleq \mathrm{E}\left[\mathrm{s}^{*}(m) \mathrm{y}(0)\right]$

$$
=\mathrm{E}\left([\mathrm{t}(m)+\mathrm{t}(m)]^{*}[\mathrm{x}(0)+\mathrm{v}(0)]\right)
$$

$$
=\mathrm{R}_{\mathrm{rx}}(m)+\mathrm{B}_{\mathrm{wv}}(m)+\underline{R}_{w x}^{0}(m)+{ }^{0} \mathrm{R}_{w v}(m)^{0} \triangleq \mathrm{R}_{\mathrm{rx}}(m)
$$

(5). $\quad \mathrm{R}_{\mathrm{sy}}(m) \triangleq \mathrm{E}[\mathrm{s}(0) \mathrm{y}(m)] \quad=\mathrm{E}([\mathrm{t}(0)+\mathrm{t}(0)][\mathrm{x}(m)+\mathrm{v}(m)])$
$=R_{r x}(m)+\mathrm{R}_{w}(m)+{ }^{0} \mathrm{R}_{w x}(m)+{ }^{0} \mathrm{R}_{w v}(m)^{0} \triangleq \mathrm{R}_{\mathrm{rx}}(m)$
(6). $\quad \mathrm{R}_{\mathrm{sy}}(m) \triangleq \mathrm{E}[\mathrm{s}(m) \mathrm{y}(0)] \quad=\mathrm{E}([\mathrm{t}(m)+\mathrm{t}(m)][\mathrm{x}(0)+\mathrm{v}(0)])$
$=R_{R x}(m)+R_{w v}(m)+{ }^{+} \underline{R}_{w x}(m)+{ }^{+} R_{w v}^{0}(m)^{-0} \triangleq R_{r x}(m)$
(7). $\quad \mathrm{R}_{\mathrm{sy}}(m) \triangleq \mathrm{E}\left[\mathrm{s}^{*}(0) \mathrm{y}^{*}(m)\right]$
$=\mathrm{E}\left([\mathrm{t}(0)+\mathrm{t}(0)]^{*}[\mathrm{x}(m)+\mathrm{v}(m)]^{*}\right)$

(8). $\quad \mathrm{R}_{\mathrm{sy}}(m) \triangleq \mathrm{E}\left[\mathrm{s}^{*}(m) \mathrm{y}^{*}(0)\right]$
$=\mathrm{E}\left([\mathrm{t}(m)+\mathrm{t}(m)]^{*}[\mathrm{x}(0)+\mathrm{v}(0)]^{*}\right)$

5.3 Case study: Parallel operators

Proposition 7.Let S be the system illustrated to the right, where T is not necessarily linear. Let

$$
\left(\mathrm{h}(n) \mathrm{D} \triangleq \mathrm{H} \bar{\delta}(n) \triangleq \sum_{m \in \mathbb{Z}} \mathrm{~h}(m) \bar{\delta}(n-m)\right.
$$

be the impulse response of H .

$\left\{\begin{array}{l}\text { (A). } \mathrm{x}(n) \text { is WSS and } \\ \text { (B). H is LTI }\end{array}\right\} \Longrightarrow\left\{\begin{array}{ll}\check{S}_{w y}(z)=\check{H}(z) & \check{S}_{x y}(z) \text { for }(1),(3),(5),(6) \text { and } \\ \tilde{S}_{w y}(\omega)=\tilde{H}(\omega) & \tilde{S}_{x y}(\omega) \text { for }(1),(3),(5),(6) \text { and } \\ \hline \check{S}_{w y}(z)=\check{H}^{*}\left(z^{*}\right) \check{S}_{x y}(z) \text { for }(2),(4),(7),(8) \text { and } \\ \tilde{S}_{w y}(\omega)=\tilde{H}^{*}(-\omega) \tilde{S}_{x y}(\omega) \text { for }(2),(4),(7),(8)\end{array}\right\}$

Proof.
(1). $\quad \mathrm{R}_{\mathrm{wy}}(m) \triangleq \mathrm{E}\left[\mathrm{t}(m) \mathrm{y}^{*}(0)\right]$

$$
\begin{aligned}
& \triangleq \mathrm{E}\left([\mathrm{Hx}](m) \mathrm{y}^{*}(0)\right) \\
& =\mathrm{HE}\left(\mathrm{x}(m) \mathrm{y}^{*}(0)\right) \\
& \triangleq \mathrm{HR}_{\mathrm{xy}}(m) \\
& =\sum_{n \in \mathbb{Z}} \mathrm{~h}(n) \mathrm{R}_{\mathrm{xy}}(m-n) \\
& =\left[\mathrm{h} \star \mathrm{R}_{\mathrm{xy}}\right](m)
\end{aligned}
$$

(Definition 2 page 2)
(B)
(Definition 2 page 2)
by Papoulis' definition of $\mathrm{R}_{\text {wy }}$ by definition of impulse response $(\mathrm{h}(n))$
by definition of convolution

(2)	$\mathrm{R}_{\mathrm{wy}}(m) \triangleq \mathrm{E}\left[\mathrm{t}^{*}(0) \mathrm{y}(m)\right]$	$\triangleq \mathrm{E}\left([\mathrm{Hx}]^{*}(0) \mathrm{y}(m)\right)$	$=\mathrm{H}^{*}\left(\mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}(m)\right]\right)$	$\triangleq \mathrm{H}^{*} \mathrm{R}_{\mathrm{xy}}(m)$	$\left[\mathrm{h}^{*} \star \mathrm{R}_{\mathrm{xy}}\right](\mathrm{m})$
(3).	$\mathrm{R}_{\mathrm{wy}}(m) \triangleq \mathrm{E}\left[\mathrm{t}(0) \mathrm{y}^{*}(m)\right]$	$\triangleq \mathrm{E}\left([\mathrm{Hx}](0) \mathrm{y}^{*}(m)\right)$	$=\mathrm{H}\left(\mathrm{E}\left[\mathrm{x}(0) \mathrm{y}^{*}(m)\right]\right)$	$\triangleq \mathrm{HR}_{\mathrm{xy}}(m)$	$=\left[\mathrm{h} \star \mathrm{R}_{\mathrm{xy}}\right](\mathrm{m})$
(4).	$\mathrm{R}_{\mathrm{wy}}(m) \triangleq \mathrm{E}\left[\mathrm{t}^{*}(m) \mathrm{y}(0)\right]$	$\triangleq \mathrm{E}\left([\mathrm{Hx}]^{*}(m) \mathrm{y}(0)\right)$	$=\mathrm{H}^{*}\left(\mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}(0)\right]\right)$	$\triangleq \mathrm{H}^{*} \mathrm{R}_{\mathrm{xy}}(m)$	$\left[\mathrm{h}^{*} \star \mathrm{R}_{\mathrm{xy}}\right](m)$
(5).	$\mathrm{R}_{\mathrm{wy}}(m) \triangleq \mathrm{E}[\mathrm{t}(0) \mathrm{y}(m)]$	$\triangleq \mathrm{E}([\mathrm{Hx}](0) \mathrm{y}(\mathrm{m}))^{\text {a }}$	$=\mathrm{H}(\mathrm{E}[\mathrm{x}(0) \mathrm{y}(m)])$	$\triangleq \mathrm{HR}_{\mathrm{xy}}(m)$	$=\left[\mathrm{h} \star \mathrm{R}_{\mathrm{xy}}\right](m)$
(6)	$\mathrm{R}_{\mathrm{wy}}(m) \triangleq \mathrm{E}[\mathrm{t}(m) \mathrm{y}(0)]$	$\triangleq \mathrm{E}([\mathrm{Hx}](m) \mathrm{y}(0))$	$=\mathrm{H}(\mathrm{E}[\mathrm{x}(m) \mathrm{y}(0)])$	$\triangleq \mathrm{HR}_{\mathrm{xy}}(m)$	$=\left[\mathrm{h} * \mathrm{R}_{\mathrm{xy}}\right](m)$
(7).	$\mathrm{R}_{\mathrm{wy}}(m) \triangleq \mathrm{E}\left[\mathrm{t}^{*}(0) \mathrm{y}^{*}(m)\right]$	$\triangleq \mathrm{E}\left([\mathrm{Hx}]^{*}(0) \mathrm{y}^{*}(m)\right)$	$=\mathrm{H}^{*}\left(\mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}^{*}(m)\right]\right)$	$\triangleq \mathrm{H}^{*} \mathrm{R}_{\mathrm{xy}}(m)$	$=\left[\mathrm{h}^{*} \star \mathrm{R}_{\mathrm{xy}}\right](\mathrm{m})$
(8).	$\mathrm{R}_{\mathrm{wy}}(m) \triangleq \mathrm{E}\left[\mathrm{t}^{*}(m) \mathrm{y}^{*}(0)\right]$	$\triangleq \mathrm{E}\left([\mathrm{Hx}]^{*}(m) \mathrm{y}^{*}(0)\right)$	$=\mathrm{H}^{*}\left(\mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}^{*}(0)\right]\right)$	$\triangleq \mathrm{H}^{*} \mathrm{R}_{\mathrm{xy}}(\mathrm{m})$	$=\left[\mathrm{h}^{*} \star \mathrm{R}_{\mathrm{xy}}\right](\mathrm{m})$

(1), (3), (5), (6).
$\check{\mathrm{S}}_{\mathrm{wy}}(z) \triangleq \mathrm{ZR}_{\mathrm{wy}}(m) \quad=\mathrm{Z}\left[\mathrm{h} \star \mathrm{R}_{\mathrm{xy}}\right](m) \quad=\mathrm{H}(z) \check{\mathrm{S}}_{\mathrm{xy}}(z)$
(2), (4), (7), (8). $\quad \check{S}_{w y}(z) \triangleq Z R_{w y}(m) \quad=\mathrm{Z}\left[h^{*} \star \mathrm{R}_{\mathrm{xy}}\right](m) \quad=\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{xy}}(z) \quad$ by Proposition 12 page 21
(1), (3), (5), (6).
$\tilde{S}_{w y}(\omega) \triangleq \breve{\mathrm{F}} \mathrm{R}_{\mathrm{wy}}(m)$
$=\breve{\mathrm{F}}\left[\mathrm{h} \star \mathrm{R}_{\mathrm{xy}}\right](m) \quad=\tilde{\mathrm{H}}(\omega) \tilde{\mathrm{S}}_{\mathrm{xy}}(\omega)$
$(2),(4),(7),(8)$.
$\tilde{S}_{w y}(\omega) \triangleq \breve{\mathrm{F}} \mathrm{R}_{\mathrm{wy}}(m) \quad=\breve{\mathrm{F}}\left[\mathrm{h}^{*} \star \mathrm{R}_{\mathrm{xy}}\right](m)$
$=\tilde{H}^{*}(-\omega) \tilde{S}_{x y}(\omega) \quad$ by Proposition 12 page 21

5.4 Case study: Operator with measurement noise

Lemma 2.Let S be the system illustrated to the right, where T is not necessarily linear.

