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Abstract: Stability analysis of the steady-state solution of endothelial cell equation in a mathematical model for tumor angiogenesis is
studied. It is shown that the steady-state solution of the model is indeed the transition probability function. The biological importance
of the results are expressed and some related figures are provided.
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1 Introduction

In this paper, we study the stability of the steady-state solution of the Endothelial Cell (EC) equation originally presented
in [4]
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with the zero-flux boundary conditions
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Here Dη is a positive constant, the EC diffusion cofficient in the capillary, and η = η(y, t) is the EC density, and τ is the
so called transition probability function. We take

τ = τ(ca, f ), (3)

where ca = ca(y, t) is the active enzyme density and f = f (y, t) is the fibronectin density (0 < y < 1, t > 0). Fibronectin
is a protein normally found in and around cells in various tissues in the body. A simple transition probability which
reflects the influence of active enzyme and fibronectin on the motion of endothelial cells is τ(ca, f ) = cγ1

a f−γ2 for
positive constants γi (i = 1,2) [5].

The biological interpretation of this choice is that endothelial cells prefer to move into the regions where ca is large or
where f is small [7,9,10]. As in [6], we consider that there is no angiostatin supplied to the circulatory system for
simplicity. Therefore, the active enzyme is the same as the total enzyme, i.e., ca(y, t)≡ c(y, t).

We took the transition probability function as follows in [4,6]

τ(c, f ) =
(

a1 + c
a2 + c

)γ1
(

b1 + f
b2 + f

)γ2

. (4)
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Here the ai,bi are constants such that 0 < a1 << 1 < a2 and b1 > 1 >> b2 > 0. Clearly, τ is not singular for small or large
values of c, f and will approximate cγ1 f−γ2 over a considerable range of these variables [5].

2 Approximated transition probability function

We take the quasi-steady state enzyme and fibronectin concentrations to have the form [6]

c(y) = Ayn(1− y)n, f (y) = 1−Byn(1− y)n, 0 ≤ y ≤ 1,

where A and B are positive constants and n ≥ 16. We take γ1 = γ2 = 1 in Eq.4 for simplicity. Since the function τ in Eq.4
can be approximated by a function

τ(c, f ) = c f−1,

(over a considerable range of the parameters) we may write

τ(y) =
Ayn(1− y)n

1−Byn(1− y)n ≈Cyn(1− y)n = τ
⋆(y)

for some constant C, since yn(1− y)n ≪ 1.

Figure 1 shows the transition probability function τ . The dotted line in Fig.1 is the graph of the function given by Eq.4
with the data a1 = 0.0001,a2 = 2,b1 = 10,b2 = 0.1,A = 28×107,B = 0.22×109,n = 16, and the solid line is the graph
of the function τ⋆ defined above with C = 140×107. 4.8in,height=3.1in Therefore, from now on, we will take τ⋆ as our
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Fig. 1: Transition Probability Function

transition probability function, i.e, τ = τ⋆.
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3 Stability Analysis of the Steady-State

The steady-state model obtained from Eq.(1) can be written as follows:

0 = ηyy −ηyG−ηGy, (5)

where G =
τy

τ
. If we let p = ηy, Eq.(5) reads

0 = py − pG−ηGy. (6)

Therefore, we have the following system of ordinary differential equations:

ηy =p, (7)

py =pG+ηGy. (8)

Note that one has

G = n
1−2y
y− y2 , Gy =−n

2y2 −2y+1
(y− y2)2 , 0 < y < 1. (9)

Since Gy < 0 for 0 < y < 1, (0,0) is the only equilibrium point of the system in Eqs.(7)-(8) (i.e. points satisfying
ηy = py = 0).

The jacobien matrix J(η , p) for the system Eqs.(7)-(8) is given by

J(η , p) =
[

0 1
Gy G

]
, (10)

and the critical point (0,0) gives rise to the same stability matrix given above, that is J = J(0,0) = J(η , p) since the
matrix does not contain the variables η and p.

If we now let β = TrJ, γ = detJ, δ = β 2 −4γ = discJ, we have β = G, γ = −Gy, δ = G2 +4Gy. Therefore, it follows
that β > 0 for 0 < y < 1/2, β < 0 for 1/2 < y < 1, and γ > 0 for 0 < y < 1, which results that the critical point (0,0) is a
stable node when 1/2 < y < 1, and is an unstable node when 0 < y < 1/2 [1,3]. Furthermore, since

δ =
(4n2 −8n)y2 − (4n2 −8n)y+n2 −4n

(y− y2)2 , 0 < y < 1,

we have δ < 0 when
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= y2, n ≥ 16. But, β > 0 when y1 < y < 1/2, β = 0

when y = 1/2, and β < 0 when 1/2 < y < y2. Therefore, the critical point (0,0) is unstable spiral when y1 < y < 1/2, it is
neutral center when y = 1/2, and is stable spiral when 1/2 < y < y2 [1,3].

Furthermore, Eq.(5) can be written as

∂

∂y
(ηy −ηG) = 0,

which results in

ηy −ηG = 0,
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by the boundary conditions given by Eq.(2). By solving the last equation one obtains

η = ατ(c, f ), (11)

where α is a positive constant. The result we have obtained in Eq.(11) agrees with the result obtained in [6]. Therefore,
we now have

η = βy16(1− y)16, (12)

where β is a positive constant, and the system in Eq.(7)-(8) should now read

ηy = 16β (y− y2)15(1−2y), (13)

py = 16β (y− y2)14(62y2 −62y+15). (14)

On the other hand,

ηy =

{
> 0 when 0 < y < 1/2,
< 0 when 1/2 < y < 0,

py =

{
> 0 when 0 < y < 0.41 or 0.58 < y < 1,
< 0 when 0.41 < y < 0.58.

