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Abstract: In this study, an effort has been made to obtain optical soliton solutions of the (1+1)-dimensional Biswas-Milovic equation
which was introduced by Biswas and Milovic in 2010, having Kerr law and parabolic-law with weak non-local nonlinearity in the
presence of spatio-temporal dispersion, which is one of the important models for nonlinear optics. Although, the model is an equation
that has been studied by many researchers, the fact that the form to be examined has not been studied before. As a general algorithm,
first converting the model to nonlinear ordinary differential form with a complex wave transformation, then obtaining candidate optical
soliton solutions by utilizing the new Kudryashov technique, determining the ones that satisfy the main equation from these solutions
as the exact solution, and in order to better understand the obtained solutions by making graphical presentation and providing the
necessary comments constitute the main framework of the article.

Keywords: Self-phase modulation; Generalization parameter; Pulse propagation; Complex transform.

1 Introduction

Today, the internet is one of the most indispensable elements in the lives of individuals and societies. When it comes to
the Internet, naturally, social media, communication, data sharing/transmission, especially very large volumes of data
transmission are the sub-headings associated with the Internet. Especially in the last 20 years, there have been huge and
unpredictable developments in this field. All these situations brought the importance of fiber optic communication to the
fore more and studies in this field showed an even faster acceleration. Of course, some analytical, semi-analytical and
soliton solutions developed for the solution of nonlinear partial differential equations (NLPDEs) in the early 2000s had a
great impact on the basis of such advances. Advances in the software industry, developed symbolic algebraic
computations software have played an important role in the development of many optical models [1-9] apart from many
solution methods [10-15].

In this work, we consider (1+1)-dimensional Biswas-Milovic (BM) [16] equation consisting spatio-temporal [17]
dispersion:
with Kerr law nonlinearity as:

i(Mn)t +β (Mn)xx +α (Mn)xt + c |M|2 Mn = 0, (1)
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and with parabolic law with nonlocal nonlinearity as:

i(Mn)t +β (Mn)xx +α (Mn)xt +
(

c1 |M|2 + c2 |M|4 + c3

(
|M|2

)
xx

)
Mn = 0, (2)

where M = M(x, t) is the (1+1)-dimensional a complex valued function, the temporal evolution, group velocity
dispersion, spatio-temporal dispersino and self-phase modulation terms are represented by from the first to the fourth
terms, respectively. α, β , ci are real values and they are the coefficient to the relevant terms. The parameter n is also for
generalization parameter BM equation to NLS equation and n ≥ 1. The BM equation equation was presented to the
literature as a generalization of the NLSE equation in 2010 [16] and has a very wide application area and therefore it has
been in the working range of many researchers [18-29].

The paper are designed as follows: In section 2, NODE forms of eq.(1) and eq.(2) are derived. Section 3, introduces the
utilized method which is the new Kudryashov and and its implementation. Section 4, covers the the results and some
graphical presentations. Section is the final, Conclusion.

2 NODE representations of the eq.(1) and eq.(2)

The following transformation is utilized to gain the NODE structure of the eq.(1) and eq.(2):

M(x, t) = M(ξ )eiθ , θ = x− vt, ξ =−κx+ω t +ϕ0, (3)

where M(ξ ), θ , κ, ω, v, ϕ0 stand for the amplitude in real, phase component, frequency, wave number, velocity, phase
constant, respectively. They are all real nonzero values to be determined.

2.1 NODE representation of eq. (1)

Inserting the eq. (3) into eq. (1) we gain the following nonlinear ordinary equations which come from real and imaginary
parts, respectively:

n(((κv+ω)α −2βκ)n− v)Mn+1M′ = 0, (4)

M4c−n
((

βκ
2 −ακω

)
n+ω

)
M2 −n(αv−β )MM′′−n(αv−β )(n−1)

(
M′)2

= 0, (5)

where M = M(ξ ) and superscripts denote the normal derivative with respect to new variable ξ . Equation (4) permits us
to write:

v =
n(2βκ −αω)

καn−1
, (6)

which is the velocity. Therefore, eq. (5) is the NODE representation of eq. (1).

2.2 NODE representation of eq.(2)

Injecting the eq. (3) into eq. (2), we derive the following equations:

n(((κv+ω)α −2βκ)n− v)Mn+1M′ = 0, (7)(
2c3M2 −n(αv−β )(n−1)

)
(M′)2 +M6c2 +M4c1

−n
((

κ2β −καω
)

n+ω
)

M2 −
(
n(αv−β )−2c3M2

)
MM′′ = 0,

(8)

where M = M(ξ ) and superscripts denote the normal derivative with respect toξ as stated before. Equation (7) gives the
following constraint as eq. (6):

v =
n(2βκ −αω)

καn−1
. (9)
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Similarly, eq. (8) is the NODE representation of eq. (2).