Proof.

$\mathrm{R}_{\mathrm{xy}}(m)$	$\triangleq \mathrm{E}\left[\mathrm{x}(m) \mathrm{y}^{*}(0)\right]$		by definition of R_{xy}
	$\triangleq \mathrm{E}\left[\mathrm{x}(m)(\mathrm{q}(0)+\mathrm{v}(0))^{*}\right]$		(Definition 2 page 2)
	$=\mathrm{E}\left[\mathrm{x}(m) \mathrm{q}^{*}(0)+\mathrm{p}(m) \mathrm{v}^{*}(0)\right]$		by distributive property of $(\mathbb{C},+, \cdot, 0,1)$
	$=\mathrm{E}\left[\mathrm{x}(m) \mathrm{q}^{*}(0)\right]+\mathrm{E}\left[\mathrm{x}(m) \mathrm{v}^{*}(0)\right]$		by linearity of E
	$=\mathrm{E}\left[\mathrm{x}(m) \mathrm{q}^{*}(0)\right]+[\mathrm{Ex}(m)]\left[\mathrm{E} \mathrm{v}^{*}(0)\right]$		by uncorrelated hypothesis
	$=\mathrm{E}\left[\mathrm{x}(m) \mathrm{q}^{*}(0)\right]+\mathrm{E}[\mathrm{p}(m)] \mathrm{E}\left[\mathrm{v}^{*}(0)\right]^{0}$		by zero-mean hypothesis
	$=\mathrm{R}_{\mathrm{xq}}(m)$		by definition of R_{xq}

(2). $\left.\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}(m)\right] \quad \triangleq \mathrm{E}\left(\mathrm{x}^{*}(0)[\mathrm{q}(m)+\mathrm{v}(m)]\right) \quad \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{q}(m)\right]+\mathrm{E}\left[\mathrm{x}^{*}(0)\right][\mathrm{E}(m))\right]^{0}=\mathrm{R}_{\mathrm{xq}}(m)$
(3). $\left.\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}(0) \mathrm{y}^{*}(m)\right] \triangleq \mathrm{E}\left(\mathrm{x}(0)[\mathrm{q}(m)+\mathrm{v}(m)]^{*}\right) \triangleq \mathrm{E}\left[\mathrm{x}(0) \mathrm{q}^{*}(m)\right]+\mathrm{E}\left[\mathrm{x}^{*}(0)\right]\left[\mathrm{E}_{\mathrm{v}^{*}}(m)\right)\right]^{0}=\mathrm{R}_{\mathrm{xq}}(m)$
(4). $\left.\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}(0)\right] \quad \triangleq \mathrm{E}\left(\mathrm{x}^{*}(m)[\mathrm{q}(0)+\mathrm{v}(0)]\right) \quad \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{q}(0)\right]+\mathrm{E}\left[\mathrm{x}^{*}(m)\right][\mathrm{Ev}(0))\right]{ }^{0}=\mathrm{R}_{\mathrm{xq}}(m)$
(5). $\left.\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}[\mathrm{x}(0) \mathrm{y}(m)] \quad \triangleq \mathrm{E}(\mathrm{x}(0)[\mathrm{q}(m)+\mathrm{v}(m)]) \quad \triangleq \mathrm{E}[\mathrm{x}(0) \mathrm{q}(m)]+\mathrm{E}[\mathrm{x}(0)][\mathrm{Ev}(m))\right]^{0} \quad=\mathrm{R}_{\mathrm{xq}}(m)$
(6). $\left.\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}[\mathrm{x}(m) \mathrm{y}(0)] \quad \triangleq \mathrm{E}(\mathrm{x}(m)[\mathrm{q}(0)+\mathrm{v}(0)]) \quad \triangleq \mathrm{E}[\mathrm{x}(m) \mathrm{q}(0)]+\mathrm{E}[\mathrm{x}(m)][\mathrm{E}(0))\right]^{0} \quad=\mathrm{R}_{\mathrm{xq}}(m)$
(7). $\left.\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}^{*}(m)\right] \triangleq \mathrm{E}\left(\mathrm{x}^{*}(0)[\mathrm{q}(m)+\mathrm{v}(m)]^{*}\right) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{q}^{*}(m)\right]+\mathrm{E}\left[\mathrm{x}^{*}(0)\right]\left[\mathrm{E} \mathrm{v}^{*}(m)\right)\right]^{0}=\mathrm{R}_{\mathrm{xq}}(m)$
(8). $\left.\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}^{*}(0)\right] \triangleq \mathrm{E}\left(\mathrm{x}^{*}(m)[\mathrm{q}(0)+\mathrm{v}(0)]^{*}\right) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{q}^{*}(0)\right]+\mathrm{E}\left[\mathrm{x}^{*}(m)\right]\left[\mathrm{E}^{*}(0)\right)\right]^{0}=\mathrm{R}_{\mathrm{xq}}(m)$

Lemma 3.Let S be the system illustrated to the right, where T is not necessarily linear.
 $\left\{\begin{array}{ll}(\mathrm{A}) \cdot \mathrm{x}(n) \text { is } & \text { WSS } \\ (\mathrm{B}) \cdot \mathrm{u}(n) \text { is } \\ (\mathrm{C}) \cdot \mathrm{x}(n) \text { and } \mathrm{u}(n) \text { are uncorrelated }\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}\mathrm{R}_{\mathrm{xy}}(m)=\mathrm{R}_{\mathrm{py}}(m) \text { and } \\ \check{\mathrm{S}}_{\mathrm{xy}}(z)=\check{\mathrm{S}}_{\mathrm{py}}(z) \text { and } \\ \tilde{\mathrm{S}}_{\mathrm{xy}}(\omega)=\tilde{\mathrm{S}}_{\mathrm{py}}(\omega)\end{array}\right\} \begin{aligned} & \text { foro-mean and all } \\ & (1)-(8)\end{aligned}$

Proof.

$\mathrm{R}_{\mathrm{xy}}(m)$	$\triangleq \mathrm{E}\left[\mathrm{x}(m) \mathrm{y}^{*}(0)\right]$		by definition of R_{py}
	$\triangleq \mathrm{E}\left([\mathrm{p}(m)+\mathrm{u}(m)] \mathrm{y}^{*}(0)\right)$		(Definition 2 page 2)
	$=\mathrm{E}\left[\mathrm{p}(m) \mathrm{y}^{*}(0)+\mathrm{u}(m) \mathrm{y}^{*}(0)\right]$		by definition of S
	$=\mathrm{E}\left[\mathrm{p}(m) \mathrm{y}^{*}(0)\right]+\mathrm{E}\left[\mathrm{u}(m) \mathrm{y}^{*}(0)\right]$		because E is a linear operator
	$=\mathrm{E}\left[\mathrm{p}(m) \mathrm{y}^{*}(0)\right]+\mathrm{E}[\mathrm{u}(m)] \mathrm{E}\left[\mathrm{y}^{*}(0)\right]$		by uncorrelated hypothesis
	$=\mathrm{E}\left[\mathrm{p}(m) \mathrm{y}^{*}(0)\right]+\mathrm{E}[\mathrm{u}(m)] \mathrm{E}\left[\mathrm{y}^{*}(0)\right]^{0}$		by zero-mean hypothesis
	$\triangleq \mathrm{R}_{\mathrm{py}}(m)$		(Proposition 11 page 20)
			(C) definition of R_{xy}