As it is clear from the Eq.(8) that there is a linear relation between p and η for each fixed y when we set py = 0. The
equilibrium point (0,0) for the system (7)-(8) is an unstable node for y = 0.25, whereas it is a stable node for y = 0.75. We
have shown that this simpler model, consisting of a single pde for the endothelial cell density, captures almost all of the
features of the original model [4,6]. The analysis performed on the model has permitted us to focus upon the behaviour of
the endothelial cells at the capillary. These cells effectively drive the capillary sprouts across the tissue towards the tumor.
The analysis clearly indicates that the solution takes on different characteristics in two distinct regions of the domain, the
point y = 1/2 marking the transition from one region to the next. The analysis also shows that in order for successful
completion of angiogenesis to take place, both migration and proliferation are essential.

4 Long time behaviour of cells

From Eq.(4) we write τ(c, f ) = τ1(c)τ2( f ) where

τ1(c) =
(

a1 + c
a2 + c

)γ1

, τ2( f ) =
(

b1 + f
b2 + f

)γ2

,

so that one has
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If we set

Ω(c) =
τ ′1(c)
τ1(c)

, Ψ( f ) =
τ ′2( f )
τ2( f )

, (16)

Eqs.(1) and (2) become
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and

ηy −ηS(y) = 0 at y = 0,1 (18)

respectively, where

S(y) = Ω(c)cy +Ψ( f ) fy. (19)

For simplicity we take

η(y,0) = 1, (20)

as the initial condition.

It is clear from the strong maximum principle [11], that η(y, t) is nonnegative for all t ≥ 0 since η(y,0) is nonnegative.
We solve Eq.(17) using separation of variables by setting η(y, t) = T (t)Φ(y) to obtain

d
dt

T +λT = 0 (21)

and

Dη

d
dy

[
d
dy

Φ −ΦS(y)
]
+λΦ = 0 with Φy −ΦS(y) = 0 at y = 0,1. (22)

From Eq.(21), it is clear that T (t) is of the form exp(−λ t). We make the substitution Φ = σZ, where σ = exp(
∫ y

0 S(ζ )dζ )

[8] to obtain the classical Sturm-Liouville problem for Z, namely

L[Z] =−Dη

d
dy

[
σ

dZ
dy

]
= λσZ, Z′ = 0 at y = 0,1. (23)

It is known that the eigenvalues λi of this problem have the following property

0 = λ0 < λ1 ≤ λ2 ≤ ·· · .

The eigenfunctions for the boundary value problem in Eq.(22) are then given by Φi(y) = σ(y)Zi(y). In particular, the
eigenfunction corresponding to λ = 0 is given by

Φ0(y) = exp
(∫ y

0
S(ζ )dζ

)
. (24)

It is easy to see from Eq.(23) that

(Z,
1
σ

L[Z]) =−Dη

∫ 1

0
Z(σZ′)′dy = Dη

∫ 1

0
σ(Z′)2dy ≥ 0. (25)

Here (.,.) is the (weighted) Hermitian inner product [11]. Therefore we have

(Z,
1
σ

L[Z]) = (Z,λZ) = λ ||Z||2 (26)

which implies that

λi > 0 (27)
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for i = 1,2, · · · .

It is also easy to see from Eq.(22) that ∫ 1

0
Φi(y)dy = 0 (i = 1,2, ...). (28)

We can now write η(y, t) in the following series form

η(y, t) = B0Φ0(y)+
∞

∑
i=1

BiΦi(y)e−λit , (29)

where the coefficients are determined by setting t = 0 and using the orthogonality properties of the eigenfunctions. From
Eq.(29) we obtain

η(y, t)→ B0Φ0(y) as t → ∞.

Notice also that ∫ y

0
S(y)dy =

∫ y

0

τ ′1(c)
τ1(c)

cydy+
∫ y

0

τ ′2( f )
τ2( f )

fydy = ln
(

τ1(c(y))
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)
+ ln

(
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(30)

which implies from Eq.(24) that

Φ0(y) =
τ1(c(y))
τ1(c(0))

τ2( f (y))
τ2( f (0))

=
1

τ1(c(0))τ2( f (0))
τ̂(c(y), f (y)). (31)

Setting t = 0 in Eq.(29) and using Eqs.(20) and (28) we obtain

B0 =
1∫ 1

0 Φ0(y)dy
. (32)

Therefore we have

η(y, t)→ ατ̂(c(y), f (y)) as t → ∞ (33)

where
α =

B0

τ1(c(0))τ2( f (0))
> 0,

showing that in the limit the ECs follow the trail of proteolytic enzyme and fibronectin.

5 Conclusion and results

. In this paper the stability analysis of the steady-state solution of endothelial cell equation in a mathematical model for
tumor angiogenesis is presented. It is proved that the steady-state solution of the model is indeed the transition probability
function. we have also obtained the long time behaviour of the cells and observed that they follow the trail of proteolytic
enzyme and fibronectin as stated in many biological literature.
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