3 The new Kudryashov integration algorithm and its utilization

In order to utilize the proposed nKM [11,12], first of all, the following form is considered as solution of eqs. (5), (8),
respectively:

M(ξ ) =
p

∑
i=0

AiKi(ξ ), (10)

with the restriction Ap ̸= 0. In eq.(10), Ai are real values to be determined, p represents the positive integer balance number
and K(ξ ) is the solution of the following formula:

dK(ξ )

dξ
=
√

δ 2K2(ξ )(1−λK2(ξ )), (11)

where δ ,λare arbitrary nonzero real numbers. Equation (11) gives the following well-known solution:

K(ξ ) =
4L

4L2eδξ +λe−δξ
, (12)

where, the parameters δ ,λ and L are arbitrary real constants. Equation (12) has the capable to generate bright and singular
solution for λ =∓4L2,respectively.

3.1 Utilization of the method to eq. (4)

In eq. (4), balancing the highest order linear and nonlinear terms MM′′, M4 with the aid of homogeneous balance rule, we
obtain p = 1. In the line of this calculation, eq.(10) is given as:

M(ξ ) = A0 +A1K(ξ ). (13)

Inserting eq. (13) into eq. (4), by assuming the eq. (11), we have a polynomial form of K(ξ ) which leads to following
system:

Coe f .K0 : nω (ακn−1)−βκ2n2 + cA2
0 = 0,

Coe f .K1 : (αω −βκ)
(
2ακ2n3 +αn2δ 2

)
+4nακ

(
cA2

0 −nω
)
+nβ

(
2nκ2 −δ 2

)
−4cA2

0 +2nω = 0,
Coe f .K2 : −α

(
δ 2 +κ2

)
(βκ −αω)n3 +

(
βκ2 −βδ 2 −2ακω

)
n2 +

(
6cακA2

0 +ω
)

n−6cA2
0 = 0,

Coe f .K3 : δ 2λn
(
α2nω −β −αnκβ

)
+2cA2

1 (1−ακn) = 0,
Coe f .K4 : αδ 2λ (βκ −αω)n3 +δ 2λ

(
αβκ −α2ω +β

)
n2 +

(
αcκA2

1 +βδ 2λ
)

n− cA2
1 = 0.

(14)

Solution of the above system gives the following sets:

Set∓1 :

{
δ = δ ,ω =

(
ακ

(
δ 2 +κ2

)
n+δ 2 −κ2

)
βn

1+α2 (δ 2 +κ2)n2 −2καn
,A0 = 0,A1 =∓

√
λn(n+1)c(1+α2 (δ 2 +κ2)n2 −2καn)βδ

c(1+α2 (δ 2 +κ2)n2 −2καn)

}
,

(15)
Evaluation of eq. (15) with eqs. (3), (12), gives the following solution:

M(x, t) =
4LA1

4L2eδ

(
x− n(−αω+2βκ)

καn−1 t
)
+λe−δ

(
x− n(−αω+2βκ)

καn−1 t
) ei(−κx+ωt+φ0), (16)

where A1,ωare presented in eq. (15).
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3.2 Utilization of the method to eq. (8)

In eq. (8), balancing the highest order linear and nonlinear terms M3M′′, M6 with the aid of homogeneous balance rule,
we obtain p = 1. so, eq. (10) takes the following form:

M(ξ ) = A0 +A1K(ξ ). (17)

Inserting eq. (17) into eq. (8), by assuming the eq. (11), we gather a polynomial form of K(ξ ) which permits us to write
the following system:

Coe f .K0 :
(
βκ2 −ακω

)
n2 +nω −A4

0c2 −A2
0c1 = 0,

Coe f .K1 : 2
(
−ακω +βκ2

)
n2 +

(
(vα −β )δ 2 +2ω

)
n−3A4

0c2 −
(
δ 2c3 +2c1

)
A2

0 = 0,
Coe f .K2 :

(
(vα −β )δ 2 +βκ2 −ακω

)
n2 +nω −A2

0A2
1
(
15c2A2

0 +8δ 2c3 +6c1
)
= 0,

Coe f .K3 :
(
5δ 2c3 +10c2A2

0 +2c1
)

A2
1 +λA1

(
−2c3A2

0 +n(vα −β )
)

δ 2 = 0,
Coe f .K4 :

((
(vα −β )n2 +n(vα −β )−14c3A2

0
)

λ +4c3A2
1
)

δ 2 +
(
15c2A2

0 + c1
)

A2
1 = 0,

Coe f .K5 : −8δ 2λc3 +3A2
1c2 = 0,

Coe f .K6 : −6δ 2λc3 +A2
1c2 = 0.