(2). $\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}(m)\right] \triangleq \mathrm{E}\left([\mathrm{p}(0)+\mathrm{u}(0)]^{*} \mathrm{y}(m)\right) \quad=\mathrm{E}\left[\mathrm{p}^{*}(0) \mathrm{y}(m)\right]+\mathrm{E}\left[\mathrm{u}^{*}(0)\right] \mathrm{E}[\mathrm{y}(m)] \quad=\mathrm{R}_{\mathrm{py}}(m)$
(3). $\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}(0) \mathrm{y}^{*}(m)\right]$
$\triangleq \mathrm{E}\left([\mathrm{p}(0)+\mathrm{u}(0)] \mathrm{y}^{*}(m)\right)=\mathrm{E}\left[\mathrm{p}(0) \mathrm{y}^{*}(m)\right]+\mathrm{E}\left[\mathrm{u}^{*}(0)\right] \mathrm{E}\left[\mathrm{y}^{*}(m)\right]=\mathrm{R}_{\mathrm{py}}(m)$
(4). $\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}(0)\right]$
$\triangleq \mathrm{E}\left([\mathrm{p}(m)+\mathrm{u}(m)]^{*} \mathrm{y}(0)\right)=\mathrm{E}\left[\mathrm{p}^{*}(m) \mathrm{y}(0)\right]+\mathrm{E}\left[\mathrm{u}^{*}(m)\right]^{0}[\mathrm{y}(0)]=\mathrm{R}_{\mathrm{py}}(m)$
(5). $\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}[\mathrm{x}(0) \mathrm{y}(m)]$
$\triangleq \mathrm{E}([\mathrm{p}(0)+\mathrm{u}(0)] \mathrm{y}(m)) \quad=\mathrm{E}[\mathrm{p}(0) \mathrm{y}(m)]+\mathrm{E}[\mathrm{u}(0)] \mathrm{E}[\mathrm{y}(m)] \quad=\mathrm{R}_{\mathrm{py}}(m)$
(6). $\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}[\mathrm{x}(m) \mathrm{y}(0)]$
$\triangleq \mathrm{E}([\mathrm{p}(m)+\mathrm{u}(m)] \mathrm{y}(0)) \quad=\mathrm{E}[\mathrm{p}(m) \mathrm{y}(0)]+\mathrm{E}[\mathrm{u}(m)] \mathrm{E}[\mathrm{y}(0)] \quad=\mathrm{R}_{\mathrm{py}}(m)$
(7). $\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}^{*}(m)\right]$
$\triangleq \mathrm{E}\left([\mathrm{p}(0)+\mathrm{u}(0)]^{*} \mathrm{y}^{*}(m)\right)=\mathrm{E}\left[\mathrm{p}^{*}(0) \mathrm{y}^{*}(m)\right]+\mathrm{E}\left[\mathrm{u}^{*}(0)\right]^{0} \mathrm{E}\left[\mathrm{y}^{*}(m)\right]=\mathrm{R}_{\mathrm{py}}(m)$
(8). $\quad \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}^{*}(0)\right]$
$\triangleq \mathrm{E}\left([\mathrm{p}(m)+\mathrm{u}(m)]^{*} \mathrm{y}^{*}(0)\right)=\mathrm{E}\left[\mathrm{p}^{*}(m) \mathrm{y}^{*}(0)\right]+\mathrm{E}\left[\mathrm{u}^{*}(m)\right] \mathrm{E}^{0}\left[\mathrm{y}^{*}(0)\right]=\mathrm{R}_{\mathrm{py}}(m)$

Proposition 8(measurement additive noise cross-correlation). Let S be the system illustrated to the right, where T is not necessarily linear.

$\left\{\begin{array}{l}(\mathrm{A}) \cdot \mathrm{x}(n) \text { is } W S S \quad \text { and } \\ (\mathrm{B}) \cdot \mathrm{u}(n) \text { is zero-mean and } \\ (\mathrm{C}) \cdot \mathrm{v}(n) \text { is zero-mean and } \\ (\mathrm{D}) \cdot \mathrm{x}(n), \mathrm{t}(n), \mathrm{v}(n) \text { are uncorrelated }\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}\mathrm{R}_{\mathrm{pq}}(m)=\mathrm{R}_{\mathrm{py}}(m)=\mathrm{R}_{\mathrm{xq}}(m)=\mathrm{R}_{\mathrm{xy}}(m) \text { and } \\ \mathrm{S}_{\mathrm{pq}}(z)=\check{\mathrm{S}}_{\mathrm{py}}(z)=\check{\mathrm{S}}_{\times \mathrm{q}}(z)=\check{\mathrm{S}}_{\mathrm{xy}}(z) \text { and } \\ \tilde{\mathrm{S}}_{\mathrm{pq}}(\omega)=\tilde{\mathrm{S}}_{\mathrm{py}}(\omega)=\tilde{\mathrm{S}}_{\mathrm{xq}}(\omega)=\tilde{\mathrm{S}}_{\mathrm{xy}}(\omega)\end{array}\right\}$
for all
(1)-(8)

Proof.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{pq}}(m)=\mathrm{R}_{\mathrm{py}}(m) \\
& \mathrm{R}_{\mathrm{pq}}(m)=\mathrm{R}_{\mathrm{xq}}(m) \\
& \mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}(m) \mathrm{y}^{*}(0)\right]
\end{aligned}
$$

$$
\triangleq \mathrm{E}\left([\mathrm{p}(m)+\mathrm{t}(m)] \mathrm{y}^{*}(0)\right)
$$

$$
=\mathrm{E}\left[\mathrm{p}(m) \mathrm{y}^{*}(0)+\mathrm{t}(m) \mathrm{y}^{*}(0)\right]
$$

$$
=\mathrm{E}\left[\mathrm{p}(m) \mathrm{y}^{*}(0)\right]+\mathrm{E}\left[\mathrm{t}(m) \mathrm{y}^{*}(0)\right]
$$

$$
=\mathrm{E}\left[\mathrm{p}(m) \mathrm{y}^{*}(0)\right]+\mathrm{E}\left[\mathrm{t}(m) \mathrm{y}^{*}(0)\right] 0
$$

$$
=\mathrm{R}_{\mathrm{py}}(m)
$$

by Lemma 2 page 14
by Lemma 3 page 15
by definition R_{xy}
by definition S
by linearity of E
by uncorrelated hypothesis
by definition of R_{py}
(Definition 2 page 2)
(Proposition 11 page 20)
(D)
(Definition 2 page 2)

(2).	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}(m)\right]$	$\triangleq \mathrm{E}\left([\mathrm{p}(0)+\mathrm{t}(0)]^{*} \mathrm{y}(\mathrm{m}) \mathrm{)}\right.$	$=\mathrm{E}\left[\mathrm{p}^{*}(0) \mathrm{y}(m)\right]+\left[\mathrm{E} t^{*}(0)\right]\left[\mathrm{E}^{0} \mathrm{y}(m)\right]$	$=\mathrm{R}_{\mathrm{py}}(m)$
(3).	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}(0) \mathrm{y}^{*}(m)\right]$	$\triangleq \mathrm{E}\left([\mathrm{p}(0)+\mathrm{t}(0)] \mathrm{y}^{*}(m)\right)$	$=\mathrm{E}\left[\mathrm{p}(0) \mathrm{y}^{*}(m)\right]+[\mathrm{E} t(0)]\left[\mathrm{E} \mathrm{y}^{*}(m)\right]$	$=\mathrm{R}_{\mathrm{py}}(m)$
(4).	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}(0)\right]$	$\triangleq \mathrm{E}\left([\mathrm{p}(m)+\mathrm{t}(\mathrm{m})]^{*} \mathrm{y}(0)\right)$	$=\mathrm{E}\left[\mathrm{p}^{*}(m) \mathrm{y}(0)\right]+\left[\mathrm{E} t^{*}(m)\right][\mathrm{E} y(0)]$	$=\mathrm{R}_{\mathrm{py}}(m)$
(5)	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}[\mathrm{x}(0) \mathrm{y}(m)]$	$\triangleq \mathrm{E}([\mathrm{p}(0)+\mathrm{t}(0)] \mathrm{y}(\mathrm{m}))^{\text {a }}$	$=\mathrm{E}[\mathrm{p}(0) \mathrm{y}(m)]+[\mathrm{E} t(0)]\left[\mathrm{E}^{0} \mathrm{y}(m)\right]$	$=\mathrm{R}_{\mathrm{py}}(m)$
(6).	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}[\mathrm{x}(m) \mathrm{y}(0)]$	$\triangleq \mathrm{E}([\mathrm{p}(m)+\mathrm{t}(m)] \mathrm{y}(0))$	$=\mathrm{E}[\mathrm{p}(m) \mathrm{y}(0)]+[\mathrm{E} t(m)][\mathrm{E} y(0)]$	$=\mathrm{R}_{\mathrm{py}}(m)$
(7).	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(0) \mathrm{y}^{*}(m)\right]$	$\triangleq \mathrm{E}\left([\mathrm{p}(0)+\mathrm{t}(0)]^{*} \mathrm{y}^{*}(m)\right)$	$=\mathrm{E}\left[\mathrm{p}^{*}(0) \mathrm{y}^{*}(m)\right]+\left[\mathrm{E} t^{*}(0)\right]\left[\mathrm{E}^{0} \mathrm{y}^{*}(m)\right]$	$=\mathrm{R}_{\mathrm{py}}(m)$
(8).	$\mathrm{R}_{\mathrm{xy}}(m) \triangleq \mathrm{E}\left[\mathrm{x}^{*}(m) \mathrm{y}^{*}(0)\right]$	$\triangleq \mathrm{E}\left([\mathrm{p}(m)+\mathrm{t}(m)]^{*} \mathrm{y}^{*}(0)\right)$	$=\mathrm{E}\left[\mathrm{p}^{*}(m) \mathrm{y}^{*}(0)\right]+\left[\mathrm{E} \mathrm{t}^{*}(m)\right]\left[\mathrm{E} \mathrm{y} \mathrm{y}^{*}(0)\right]$	$=\mathrm{R}_{\mathrm{py}}(m)$

5.5 Case study: Parallel operators with measurement noise

Proposition 9.Let S be the system illustrated to the right, where T
is an operator that is not necessarily linear.

