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Abstract: The Lane-Emden equations have been used to model some phenomena in astrophysics, such as mathematical physics and
stellar structure theory. In addition, the Lane-Emden equation is a central equation in the theory of stellar structures. In this paper, we
introduce the Lane-Emden differential equations. A special second order Lane-Emden differential equation is solved by He’s variational
iteration, adomian decomposition method, homotopy analysis method, homotopy perturbation method, and finite difference method
respectively. The results obtained are compared with each other and it is analyzed which method gives more reliable results and is more
useful than the others.

Keywords: Homotopy analysis, homotopy perturbation, He’s variational iteration, Adomian decomposition method, Lane-Emden
differential equations.

1 Introduction

In recent years, many scientists have worked on the solution of second-order nonlinear differential equations problems in
applied sciences. One of such equation is the Lane-Emden type equations. The Lane-Emden type equations, first published
by Jonathan Homer Lane in 1870 [1] and studied by Emden [2]. The general form of the Lane-Emden equations with initial
conditions is as follows:

y′′(x)+
k
x

y′(x)+ f (x,y) = g(x), kx ≥ 0,k ∈ R (1)

y(0) = a, y′(0) = 0 (2)

where g(x,y) is a nonlinear function depending on the variables x and y. The analytical solution of the problem (1)-(2) is
known to be in the neighborhood of the singular point x = 0.
In the case of k = 2, f (x,y) = yn, g(x) = 0, a = 1 the problem (1)-(2) becomes the following form

y′′(x)+
2
x

y′(x)+ yn = 0, (3)

y(0) = 1,y′(0) = 0 (4)

Equation (3) can be rewritten as
1
x2

d
dx

(x2 dy
dx

)+ yn = 0 (5)

Equation (5) is also known as the Lane-Emden equation. In astrophysics, this equation is also called Poisson’s equation
[3]. A number of techniques and methods have been used to solve the Lane-Emden equations. Some of them are He’s
variational iteration method [4-5], adomian decomposition method [6], homotopy analysis method [7-8], homotopy
perturbation method [9-10], finite difference methods [11-12], and other studies.
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In this paper, a special type of Lane-Emden equation is solved by different methods and comparisons of the methods are
presented. The following special type of Lane-Emden equations

y′′(x)+
2
x

y′(x)+ y5 = 0, (6)

with boundary conditions are given by
y(0) = 1,y′(0) = 0 (7)

is solved by different methods and comparisons are made.
The exact solution of the equations (6)-(7) is [13]

y(x) =

√
3

3+ x2 (8)

Some numerical values from the exact solution are in the following table:
Table 1 Numerical values of (8)
x Exact Solution

0.1 0.99833
0.2 0.99339
0.3 0.98532
0.4 0.97435
0.5 0.96077

Now the same differential equation will be solved by different methods and then results of these methods are compared.

1.1 The Solution with He’s Variational Method

The correction function for equation (6) is defined as

yn+1(x) = yn(x)+
x∫

0

λ (x,s)[ys
′′(s)+

2
s

y′s(s)+ y5
s(s)]ds (9)

where Lagrange multiplier is

λ (x,s) =
s(s− x)

x
(10)

Since the first approximation function must satisfy the initial conditions of the problem, we can take y0(x) = 1.
Then we have

y1(x) = 1− x2

6
, (11)

y2(x) = 1− x2

6
+

x4

24
+O(x6), (12)

y3(x) = 1− x2

6
+

x4

24
− 5x6

432
+O(x8), (13)

y4(x) = 1− x2

6
+

x4

24
− 5x6

432
+

35x8

10368
+O(x10), (14)

....