(18)

Solution of the above system gives the following sets:

Set∓2 :


{

δ =

√
−6n(vα−β )(n+1)c2−36c1c3

12c3
,A0 = 0,A1 =∓

√
−λc2c3(n(vα−β )(n+1)c2+6c1c3)

2c2c3

}
,

ω =− n(c2(vα−β )2n2+c2(vα−β )2n+6c3(vαc1−4(κ2c3+
c1
4 )β))

24c2
3(ακn−1)

 ,

Set∓3 :


{

δ =−
√

−6n(vα−β )(n+1)c2−36c1c3
12c3

,A0 = 0,A1 =∓
√

−λc2c3(n(vα−β )(n+1)c2+6c1c3)

2c2c3

}
,

ω =− n(c2(vα−β )2n2+c2(vα−β )2n+6c3(vαc1−4(κ2c3+
c1
4 )β))

24c2
3(ακn−1)

 ,

(19)

In eqs. (18), (19), v = n(2βκ−αω)
καn−1 as given by eq. (9).

Evaluation of eq. (17) with eqs. (3), (12), gives the following solution:

M(x, t) =
4A1L

4L2eδ (x−vt)+λe−δ (x−vt)
ei(−κx+ωt+φ0), (20)

where A1,ωare presented in eq. (19) and v is given by eq. (9).

4 Result and discussion

In this section, we demonstrate the some graphical simulations of the obtained functions which is given by eq. (16) and
eq. (20). In fig.1, we portrait the M(x, t)in eq. (16) with the solution set Set+1 given in eq. (15). After the combination of
eq. (16) and eq. (15), we selected the parameter values as
δ = 1,L = 1, λ = 4, κ = 0.25, β = 2.25, α = 1, c = 0.75,φ0 = 0.5, n = 2, t = 1,2,3. Fig.1a-1c, represent the 3D of
|M(x, t)| , Re(M(x, t)), Im(M(x, t)),fig.1d-1e belong to contour of |M(x, t)| , Re(M(x, t))and fig.1e depicts the 2D of∣∣∣M(x, t f )

∣∣∣ , Re(M(x,1)), Im(M(x,1)) when t f = 1,2,3, together. Similarly, fig.2 simulated for the M(x, t)in eq. (20) with

the solution set Set+2 given in eq. (19). After the combination of eq. (20) and eq. (19), we selected the parameter values as
L = 1, λ = 4, κ = 0.25, β = 2.25, α = 1, c1 = c2 = 1, c3 = 0.75, φ0 = 0.5, n = 2, t = 1,2,3. Fig.1a-1c, represent the 3D
of |M(x, t)| , Re(M(x, t)), Im(M(x, t)),fig.1d-1e belong to contour of |M(x, t)| , Re(M(x, t))and fig.1e depicts the 2D of∣∣∣M(x, t f )

∣∣∣ , Re(M(x,1)), Im(M(x,1)) when t f = 1,2,3, together.
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(a) |M(x, t)|. (b) Re(M(x, t)).

(c) Im(M(x, t)).
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(d) Contour view of |M(x, t)|.

-10 -5 0 5 10

x

0

1

2

3

4

5

6

7

8

9

10

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(e) Contour view of Re(M(x, t)).
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Fig. 1: Bright soliton depiction of eq. (16) which belongs to BM equation which is consisting spatio-temporal dispersion
with Kerr law nonlinearity given by eq. (1).
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(a) |M(x, t)|. (b) Re(M(x, t)).

(c) Im(M(x, t)).
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(d) Contour view of |M(x, t)|.
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(e) Contour view of Re(M(x, t)).
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Fig. 2: Bright soliton depiction of eq. (20) which belongs to BM equation which is consisting spatio-temporal dispersion
having parabolic law with nonlocal nonlinearity given by eq. (2).
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5 Conclusion

This study was carried out to examine the existence of optical soliton solutions in the presence of spatio-temporal
dispersion and chromatic dispersion terms of Kerr and parabolic law with nonlocal nonlinearity forms of the
(1+1)-dimensional Biswas-Milovic equation, which was introduced to the literature in 2010 as a general form of the NLS
equation. As a method, the new Kudryashov technique with an recent and effective integration algorithm was applied and
bright optical soliton solutions of both forms were obtained. 3D, contour and 2D graphic images were drawn to reflect
the different physical properties of the solutions obtained. In addition to the fact that the study will contribute to the
range of those working in this field, it is also possible to study the forms of the studied model with fractional and
perturbation terms.
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