Proof.
by Proposition 6 page 12
by Proposition 7 page 13
by Lemma 3 page 15
by Lemma 2 page 14
by definition of Z
by previous result
by Proposition 6 page 12
by Proposition 7 page 13
by Lemma 3 page 15
by Lemma 2 page 14
by definition of Z
by previous result
and (B), (C) and (D) and (A)
(Definition 10 page 21)
(1)
and (B), (C) and (D) and (A)
(Definition 10 page 21)

$$
=\tilde{\mathrm{H}}^{*}(-\omega) \tilde{\mathrm{S}}_{\mathrm{xy}}(\omega) \quad \text { by Proposition } 12 \text { page } 21
$$

5.6 Case study: Non-linear system identification

Fig. 1 Least Square estimation (Proposition 10 page 18)

Remark. The defintion of "best" or "optimal" is given by a cost function $\mathrm{C}(\hat{\mathrm{H}})$. There are several possible cost functions. One possibility is to define an error $\mathrm{p}(n) \triangleq \mathrm{q}(n)-\mathrm{t}(n)$. We note that if $\hat{\mathrm{H}}$ is closely tuned to match T , then not only should $\mathrm{p}(n)$ be close to 0 for all $n \in \mathbb{Z}$, but the auto-correlation $\hat{\mathrm{R}}_{\text {ee }}(m)$ of $\mathrm{p}(n)$ should also be close to 0 for all $m \in \mathbb{Z}$. Moreover by extension, the auto-spectral density $\tilde{S}_{\mathrm{vv}}(\omega) \triangleq \breve{\mathrm{F}} \hat{\mathrm{R}}_{\mathrm{ee}}(m)$ should also be close to 0 . As such, we can define an arguably relevant cost function for the system S of Figure 1 (page 17) in terms of $\tilde{S}_{x x}, \tilde{S}_{y y}$ and $\tilde{S}_{x y}$. In the case of Papoulis's $\mathrm{R}_{\mathrm{xy}}(m)$, the development of such a cost function $\mathrm{C}(\hat{\mathrm{H}})$ might look something like this:
(1). $\quad \mathrm{C}_{\mathrm{rq}}(\hat{\mathrm{H}})$

$\triangleq \breve{\mathrm{F}} \mathrm{E}\left([\mathrm{t}(n)-\mathrm{q}(n)][\mathrm{t}(0)-\mathrm{q}(0)]^{*}\right)$	by definition of C_{rq}	(Definition 3 page 18)
$=\tilde{\mathrm{F}}\left[\mathrm{E}\left[\mathrm{t}(n) \mathrm{t}^{*}(0)\right]-\mathrm{E}\left[\mathrm{t}(n) \mathrm{q}^{*}(0)\right]-\mathrm{E}\left[\mathrm{q}(n) \mathrm{t}^{*}(0)\right]+\mathrm{E}\left[\mathrm{q}(n) \mathrm{q}^{*}(0)\right]\right]$	by linearity of E	(Proposition 11 page 20)
$\triangleq \tilde{\mathrm{F}}\left[\mathrm{R}_{\mathrm{rr}}(m)-\mathrm{R}_{\mathrm{rq}}(m)-\mathrm{R}_{\mathrm{qr}}(m)+\mathrm{R}_{\mathrm{qq}}(m)\right]$	by definition of R_{xy}	(Definition 2 page 2)
$\triangleq \tilde{\mathrm{S}}_{\mathrm{rr}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{rq}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{qr}}(\omega)+\tilde{\mathrm{S}}_{\mathrm{qq}}(\omega)$	by definition of $\tilde{\mathrm{S}}_{\mathrm{xy}}$	(Definition 1 page 1)

$$
\begin{aligned}
& \text { (1), (3), (5), (6). } \quad \check{S}_{\mathrm{sy}}(z)=\check{\mathrm{S}}_{\mathrm{rq}}(z) \\
& =\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{pq}}(z) \\
& =\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xq}}(z) \\
& =\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xy}}(z) \\
& \text { (1), (3), (5), (6). } \\
& \tilde{\mathrm{S}}_{\mathrm{sy}}(\omega)=\left.\check{\mathrm{S}}_{\mathrm{sy}}(z)\right|_{z=e^{i \omega}} \\
& =\left.\check{\mathrm{H}}(z) \check{\mathrm{S}}_{\mathrm{xy}}(z)\right|_{z=e^{i \omega}} \\
& =\tilde{H}(\omega) \tilde{S}_{\mathrm{xy}}(\omega) \\
& (2),(4),(7),(8) . \\
& \check{S}_{\mathrm{sy}}(z)=\check{\mathrm{S}}_{\mathrm{rq}}(z) \\
& =\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{pq}}(z) \\
& =\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{xq}}(z) \\
& =\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{xy}}(z) \\
& \text { (2), (4), (7), (8). } \\
& \tilde{\mathrm{S}}_{\mathrm{sy}}(\omega)=\left.\check{\mathrm{S}}_{\mathrm{sy}}(z)\right|_{z=e^{i \omega}} \\
& =\left.\check{\mathrm{H}}^{*}\left(z^{*}\right) \check{\mathrm{S}}_{\mathrm{xy}}(z)\right|_{z=e^{i \omega}}
\end{aligned}
$$

Definition 3.Let S be a system defined as in Figure 1 (page 17). Define the following cost functions for spectral least-squares estimates:

$$
\mathrm{C}_{\mathrm{rq}}(\hat{\mathrm{H}}) \triangleq \tilde{\mathrm{S}}_{\mathrm{rr}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{rq}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{qr}}(\omega)+\tilde{\mathrm{S}}_{\mathrm{qq}}(\omega)
$$

Remark.Note that by Corollary 1 (page 4), $\tilde{\mathrm{S}}_{\mathrm{qr}}=\tilde{\mathrm{S}}_{\mathrm{rq}}{ }^{*}$ for (1)-(4) \ldots and thus the cost function C for (1)-(4) is real-valued. This in general is not true for (5)-(8). This in itself provides an argument, however weak that argument may be, for not selecting any of (5)-(8) as a standard for the definition of $\mathrm{R}_{\mathrm{xy}}(m)$.

Now for each of the eight $\mathrm{R}_{\mathrm{xy}}(m)$ definitions, we can transform the expression of $\mathrm{C}_{\mathrm{rq}}(\hat{\mathrm{H}})$ as given by Definition 3 into expressions involving \hat{H} (next lemma). In doing so, one might hope to be in a good position to take partial derivatives of the real and imaginary parts of $\hat{\mathrm{H}}$ to find an optimal least-squares-like solution for $\hat{\mathrm{H}}$.

Lemma 4.Let $\mathrm{C}_{\mathrm{rq}}(\hat{\mathrm{H}})$ be defined as in Definition 3. Let (1)-(8) below correspond to the eight definitions of $\mathrm{R}_{\mathrm{xy}}(m)$ in Definition 2.
(1). $C_{\mathrm{rq}}(\hat{H})=\overbrace{\tilde{S}_{\mathrm{rr}}(\omega)-\tilde{S}_{\mathrm{rq}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{rq}}{ }^{*}(\omega)+\tilde{\mathrm{S}}_{\mathrm{qq}}(\omega)}^{\text {by Definition } 3 \text { and }}$ Corollary 1 page 4

$$
\begin{aligned}
& =\overbrace{\tilde{\mathrm{S}}_{\mathrm{pp}}(\omega)|\hat{\mathrm{H}}(\omega)|^{2}-\tilde{\mathrm{S}}_{\mathrm{py}}(\omega) \hat{\mathrm{H}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}{ }^{*}(\omega) \hat{\mathrm{H}}^{*}(\omega)+\tilde{\mathrm{S}}_{\mathrm{qq}}(\omega)}^{\text {by Corollary } 2 \text { page } 7 \text { and Proposition } 9 \text { page 16 }} \\
& =\tilde{S}_{\mathrm{pp}}(\omega)|\hat{\mathrm{H}}(\omega)|^{2}-\tilde{\mathrm{S}}_{\mathrm{py}}(\omega) \hat{\mathrm{H}}^{*}(-\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}^{*}(\omega) \hat{\mathrm{H}}(-\omega)+\tilde{\mathrm{S}}_{\mathrm{qq}}(\omega) \\
& =\tilde{\mathrm{S}}_{\mathrm{pp}}(\omega)|\hat{\mathrm{H}}(-\omega)|^{2}-\tilde{\mathrm{S}}_{\mathrm{py}}(\omega) \hat{\mathrm{H}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}{ }^{*}(\omega) \hat{\mathrm{H}}^{*}(\omega)+\tilde{\mathrm{S}}_{\mathrm{qq}}(\omega) \\
& =\tilde{\mathrm{S}}_{\mathrm{pp}}(\omega)|\hat{\mathrm{H}}(-\omega)|^{2}-\tilde{\mathrm{S}}_{\mathrm{py}}(\omega) \hat{\mathrm{H}}^{*}(-\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}{ }^{*}(\omega) \hat{\mathrm{H}}(-\omega)+\tilde{\mathrm{S}}_{\mathrm{qq}}(\omega) \\
& =\tilde{S}_{\mathrm{pp}}(\omega) \hat{\mathrm{H}}(\omega) \hat{\mathrm{H}}(-\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}(\omega) \hat{\mathrm{H}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}(-\omega) \hat{\mathrm{H}}(-\omega)+\tilde{\mathrm{S}}_{\mathrm{qq}}(\omega) \\
& =\tilde{\mathrm{S}}_{\mathrm{pp}}(\omega) \hat{\mathrm{H}}(\omega) \hat{\mathrm{H}}(-\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}(\omega) \hat{\mathrm{H}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}(-\omega) \hat{\mathrm{H}(-\omega)+\tilde{\mathrm{S}}_{\mathrm{qq}}(\omega)} \\
& =\tilde{\mathrm{S}}_{\mathrm{pp}}(\omega) \hat{\mathrm{H}}^{*}(\omega) \hat{\mathrm{H}}^{*}(-\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}(\omega) \hat{\mathrm{H}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}(-\omega) \hat{\mathrm{H}}^{*}(\omega)+\tilde{\mathrm{S}}_{\mathrm{qq}}(\omega) \hat{\mathrm{H}}(-\omega)-\tilde{\mathrm{S}}_{\mathrm{qq}}(-\omega) \\
& \left.\tilde{\mathrm{S}}^{*}(-\omega)-\omega\right)+\tilde{S}_{\mathrm{H}}(\omega)
\end{aligned}
$$

For the Papoulis $\mathrm{R}_{\mathrm{xy}}(m)$ definition (1), the C_{rq} expression demonstrated in Lemma 4 is very useful. In particular, we can set the partial derivatives $\frac{\partial}{\partial \hat{H}_{R}} \hat{H}(\omega)$ and $\frac{\partial}{\partial \hat{H}_{I}} \hat{H}(\omega)$ of the real and imaginary parts of $\hat{H}(\omega)$ to zero and solve the resulting two equations to find an optimal \hat{H} (as in Proposition 10 page 18).