By continuing in this way, the function yn(x) is obtained as

yn(x) = 1− x2

6
+

x4

24
− 5x6

432
+

35x8

10368
− 7x10

6912
+ ... . (15)
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It can be seen that this series corresponds to the Taylor expansion of the exact solution of function (8) around zero.
Approximate values for different numbers of terms taken from the series are shown in the following table

Table 2 Numerical values of equation (3) for He’s VIM
x y1 y2 y3 y4

0.1 0.9983 0.9983 0.99833 0.99833
0.2 0.9983 0.9934 0.99339 0.99339
0.3 0.985 0.98533 0.98532 0.98532
0.4 0.9733 0.9744 0.97435 0.97435
0.5 0.9583 0.96093 0.96075 0.96077

1.2 The Solution with Adomian Decomposition Method

L is a linear operator and L−1 is a inverse operator defined by

L(.) = x−2 d
dx

(x2 d
dx

)(.) (16)

L−1(.) =
∫ x

0
x−2

∫ x

0
x2(.)dxdx. (17)

We have
Ly =−y5, (18)

y(x) = y(0)−L−1y5 (19)

Adomian formulas are as follows
∞

∑
n=0

yn = 1−L−1
∞

∑
n=0

An, (20)

yn+1 = L−1An, (21)

yn+1 =−
∫ x

0
x−2(

∫ x

0
x2Ai dx)dx, i = 0,1,2, .... (22)

The Adomian polynomials for f (x,y) = y5 are thus given by

A0 = 1, (23)

A1 =−x2

6
, (24)

A2 =
35x4

72
, (25)

A3 =− 5x6

432
, (26)

A4 =−35x8

144
, (27)

....

There fore the first five solutions are obtained by
y0 = 1, (28)

y1 =−x2

6
, (29)
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y2 =
x4

24
, (30)

y3 =− 5x6

432
, (31)

y4 =− 35x8

10368
, (32)

....

Hence, the approximate solution of y(x) obtained using the yi (i = 0,1,2, ...) is given by

y = y0 + y1 + y2 + y3 + y4 + ...

y = 1− x2

6
+

x4

24
− 5x6

432
+

35x8

10368
+ ... . (33)

It can be seen that this series corresponds to the Taylor expansion of the exact solution of function (8) around zero.
Approximate values for different numbers of terms taken from the series are shown in the table that follows.

Table 3 Numerical values of equation (3) for ADM
x y1 y2 y3 y4

0.1 0.9983 0.9983 0.99833 0.99833
0.2 0.9933 0.9934 0.99339 0.99339
0.3 0.985 0.98533 0.98532 0.98532
0.4 0.9733 0.9744 0.97435 0.97435
0.5 0.9583 0.96093 0.96075 0.96077

1.3 The Solution with Homotopy Perturbation Method

Substituting the nonlinear differential equation in He’s formula gives

H(v, p) = (1− p)[L(v)−L(y0)] + p[A(y)− f (r)] = 0 (34)

H(v, p) = (1− p)[v′′+
2
x

v′− y0
′′− 2

x
y0

′]+ p[v′′+
2
x

v′− v5] = 0. (35)

Taking p = 0,1 in equation (35) we obtain

H(v,0) = [v′′+
2
x

v′− y0
′′− 2

x
y0

′] (36)

H(v,1) = v′′+
2
x

v′− v5 = 0. (37)

Assuming the solution is in the form of power series, we have

v = v0 + pv1 + p2v2 + p3v3 +O(p4), (38)

v′ = v0
′+ pv1

′+ p2v2
′+ p3v3

′+O(p4), (39)

v′′ = v0
′′+ pv1

′′+ p2v2
′′+ p3v3

′′+O(p4). (40)

Substitute Equation (38), (39), (40) into equation (34)

(v0
′′+ pv1

′′+ p2v2
′′+ p3v3

′′+...)+
2
x
(v0

′+ pv1
′+ p2v2

′+ p3v3
′)−y0

′′− 2
x

y0
′+ p[y0

′′+
2
x

y0
′]+ p(v0 + pv1 + p2v2 + p3v3)

5
] = 0.

(41)
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For p0,

v0
′′+

2
x

v0
′− y0

′′− 2
x

y0
′ = 0 (42)

v0(0) = 1, v0
′(0) = 0.

Then we have
v0(x) = 1[10]. (43)

For p1,

v1
′′+

2
x

v1
′+ y0

′′+
2
x

y0
′+ v0

5 = 0 (44)

v1(0) = 0, v1
′(0) = 0.