However, this becomes troublesome in the case when encountering $\hat{\mathrm{H}}(-\omega)$ and the impulse response of $\hat{\mathrm{H}}$ is complex-valued-in which case in general $\hat{\mathrm{H}}(-\omega) \neq \hat{\mathrm{H}}^{*}(\omega)$.

Note that except for (1), all of the expressions demonstrated in Lemma 4 contain an $\hat{\mathrm{H}}(-\omega)$ and/or $\hat{\mathrm{H}}^{*}(-\omega)$.
This trouble provides an argument, however a weak one it might be, for choosing (1) as the standard definition of $\mathrm{R}_{\mathrm{xy}}(m)$.

Proposition 10. Let S be the system illustrated in Figure 1 page 17.

$$
\left\{\begin{array}{l}
(A) \cdot \mathrm{x}, \mathrm{u}, \text { and } \mathrm{v} \text { are WSS } \\
\begin{array}{l}
\text { (B). } \mathrm{x}, \mathrm{u} \text {, and } \mathrm{v} \text { are } \\
(C) \cdot \mathrm{u} \text { and } \mathrm{v} \text { are } \\
\text { zero-mean and } \\
(D) \cdot \hat{\mathrm{H}} \text { is }
\end{array} \quad \text { LTI }
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
\arg \min ^{\arg } \mathrm{C}_{\mathrm{rq}}(\hat{\mathrm{H}})=\frac{\tilde{\mathrm{S}}_{\mathrm{xy}}{ }^{*}(\omega)}{\tilde{\mathrm{S}}_{\mathrm{xx}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{uu}}(\omega)} \\
\text { for }(1)
\end{array}\right\}
$$

Proof.

(1). $0=\frac{\partial}{\partial \hat{\mathrm{H}}_{R}} \mathrm{C}_{\mathrm{rq}}[\hat{\mathrm{H}}(\omega)]$

$$
\begin{aligned}
& 0=\frac{\partial}{\partial \hat{\mathrm{H}}_{R}} \mathrm{C}_{\mathrm{rq}}[\hat{\mathrm{H}}(\omega)]=2 \hat{\mathrm{H}}_{R}(\omega) \tilde{\mathrm{S}}_{\mathrm{pp}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{py}}^{*}(\omega)+\frac{\partial}{\partial \hat{H}_{R}} \tilde{S}_{\mathrm{qq}}(\omega) \Longrightarrow \hat{\mathrm{H}}_{R}(\omega)=\frac{\mathrm{R}_{\mathrm{e}} \tilde{\mathrm{~S}}_{\mathrm{py}}{ }^{*}(\omega)}{\tilde{\mathrm{S}}_{\mathrm{pp}}(\omega)} \\
& 0=\frac{\partial}{\partial \hat{\mathrm{H}}_{I}} \mathrm{C}_{\mathrm{rq}}[\hat{\mathrm{H}}(\omega)]=2 \hat{\mathrm{H}}_{I}(\omega) \tilde{\mathrm{S}}_{\mathrm{pp}}(\omega)-i \tilde{\mathrm{~S}}_{\mathrm{py}}(\omega)+i \tilde{\mathrm{~S}}_{\mathrm{py}}^{*}(\omega)+\frac{\partial}{\partial \hat{H}_{R}} \tilde{S}_{\mathrm{qq}}(\omega) \Longrightarrow \hat{\mathrm{H}}_{I}(\omega)=\frac{\mathrm{I}_{\mathrm{m}} \tilde{\mathrm{~S}}_{\mathrm{py}}^{*}(\omega)}{\tilde{\mathrm{S}}_{\mathrm{pp}}(\omega)}
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow \hat{\mathrm{H}}(\omega) & \triangleq \hat{\mathrm{H}}_{R}(\omega)+i \hat{\mathrm{H}}_{I}(\omega) \frac{\mathrm{R}_{\mathrm{e}} \tilde{\mathrm{~S}}_{\mathrm{py}}^{*}(\omega)}{\tilde{\mathrm{S}}_{\mathrm{pp}}(\omega)}+\frac{i \mathrm{I}_{\mathrm{m}} \tilde{\mathrm{~S}}_{\mathrm{py}}^{*}(\omega)}{\tilde{\mathrm{S}}_{\mathrm{pp}}(\omega)} \\
& =\frac{\tilde{\mathrm{S}}_{\mathrm{py}}^{*}(\omega)}{\tilde{\mathrm{S}}_{\mathrm{pp}}(\omega)} \\
& =\frac{\tilde{\mathrm{S}}_{\mathrm{xy}}^{*}(\omega)}{\tilde{\mathrm{S}}_{\mathrm{xx}}(\omega)-\tilde{\mathrm{S}}_{\mathrm{uu}}(\omega)}
\end{aligned}
$$

by Proposition 5 page 11

It follows immediately from Proposition 10 that, for (1) and in the special case of no input noise $(u(n)=0)$, the standard estimate ${ }^{6} \hat{H}_{1}$ is the optimal least-squares estimate of \tilde{H} (next).

Corollary 5.Let S be the system illustrated in Figure 1 page 17.

$$
\left\{\begin{array}{l}
\text { (1). hypotheses of Proposition } 10 \text { and } \\
\text { (2). } \mathrm{u}(n)=0
\end{array}\right\} \Longrightarrow\left\{\hat{\mathrm{H}}(\omega)=\hat{\mathrm{H}}_{1}(\omega) \triangleq \frac{\tilde{\mathrm{S}}_{\times \mathrm{y}}^{*}(\omega)}{\tilde{S}_{\mathrm{xx}}(\omega)}\right\} \quad \text { for (1) }
$$

6 Which one?

Which definition of $\mathrm{R}_{\mathrm{xy}}(m)$ should we use? Any one of them is perfectly acceptable - as long as a clear definition is provided and that definition is used consistently. That being said, note the following:
1.The expectation operator $\mathrm{E}\left(\mathrm{X}^{*}\right)$ is an inner product. As such, it would seem the most natural to follow the convention of other inner product definitions and thus put the conjugate $*$ on y (i.e. follow Papoulis):

- $\langle\mathrm{x}(t) \mid \mathrm{y}(t)\rangle \triangleq \int_{t \in \mathbb{R}} \mathrm{x}(t) \mathrm{y}^{*}(t) \mathrm{t}$
- $\langle\mathrm{x}(n) \mid \mathrm{y}(n)\rangle \triangleq \sum_{n \in \mathbb{Z}} \mathrm{x}(n) \mathrm{y}^{*}(n)$
- $\quad\langle\mathrm{X} \mid \mathrm{Y}\rangle \triangleq \mathrm{E}\left(\mathrm{X}^{*}\right)$
2.If we view $\mathrm{R}_{\mathrm{xy}}(m)$ as an analysis of y in terms of x (or as a projection of y onto x), then it would seem more natural to put the conjugate on x (i.e. follow Kay). This is what is done in Fourier analysis when projecting a function $f(t)$ onto the set of basis functions $\left\{e^{i \omega n} \mid \omega \in \mathbb{R}\right\}$, as in

$$
\begin{array}{rlr}
\breve{\mathrm{F}}[\mathrm{y}(n)](\omega) & \triangleq\left\langle\mathrm{y}(n) \mid e^{i \omega n}\right\rangle & \quad\left(\operatorname{project} \mathrm{y}(n) \text { onto } e^{i \omega n} \text { for some } \omega \in \mathbb{R}\right) \\
& \triangleq \sum_{n \in \mathbb{Z}} \mathrm{y}(n)\left[e^{+i \omega n}\right]^{*} & \\
& \triangleq \sum_{n \in \mathbb{Z}} \mathrm{y}(n) e^{-i \omega n} &
\end{array}
$$

But arguably, a "projection of y onto x " would better be served by the use of $\mathrm{R}_{\mathrm{yx}}(m)$ rather than $\mathrm{R}_{\mathrm{xy}}(m)$.
3.As demonstrated in Section 5.6 (page 17), the Papoulis definition (1) is arguably more convenient for performing least-squares-like optimization.

Appendix A Random Sequences

Definition 4.[19, page 104], [2, page 30], [4, page 49] Let ($\Omega, \mathbb{E}, \mathrm{P}$) be a probability space and X a random variable on $(\Omega, \mathbb{E}, \mathrm{P})$ with probability density function p_{X}.

$$
\text { The expectation operator } \mathrm{E}_{\mathrm{x}} \text { on } \mathrm{X} \text { is defined as } \quad \mathrm{E}_{\mathrm{x}} \mathrm{X} \triangleq \int_{x \in \mathbb{F}} x p_{X}(x) \mathrm{x} .
$$

Proposition 11(Linearity of E). [19, page 107], [2, page 30], Let X be a random variable on a probability space $(\Omega, \mathbb{E}, \mathrm{P})$.

$$
\mathrm{E}_{\mathrm{x}}(a \mathrm{X}+b \mathrm{Y}+c)=\left(a \mathrm{E}_{\mathrm{x}} \mathrm{X}\right)+\left(b \mathrm{E}_{\mathrm{x}} \mathrm{Y}\right)+c \forall a, b, c \in \mathbb{R} \text { (linear) }
$$

Proof.

$$
\begin{aligned}
\mathrm{E}_{\mathrm{xy}}(a \mathrm{X}+b \mathrm{Y}+c) & \triangleq \int_{x \in \mathbb{R}} \int_{y \in \mathbb{R}}[a x+b y+c] p_{\mathrm{xy}}(x, y) \mathrm{y} \mathrm{x} \quad \text { by definition of E (Definition 4 page 19) } \\
& =\int_{x \in \mathbb{R}} \int_{y \in \mathbb{R}} a x p_{\mathrm{x} \mathrm{y}}(x, y) \mathrm{yx}+\int_{x \in \mathbb{R}} \int_{y \in \mathbb{R}} b y p_{\mathrm{x} \mathrm{y}}(x, y) \mathrm{y} \mathrm{x}+\int_{x \in \mathbb{R}} \int_{y \in \mathbb{R}} c p_{\mathrm{x} \mathrm{y}}(x, y) \mathrm{y} \mathrm{x} \\
& =\int_{x \in \mathbb{R}} a x \underbrace{\int_{y \in \mathbb{R}} p_{\mathrm{xy}}(x, y) \mathrm{yx}}_{p_{\mathrm{x}}(x)}+\int_{y \in \mathbb{R}} b y \underbrace{\int_{x \in \mathbb{R}} p_{\mathrm{xy}}(x, y) \mathrm{x} \mathrm{y}}_{p_{\mathrm{y}}(y)}+c \underbrace{1}_{\int_{y \in \mathbb{R}} \int_{x \in \mathbb{R}} p_{\mathrm{xy}}(x, y) \mathrm{x} \mathrm{y}} \\
& =a \underbrace{\int_{x \in \mathbb{R}} x p_{\mathrm{x}}(x) \mathrm{x}}_{\mathrm{EX}}+b \underbrace{\int_{y \in \mathbb{R}} y p_{\mathrm{y}}(y) \mathrm{y}}_{\mathrm{EY}}+c \\
& =\left(a \mathrm{E}_{\mathrm{x}} \mathrm{X}\right)+\left(b \mathrm{E}_{\mathrm{y}} \mathrm{Y}\right)+c
\end{aligned}
$$

Definition 5.[19, page 220], [4, pages 109-111], [2, page 3] Let $\left(\hat{x}(n) D_{n \in \mathbb{Z}}\right.$ be a random sequence.
$(\mathrm{x}(n))$ is wide sense stationary (WSS) if
(1). $\quad \operatorname{Ex}(n)=\operatorname{Ex}(k) \quad \forall n, k \in \mathbb{Z} \quad$ and
(2). $\mathrm{E}[\mathrm{x}(n+m) \mathrm{x}(n)]=\mathrm{E}[\mathrm{x}(k+m) \mathrm{x}(k)] \forall n, k, m \in \mathbb{Z}$

Definition 6.[19, page 221] Let $(\mathrm{x}(n))_{n \in \mathbb{Z}}$ and $(\mathrm{y}(n))_{n \in \mathbb{Z}}$ be random sequences.
$(\mathrm{x}(n))$ and $(\mathrm{y}(n))$ are jointly wide sense stationary (J-WSS) if
(1). $(\mathrm{x}(n))$ is wide sense stationary
Definition 5 and
(2). $(\mathrm{y}(n))$ is wide sense stationary Definition 5 and
(3). $\mathrm{E}[\mathrm{x}(n+m) \mathrm{y}(n)]=\mathrm{E}[\mathrm{x}(k+m) \mathrm{y}(k)] \forall n, k, m \in \mathbb{Z}$

Appendix B Operations on Sequences

B. 1 Convolution operation

Definition 7.[6, page 1], [24, page 23], [11, page 31] Let X^{Y} be the set of all functions from a set Y to a set X. Let \mathbb{Z} be the set of integers.

A function f in X^{Y} is a sequence over X if $Y=\mathbb{Z}$.
A sequence may be denoted in the form $\left(x_{n}\right)_{n \in \mathbb{Z}}$ or simply as $\left(x_{n}\right)$.

Definition 8.[13, page 347] Let $(\mathbb{C},+, \cdot, 0,1)$ be the field of complex numbers.
The space of all absolutely square summable sequences $\ell_{\mathbb{C}}^{2}$ over \mathbb{C} is defined as $\ell_{\mathbb{C}}^{2} \triangleq\left\{\left.\left|x_{n}\right|_{n \in \mathbb{Z}}\left|\sum_{n \in \mathbb{Z}}\right| x_{n}\right|^{2}<\infty\right\}$

Definition 9.

The convolution operation \star is defined as

$$
\left(x_{n}\right) \star\left(y_{n}\right) \triangleq\left(\sum_{m \in \mathbb{Z}} x_{m} y_{n-m}\right)_{n \in \mathbb{Z}} \quad \forall\left(x_{n}\right)_{n \in \mathbb{Z}},\left(y_{n}\right)_{n \in \mathbb{Z}} \in \ell_{\mathbb{C}}^{2}
$$

B. 2 Z-transform

Definition 10. ${ }^{7}$ Let $\left(\hat{x}(n) D_{n \in \mathbb{Z}}\right.$ be a sequence.
The z-transform Z of $(\mathrm{x}(n))$ is defined as $[\mathrm{Z}(\mathrm{x}(n))](z) \triangleq \sum_{n \in \mathbb{Z}} \mathrm{x}(n) z^{-n} \quad \forall(\mathrm{x}(n)) \in \ell_{\mathbb{C}}^{2}$

Proposition 12. Let $X(z) \triangleq \mathrm{Z} \mathrm{x}(n)$ be the z-transform of $\mathrm{x}(n)$.

$$
\underbrace{\{\check{\mathrm{x}}(z) \triangleq \mathrm{Z}(\mathrm{x}(n))\}}_{\text {(Definition 10 page 21) }} \Longrightarrow\left\{\begin{array}{lll}
\text { (1). } \mathrm{Z}(\alpha \alpha \mathrm{x}(n))=\alpha \check{\mathrm{x}}(z) & \forall\left(x_{n}\right) \in \ell_{\mathrm{C}}^{2} \text { and } \\
\text { (2). } \mathrm{Z}(\mathrm{x}(n-k])=z^{-k} \check{\mathrm{x}}(z) & \forall\left(x_{n}\right) \in \ell_{\mathrm{C}}^{2} \text { and } \\
\text { (3). } \mathrm{Z}(\mathrm{x}(-n)) & =\check{\mathrm{x}}\left(\frac{1}{z}\right) & \forall\left(x_{n}\right) \in \ell_{\mathrm{C}}^{2} \text { and } \\
\text { (4). } \mathrm{Z}\left(\left(\mathrm{x}^{*}(n)\right)\right. & =\check{\mathrm{x}}^{*}\left(z^{*}\right) & \forall\left(x_{n}\right) \in \ell_{\mathrm{C}}^{2} \text { and } \\
\text { (5). } \mathrm{Z}\left(\mathrm{x}^{*}(-n)\right) & =\check{\mathrm{x}}^{*}\left(\frac{1}{z^{*}}\right) & \forall\left(x_{n}\right) \in \ell_{\mathrm{C}}^{2}
\end{array}\right\}
$$

Proof.

$$
\begin{aligned}
& \alpha \mathbb{Z} \check{\mathrm{x}}(z) \triangleq \alpha \mathrm{Z}(\mathrm{x}(n)) \quad \text { by definition of } \check{\mathrm{x}}(z) \\
& \triangleq \alpha \sum_{n \in \mathbb{Z}} \mathrm{x}(n) z^{-n} \\
& \triangleq \sum_{n \in \mathbb{Z}}(\alpha \mathrm{x}(n)) z^{-n} \quad \text { by distributive property } \\
& \triangleq \mathrm{Z}(\alpha \mathrm{x}(n)) \\
& z^{-k} \check{\mathrm{x}}(z)=z^{-k} \mathrm{Z}(\mathrm{x}(n)) \\
& \triangleq z^{-k} \sum_{n=-\infty}^{n=+\infty} \mathrm{x}(n) z^{-n} \quad \text { by definition of } \mathrm{Z} \\
& =\sum_{n=-\infty}^{n=+\infty} \mathrm{x}(n) z^{-n-k} \\
& =\sum_{m-k=-\infty}^{m-k=+\infty} \mathrm{x}[m-k] z^{-m} \\
& =\sum_{m=-\infty}^{m=+\infty} \mathrm{x}[m-k] z^{-m} \\
& =\sum_{n=-\infty}^{n=+\infty} \mathrm{x}[n-k] z^{-n} \\
& \triangleq \mathrm{Z}(\mathrm{x}[n-k]) \\
& \mathrm{Z}\left(\mathrm{x}^{*}(n)\right) \triangleq \sum_{n \in \mathbb{Z}} \mathrm{x}^{*}(n) z^{-n} \\
& \triangleq\left(\sum_{n \in \mathbb{Z}} \mathrm{x}(n)\left(z^{*}\right)^{-n}\right)^{*} \quad \text { by definition of } Z \\
& \triangleq \check{\mathrm{x}}^{*}\left(z^{*}\right) \\
& \mathrm{Z}(\mathrm{x}(-n)) \triangleq \sum_{n \in \mathbb{Z}} \mathrm{x}(-n) z^{-n} \\
& =\sum_{-m \in \mathbb{Z}} \mathrm{x}[m] z^{m} \\
& =\sum_{m \in \mathbb{Z}} \mathrm{x}[m] z^{m} \\
& =\sum_{m \in \mathbb{Z}} \mathrm{x}[m]\left(\frac{1}{z}\right)^{-m} \\
& \triangleq \check{\mathrm{x}}\left(\frac{1}{z}\right) \\
& \mathrm{Z}\left(\mathrm{x}^{*}(-n)\right) \triangleq \sum_{n \in \mathbb{Z}} \mathrm{x}^{*}(-n) z^{-n} \quad \text { by definition of } \mathrm{Z} \\
& =\sum_{-m \in \mathbb{Z}} \mathrm{x}^{*}[m] z^{m} \quad \text { where } m \triangleq-n \\
& =\sum_{m \in \mathbb{Z}} \mathrm{x}^{*}[m] z^{m} \quad \text { because }\left(\mathrm{x}(n) \downarrow,\left(\mid z^{n}\right) \in \ell_{\mathbb{C}}^{2}\right. \\
& =\sum_{m \in \mathbb{Z}} \mathrm{x}^{*}[m]\left(\frac{1}{z}\right)^{-m} \\
& =\left(\sum_{m \in \mathbb{Z}} \mathrm{x}[m]\left(\frac{1}{z^{*}}\right)^{-m}\right)^{*} \\
& \triangleq \check{\mathrm{x}}^{*}\left(\frac{1}{z^{*}}\right)
\end{aligned}
$$