We apply Taylor series to obtain the solution for v1(x),

v1
′′+

2
x

v1
′+15 = 0, (45)

v1
′ =

−1
2

x− 1
2

xv1
′′, (46)

v1
′′ =

−1
3

(x)
′
− 1

3
xv1

′′′, (47)

y(x) = y(0)+ y′(0)x+
y′′(0)

2!
x2 + .... (48)

Then, we have

v1(x) =−1
6

x2[10]. (49)

For p2,

v2
′′+

2
x

v2
′+5v1v0

4 = 0 (50)

v2(0) = 0, v2
′(0) = 0.

We apply Taylor series to obtain the solution for v2(x),

v2
′′+

2
x

v2
′+ v1

′′+5v1v0
4 = 0, (51)

v2
′′ =

1
3
(

5
6

x3)′− 1
3

xv2
′′′, (52)

v2
′′′ =

1
4
(

5
6

x3)′′− 1
4

xv2
(4), (53)

y(x) = y(0)+ y′(0)x+
y′′(0)

2!
x2 + .... (54)

Then we have

v2(x) =
x4

24
[10]. (55)

For p3,

v3
′′+

2
x

v3
′+5v2v0

4 +
5 ·4

2
v1

2v0
3 = 0 (56)

v3(0) = 0, v3
′(0) = 0.
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We apply Taylor series to obtain the solution for v3(x),

v3
′′+

2
x

v3
′+5v2v0

4 +
5 ·4

2
v1

2v0
3 = 0, (57)

v3
′ =−1

2
(

52

120
+

5 ·4
72

)x4 − 1
2

xv3
′′, (58)

v3
′′ =−1

3
(

52

120
+

5 ·4
72

)x4 − 1
3

xv3
′′′, (59)

v3
′′′ =−1

4
(

52

120
+

5 ·4
72

)x4 − 1
4

xv3
(4), (60)

y(x) = y(0)+ y′(0)x+
y′′(0)

2!
x2 + .... (61)

Then, we obtain

v3(x) =
−5x6

432
[10]. (62)

By continuing in this way, the function y is obtained as

y ≈ v = v0 + pv1 + p2v2 + p3v3 +O(p4). (63)

For
y = lim

p→1
v, (64)

we get
y = v0 + pv1 + p2v2 + p3v3 +O(p4) (65)

y = 1− x2

6
+

x4

24
− 5x6

432
+ ... . (66)

It can be seen that this series corresponds to the Taylor expansion of the (8) exact solution function around zero.
Approximate values for different numbers of terms taken from the series are shown in the table that follows.

Table 4 Numerical values of equation (3) for HPM
x p p2 p3

0.1 0.9983 0.9983 0.99833
0.2 0.9933 0.9934 0.99339
0.3 0.985 0.98533 0.98532
0.4 0.9733 0.9744 0.97435
0.5 0.9583 0.96093 0.96075

1.4 The Solution with Homotopy Analysis Method

Integration constants

L[φ(x;q)] = φ
′′(x;q)+

2
x

φ
′(x) (67)

and
L[
−c1

x
+ c2] = 0, ci(i = 1,2) (68)

where L is a linear operator. We define the nonlinear operator as

N[φ(x;q)] = φ
′′ (x;q)+

2
x

φ
′ (x)+φ

5. (69)
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Then, we construct the zeroth-order deformation equation

(1−q)L[φ(x;q)− y0(x)] = qh̃H(x)N[φ(x;q)] (70)

and
φ(x;q) = φ(x;0) = y0(x), φ(x;1) = y(x). (71)

The exact solution of the (8) is

y(x) = y0(x)+
∞

∑
m =1

ym(x) (72)

Then we have m th-order deformation equation

ym(x) = χmym−1(x)+ h̃L−1Rm(⃗ym−1(x)), (73)

where
R1(⃗y0(x)) = y0

′′+
2
x

y0
′+ y0

5 (74)

R2(⃗y1(x)) = y1
′′+

2
x

y1
′+5y1y0

4 (75)

R3(⃗y2(x)) = y2
′′+

2
x

y2
′+5y2y0

4 +20
y1

2

2!
y0

3, (76)

R4(⃗y3(x)) = y3
′′+

2
x

y3
′+5y3y0

4 +20y2y1y0
3 +60

y1
3

3!
y0

3, (77)

...

are obtained when m = 1,2,3, ....