Proposition 13(Convolution Theorem). Let \star be the convolution operator (Definition 9 page 20).

$$
\mathrm{Z} \underbrace{\left(\left(\mid x_{n}\right) \star\left(y_{n}\right)\right)}_{\text {sequence convolution }}=\underbrace{\left(\mathrm{Z}\left(x_{n}\right)\right)\left(\mathrm{Z}\left(y_{n}\right)\right)}_{\text {series multiplication }} \quad \forall\left(x_{n}\right)_{n \in \mathbb{Z}},\left(y_{n}\right)_{n \in \mathbb{Z}} \in \ell_{\mathbb{C}}^{2}
$$

Proof.

$$
\begin{aligned}
{[\mathrm{Z}(x \star y)](z) } & \triangleq \mathbb{Z}\left(\sum_{m \in \mathbb{Z}} x_{m} y_{n-m}\right) & & \text { by Definition } 9 \text { page } 20 \\
& \triangleq \sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} x_{m} y_{n-m} z^{-n} & & \\
& =\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} x_{m} y_{n-m} z^{-n} & & \\
& =\sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} x_{m} y_{n-m} z^{-n} & & \\
& =\sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} x_{m} y_{k} z^{-(m+k)} & & \\
& =\left[\sum_{m \in \mathbb{Z}} x_{m} z^{-m}\right]\left[\sum_{k \in \mathbb{Z}} y_{k} z^{-k}\right] & &
\end{aligned}
$$

$$
\triangleq\left(\mathrm{Z}\left(x_{n}\right)\right)\left(\mathrm{Z}\left(y_{n}\right)\right) \quad \text { by Definition } 10 \text { page } 21
$$

Lemma 5. Let H be a linear time-invariant operator with impulse response $(\mathrm{h}(n))$. Let $(\mathrm{y}(n)) \triangleq(\mathrm{Hx}(n))$.
$($ (A). $(\mathrm{x}(n))$ and $(\mathrm{y}(n))$ are real-valued and $)$

Proof. 1.Let $\mathrm{h}_{R}(n)$ and $\mathrm{h}_{I}(n)$ be the real-part and imaginary-part, respectively, of $\mathrm{h}(n)$.
2.lemma: $\sum_{m \in \mathbb{Z}} \mathrm{~h}_{I}(m) \mathrm{x}(n-m)=0$

$$
\begin{array}{lll}
\sum_{m \in \mathbb{Z}} \mathrm{~h}_{R}(m) \mathrm{x}(n-m)+i \sum_{m \in \mathbb{Z}} \mathrm{~h}_{I}(m) \mathrm{x}(n-m) & \\
=\sum_{m \in \mathbb{Z}} \mathrm{~h}(m) \mathrm{x}(n-m) & \text { by definitions of } \mathrm{h}_{R} \text { and } \mathrm{h}_{I} & \text { item (1) } \\
=\mathrm{y}(n) & \text { because } \mathrm{H} \text { is LTI } & \text { hypothesis (D) } \\
=\mathrm{y}^{*}(n) & \text { because } \mathrm{y} \text { is real-valued } & \text { hypothesis (A) } \\
=\left(\sum_{m \in \mathbb{Z}} \mathrm{~h}(m) \mathrm{x}(n-m)\right)^{*} & \text { because } \mathrm{H} \text { is LTI } & \text { hypothesis (D) } \\
=\sum_{m \in \mathbb{Z}} \mathrm{~h}^{*}(m) \mathrm{x}^{*}(n-m) & \text { by antiautomorphic property } & \text { (Definition 11 page 24) } \\
=\sum_{m \in \mathbb{Z}} \mathrm{~h}^{*}(m) \mathrm{x}(n-m) & \text { because y is real-valued } & \text { hypothesis (A) } \\
=\sum_{m \in \mathbb{Z}} \mathrm{~h}_{R}(m) \mathrm{x}(n-m)-i \sum_{m \in \mathbb{Z}} \mathrm{~h}_{I}(m) \mathrm{x}(n-m) & \text { by definitions of } \mathrm{h}_{R} \text { and } \mathrm{h}_{I} & \text { item (1) } \\
\Longrightarrow & &
\end{array}
$$

3.Notes:

(a)Without hypothesis (C), it is trivial to satisfy (2) lemma.
(b)Without hypothesis (B), it is simple to satisfy (2) lemma with

$$
\mathrm{h}(n)=(\cdots, 0,0,0, i,-i, 0,0,0, \cdots) \text { and } \mathrm{x}(n)=(\cdots, 1,1,1, \cdots)
$$

(c)Without hypothesis (D), it is trivial to satisfy (2) lemma with $\mathrm{Hx}(n) \triangleq \mathrm{R}_{\mathrm{e}}\left(\sum_{m \in \mathbb{Z}} \mathrm{~h}(m) \mathrm{x}(n-m)\right)$ 4.Proof that $\mathrm{h}(n)$ is real-valued:

$$
\begin{array}{rlrl}
\text { (2) lemma } & \Longrightarrow \check{\mathrm{H}}_{I}(z) \check{\mathrm{X}}(z)=0 & & \text { by Convolution Theorem } \\
& \Longrightarrow \check{\mathrm{H}}_{I}(z)=0 & \text { (Proposition 13 page 23) } \\
& \Longrightarrow \mathrm{h}_{I}(n)=(\cdots, 0,0,0, \cdots) & & \\
& \Longrightarrow \mathrm{h}(n) \triangleq \mathrm{h}_{R}(n)+i \mathrm{~h}_{I}(n) \text { is real-valued } & &
\end{array}
$$

5. Proof that $\check{\mathrm{H}}(z)=\check{\mathrm{H}}^{*}\left(z^{*}\right)$:

$$
\begin{aligned}
\check{\mathrm{H}}(z) & \triangleq \mathrm{Z}(\mathrm{x}(n)) & & \text { by definition of } \check{\mathrm{H}}(z) \\
& =\mathrm{Z}\left(\mathrm{x}^{*}(n)\right) & & \text { because } \mathrm{x}(n) \text { is real-valued } \\
& =\check{\mathrm{H}}^{*}\left(z^{*}\right) & & \text { by Proposition } 12
\end{aligned}
$$

Lemma 6. Let $\tilde{\mathrm{H}}(\omega)$ be the DTFT (Definition 1 page 1) of a sequence $\mathrm{h}(n)$.

$$
\{\mathrm{h}(n) \text { is real-valued }\} \Longrightarrow\left\{\tilde{\mathrm{H}}(-\omega)=\tilde{\mathrm{H}}^{*}(\omega) \text { (conjugate symmetric) }\right\}
$$

Proof.

$$
\begin{aligned}
\tilde{\mathrm{H}}(-\omega) & \triangleq \sum_{n \in \mathbb{Z}} \mathrm{~h}(n) e^{-i(-\omega) n} & & \text { by definition of } \tilde{\mathrm{H}}(\omega) \\
& =\sum_{n \in \mathbb{Z}} \mathrm{~h}(n) e^{i \omega n} & & \text { (Definition 1 page 1) } \\
& =\left[\sum_{n \in \mathbb{Z}} \mathrm{~h}^{*}(n) e^{i \omega n}\right]^{*} & & \text { by antiautomorphic property of } *_{-a l g e b r a s} \\
& =\left[\sum_{n \in \mathbb{Z}} \mathrm{~h}(n) e^{-i \omega n}\right]^{*} & & \text { (Definition 11 page 24) } \\
& \triangleq \tilde{H}^{*}(\omega) & & \text { by real-valued hypothesis } \\
& & \text { by definition of } \tilde{H}(\omega) & \text { (Definition } 1 \text { page } 1 \text {) }
\end{aligned}
$$

Appendix C Normed Algebras

Definition 11.[21, page 178], [8, page 241] xsym]* Let \mathbb{A} be an algebra.
The pair $(\mathbb{A}, *)$ is a *-algebra, or "star-algebra", if

1. $(x+y)^{*}=x^{*}+y^{*} \forall x, y \in \mathbb{A} \quad$ (distributive) and
$(\alpha x)^{*}=\bar{\alpha} x^{*} \quad \forall x \in \mathbb{A}, \alpha \in \mathbb{C}$ (conjugate linear) and
$(x y)^{*}=y^{*} x^{*} \quad \forall x, y \in \mathbb{A} \quad$ (antiautomorphic) and
$x^{* *}=x \quad \forall x \in \mathbb{A} \quad$ (involutory)
The operator $*$ is called an involution on the algebra \mathbb{A}.

Definition 12(Hermitian components). [18, page 430], [21, page 179], [8, page 242] Let $(X,\|\cdot\|)$ be a $*$-algebra (Definition 11 page 24).

For $x \in X$, the real part
of x is defined as $\mathrm{R}_{\mathrm{e}} x \triangleq \frac{1}{2}\left(x+x^{*}\right)$
For $x \in X$, the imaginary part of x is defined as $\mathrm{I}_{\mathrm{m}} x \triangleq \frac{1}{2 i}\left(x-x^{*}\right)$

Example 1.[14, pages 106-107] Let \mathbb{C} be the set of complex numbers and $*: \mathbb{C} \rightarrow \mathbb{C}$ the conjugate operator. The pair $(\mathbb{C}, *)$ is an $*$-algebra.

References

[1] Yuri A. Abramovich and Charalambos D. Aliprantis. An Invitation to Operator Theory. American Mathematical Society, Providence, Rhode Island, 2002. ISBN 0-8218-2146-6. URL http://books.google.com/books?vid= ISBN0821821466.
[2] Julius S. Bendat and Allan G. Piersol. Engineering Applications of Correlation and Spectral Analysis. John Wiley \& Sons, 1980. ISBN 9780471058878 . URL http://www.amazon.com/dp/0471058874.
[3] Julius S. Bendat and Allan G. Piersol. Engineering Applications of Correlation and Spectral Analysis. WileyInterscience, 2 edition, 1993. ISBN 9780471570554. URL http://www.amazon.com/dp/0471570559.
[4] Julius S. Bendat and Allan G. Piersol. Random Data: Analysis and Measurement Procedures, volume 729 of Wiley Series in Probability and Statistics. John Wiley \& Sons, 4 edition, 2010. ISBN 9781118210826. URL http://books. google.com/books?vid=ISBN1118210824.
[5] Ronald Newbold Bracewell. The Fourier transform and its applications. McGraw-Hill electrical and electronic engineering series. McGraw-Hill, 2, illustrated, international student edition edition, 1978. ISBN 9780070070134. URL http://books.google.com/books?vid=ISBN007007013X.
[6] Thomas John I'Anson Bromwich. An Introduction to the Theory of Infinite Series. Macmillan and Company, 1 edition, 1908. ISBN 9780821839768. URL http://www.archive.org/details/anintroductiont00bromgoog.
[7] James A. Cadzow. Foundations of Digital Signal Processing and Data Analysis. Macmillan Publishing Company, New York, 1987. ISBN 0023180102. URL https://books.google.com/books?vid=ISBN9780023180101.
[8] Israel M. Gelfand and Mark A. Naimark. Normed rings with an involution and their representations. In Commutative Normed Rings, number 170 in AMS Chelsea Publishing Series, pages 240-274. Chelsea Publishing Company, Bronx, 1964. ISBN 9780821820223 . URL http://books.google.com/books?vid=ISBN0821820222.
[9] Godfrey H. Hardy. A Mathematician's Apology. Cambridge University Press, Cambridge, 1940. URL http://www. math.ualberta.ca/ $\sim \mathrm{mss} / \mathrm{misc} / \mathrm{A} \% 20 \mathrm{Mathematician's} \% 20$ Apology.pdf.
[10] Carl W. Helstrom. Probability and Stochastic Processes for Engineers. Maxwell Macmillan international editions in engineering. Macmillan, 2 edition, 1991. ISBN 9780023535710. URL http://books.google.com/books?vid= ISBN0023535717.
[11] K. D. Joshi. Applied Discrete Structures. New Age International, New Delhi, 1997. ISBN 8122408265. URL http://books.google.com/books?vid=ISBN8122408265.
[12] Steven M. Kay. Modern Spectral Estimation: Theory and Application. Prentice-Hall signal processing series. Prentice Hall, 1988. ISBN 9788131733561. URL http://books.google.com/books?vid=ISBN8131733564.
[13] Carlos S. Kubrusly. The Elements of Operator Theory. Springer, 2 edition, 2011. ISBN 9780817649975. URL http://books.google.com/books?vid=ISBN0817649972.
[14] Edmund Landau. Foundations of analysis: the arithmetic of whole, rational, irrational, and complex numbers. A supplement to textbooks on the differential and integral calculus. AMS Chelsea Publishing, Providence, Rhode Island, USA, 3 edition, 1966. URL http://books.google.com/books?vid=ISBN082182693X. 1966 English translation of the German text Grundlagen der Analysis.
[15] J. Leuridan, J. De Vis, and Van der Auweraer H. F. Lembregts D. "a comparison of some frequency response function measurement techniques. In Proceedings of the 4th International Modal Analysis Conference IMAC, pages 908-918, Los Angeles, CA, 1986. URL https://www.researchgate.net/publication/283994172.
[16] MatLab. cpsd: Cross power spectral density. MatLab, accessed 2018 November 26 2018. URL https://www.mathworks. com/help/signal/ref/cpsd.html.
[17] MatLab. xcorr: Cross-correlation. MatLab, accessed 2018 November 26 2018. URL https://www.mathworks.com/ help/signal/ref/xcorr.html.
[18] Anthony N. Michel and Charles J. Herget. Applied Algebra and Functional Analysis. Dover Publications, Inc., 1993. ISBN 048667598X. URL http://books.google.com/books?vid=ISBN048667598X. original version published by Prentice-Hall in 1981.
[19] Anthanasios Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill Series in Electrical Engineering. McGraw-Hill Book Company, New York, 2 edition, 1984. ISBN 9780070484689. URL http://books. google.com/books?vid=ISBN0070484686.
[20] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing: Principles, Algorithms, and Applications. Prentice Hall international editions. Prentice Hall, 3 edition, 1996. ISBN 9780133737622. URL http://books.google. com/books?vid=ISBN0133737624.
[21] Charles Earl Rickart. General Theory of Banach Algebras. University series in higher mathematics. D. Van Nostrand Company, Yale University, 1960. URL http://books.google.com/books?id=PVrvAAAAMAAJ.
[22] Kihong Shin and Joseph Hammond. Fundamentals of Signal Processing for Sound and Vibration Engineers. John Wiley \& Sons, 2008. ISBN 9780470725641. URL https://archive.org/details/FubdamentalsOfSignalShinHammond/.
[23] Jeffrey Stopple. A Primer of Analytic Number Theory: From Pythagoras to Riemann. Cambridge University Press, Cambridge, June 2003. ISBN 0521012538. URL http://books.google.com/books?vid=ISBN0521012538.
[24] Brian S. Thomson, Andrew M. Bruckner, and Judith B. Bruckner. Elementary Real Analysis. www.classicalrealanalysis.com, 2 edition, 2008. ISBN 9781434843678. URL http://classicalrealanalysis.info/com/ Elementary-Real-Analysis.php.
[25] Eric W. Weisstein. CRC Concise Encyclopedia of Mathematics. CRC Press, 2, revised edition, 2002. ISBN 9781420035223 . URL http://books.google.com/books?vid=ISBN1420035223.

[^0]: ${ }^{1}$ Bracewell and Weisstein here use the integral operator $\int_{\mathbb{R}} \mathrm{x}$ rather than the expectation operator E . That is, they use a time average rather than an ensemble average. But in essence, the two types of operators are "the same" because both types represent inner products. That is, $\int_{x \in \mathbb{R}} \mathrm{f}(x) \mathrm{g}^{*}(x) \mathrm{x} \triangleq\langle\mathrm{f}(x) \mid \mathrm{g}(x)\rangle_{1}$ and $\mathrm{E}\left[\mathrm{x}(t) \mathrm{y}^{*}(t)\right] \triangleq\langle\mathrm{x}(t) \mid \mathrm{y}(t)\rangle_{2}$ (both are inner products, but operate in perpendicular orientations across the ensemble plane).
 2^{2} Note that Bracewell's "Pentagram notation for cross correlation" $g^{*} \star h=\int_{-\infty}^{\infty} g^{*}(u) h(u+x) \mathrm{u}$ implies $g \star h=\int_{-\infty}^{\infty} g(u) h(u+x) \mathrm{u}$ (and hence in the "References that use no conjugate" category).
 ${ }^{3}$ Note that Bendat and Piersol are well known and highly cited for their work related to random vibration testing. In this field, data samples are customarily collected using an analog-to-digital converter (ADC) and as such, for this application (in contrast to wireless communication applications involving phase discriminating PSK or QAM), are customarily real-valued. Therefore, it is very understandable that these authors would define $\mathrm{R}_{\mathrm{xy}}(m)$ without any conjugate operator.

[^1]: ${ }^{4}$ "I regard as quite useless the reading of large treatises of pure analysis: too large a number of methods pass at once before the eyes. It is in the works of applications that one must study them; one judges their ability there and one apprises the manner of making use of them." -Joseph Louis Lagrange (1736-1813). [23, page xi]
 5 "The "seriousness" of a mathematical theorem lies, not in its practical consequences, which are usually negligible, but in the significance of the mathematical ideas which it connects. We may say, roughly, that a mathematical idea is "significant" if it can be connected, in a natural illuminating way, with a large complex of other mathematical ideas." - G.H. Hardy (1877-1947). [9]