If we substitute these expressions in (73), we get as follows

y1 =
h̃x2

6
(78)

y2 =
h̃x2

6
+ h̃(

h̃x2

6
+

h̃x4

24
) (79)

y3 =
h̃x2

6
+ h̃(

h̃x2

6
+

h̃x4

24
)+ h̃(

h̃x2

6
+

h̃2x2

6
+

h̃x4

24
+

h̃2x4

12
+

5h̃2x6

432
), (80)

....

For h̃ =−1, we get,
y = y0 + y1 + y2 + y3 + y4 + ...

y = 1− x2

6
+

x4

24
− 5x6

432
+

35x8

10368
+ ... (81)

It can be seen that this series corresponds to the Taylor expansion of the (8) exact solution function around zero.
Approximate values for different numbers of terms taken from the series are shown in the table that follows.
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Table 5 Numerical values of equation (3) for HAM
x h̃ =−1 h̃ = 1 h̃ =−0.5

0.1 0.9983 1.02507 0.99844
0.2 0.9933 1.10114 0.993796
0.3 0.9853 1.2308 0.986167
0.4 0.9743 1.41847 0.975719
0.5 0.9607 1.67055 0.962672

1.5 The Solution with Finite Difference Method

If centered finite difference approximations are applied to the derivatives of y′ and y′′ , and the errors are neglected we
have

y(xi −h)−2y(xi)+ y(xi +h)
h2 +

2
xi

y(xi+1)− y(xi−1)

2h
+ y(xi)

5 = 0 (82)

where

h =
(1−0)
(n+1)

, xi = 0+ ih i = 1, ...,n . (83)

Substituting equation (83) into equation (82), we have

−2w1 +2w2h2w1
5 = 0 (84)

(1− h
x2
)w1 −2w2 +(1+

h
x2
)w3 +h2w2

5 = 0 (85)

(1− h
x3
)w2 −2w3 +(1+

h
x3
)w4 +h2w3

5 = 0 (86)

...

(1− h
xn
)wn−1 −2wn +(1+

h
xn
)

√
3
4
+h2wn

5 = 0. (87)

Thus n systems of nonlinear equations are obtained. If this system is solved by Newton’s method, the following numerical
solution are obtained.

Table 6 Numerical values of equation (3) for FDM
x n = 20 n = 50 n = 100

0.1 1.000 0.9983 0.9986
0.2 0.9966 0.9947 0.9940
0.3 0.9900 0.987 0.9862
0.4 0.9804 0.9767 0.9755
0.5 0.9679 0.9635 0.9621

2 Conclusion

In this paper, when we compare the solutions of are one of the special type of Lane-Emden (Poisson) equation by
He-Variational iteration, homotopy perturbation, homotopy analysis, adomian decomposition method and finite
difference methods, we can derive the following conclusions. It is seen that closer results can be obtained by calculating
higher-order approximations for all methods used.

The Adomian decomposition method can be easily applied to differential equations. The approximate solutions are
almost the same as the analytical solutions of nonlinear equations. For different types of Lane-Emden equations,
Adomian polynomials can be found separately and approximate solutions can be obtained.
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The homotopy analysis method can be easily applied to nonlinear differential equations. The approximate solutions are
almost identical to the analytical solutions of Lane-Emden (Poisson) equation. Close results can be obtained by writing
in the approximations by the homotopy analysis method.

Convergence in the homotopy perturbation method depends on the initial approximation being chosen well enough. In
addition, convergence also depends on the homotopy path. It is seen that when , close results are obtained. Also, the
computational burden is higher in this method compared to others.

The cost of the finite difference method is also higher than the others. It can achieve close results when we choose a large
value. Since the computations are on high value, computer assistance may be required.

He’s variational iteration can converge to an approximate solution after only a few iterations. The convergence of the
solutions is related to the good determination of the initial approximation and the Lagrange multiplier. Compared to the
other given methods, the He variational iteration method seems to give close results to the exact one with fewer
computations than the other solutions. The computational cost may vary depending on the chosen function. The initial
approximation for different types of Lane-Emden equations is found by changing the Lagrange multiplier.

Calculations were performed with the help of Mathematica and MATLAB programs. In the light of the results obtained,
it is seen that the methods can be applied to nonlinear Lane-Emden problems.
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