Matrix Krylov subspace methods for image restoration

A.H. Bentbib ${ }^{1}$, M. El Guide ${ }^{1}$ and K. Jbilou ${ }^{2}$
${ }^{1}$ Laboratory LAMAI, University of Cadi Ayyad, Marrakesh, Morocco.
${ }^{2}$ LMPA, 50 rue F. Buisson, University ULCO, Calais, France

Received: 3 March 2015, Revised: 15 May 2015, Accepted: 5 July 2015
Published online: 28 September 2015

Abstract

In the present paper, we consider some matrix Krylov subspace methods for solving ill-posed linear matrix equations and in those problems coming from the restoration of blurred and noisy images. Applying the well known Tikhonov regularization procedure leads to a Sylvester matrix equation depending the Tikhonov regularized parameter. We apply the matrix versions of the well known Krylov subspace methods, namely the Least Squared (LSQR) and the conjugate gradient (CG) methods to get approximate solutions representing the restored images. Some numerical tests are presented to show the effectiveness of the proposed methods.

Keywords: Global Lanczos, LSQR, Ill-posed, Image restoration.

1 Introduction

Image restoration is the process of removing blur and noise from degraded images to recover an approximation of the original image. This field of imaging technology is becoming increasingly significant in many scientific applications [1, $24,25]$. Since blurring is the degradation from the process of image formation, it is a deterministic process which has a sufficiently accurate mathematical model for its description. The goal of the image restoration is to recover a good approximation of the original image X which is $m \times n$, for a given the degraded image B of size $m \times n$, the blur matrix H of size $m n \times m n$, and the statistics of the noise matrix E. The mathematical model $[18,21,23,22]$ that relates the given blurred and noisy image to the unknown true image is given as follows

$$
\begin{equation*}
H x=b+e . \tag{1}
\end{equation*}
$$

The key for obtaining this general linear model is to rearrange the elements of the images X, B and the noise matrix E into column vectors by stacking the columns of these images into three long vectors $x=\operatorname{vec}(X), b=\operatorname{vec}(B)$ and $e=\operatorname{vec}(E)$, respectively, of length $N=m n$. See $[22,3,8]$ for more details concerning image representation and modeling. By solving the inverse problem for x, an approximation to the true image can be computed; however, this is not so simple due to the severe ill-conditioning and large dimensions of the matrix H [?].
Since the blurring matrix H is ill-conditioned, the image restoration problem will be extremely sensitive to perturbations in the right hand side vector. In order to diminish the effects of the noise in the data, we replace the original operator by a better conditioned one. One of the most popular regularization methods is due to Tikhonov [15, 17,20]. The method replaces the problem (1) by the new one

$$
\begin{equation*}
\min _{x}\left(\|H x-g\|_{2}^{2}+\mu^{2}\|L x\|_{2}^{2}\right) \tag{2}
\end{equation*}
$$

[^0]where $g=b+e, L$ is a regularization operator chosen to obtain a solution with desirable properties. The matrix L could be the identity matrix or a discrete form of first or second derivative. In the first case, the parameter μ acts on the size of the solution, while in the second case μ acts on the smoothness of the solution.

2 Backgrounds

In Tikhonov regularization, the solution of the problem (1) is computed as the unique solution of the following linear least squares problem

$$
\hat{x}=\underset{x}{\operatorname{argmin}}\left\|\left[\begin{array}{c}
H \tag{3}\\
\mu L
\end{array}\right] x-\left[\begin{array}{l}
g \\
0
\end{array}\right]\right\|_{2}^{2}
$$

See $[11,12,17,18]$ for more details about theory of Tikhonov regularization. The minimizer of the problem (3) is computed as the solution of the following normal equations

$$
\begin{equation*}
\left(H^{T} H+\mu^{2} L^{T} L\right) x=H^{T} g . \tag{4}
\end{equation*}
$$

The Kronecker product of two matrices $A \in \mathbb{R}^{m \times m}$ and $B \in \mathbb{R}^{n \times n}$ is the matrix $H \in \mathbb{R}^{m n \times m n}$ of the following bloc form

$$
H=A \otimes B=\left[\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 m} B \\
a_{21} B & a_{21} B & \cdots & a_{2 m} B \\
\vdots & \vdots & & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & a_{m m} B
\end{array}\right],
$$

where $a_{i j}$ are the coefficients of the matrix A.
Here we list some of the most important properties of Kronecker products [30]:

$$
\begin{aligned}
(A \otimes B) \operatorname{vec}(X) & =\operatorname{vec}\left(B X A^{T}\right) \\
(A \otimes B)^{T} & =A^{T} \otimes B^{T}, \quad(A \otimes B)^{-1}=A^{-1} \otimes B^{-1} \\
(A B) \otimes(C D) & =(A \otimes C)(B \otimes D)
\end{aligned}
$$

where the vec operator transforms the matrix A of size $m \times n$ to a vector a of size $m n \times 1$ by stacking the columns of A. For A and B in $\mathbb{R}^{m \times n}$, we define the inner product $<A, B>_{F}=\operatorname{tr}\left(A^{T} B\right)$, where $\operatorname{tr}(Z)$ denotes the trace of the square matrix Z. The Frobenius norm is defined by $\|A\|_{F}=\left(<A, A>_{F}\right)^{1 / 2}$.
We assume that the matrices H and L are decomposed as a Kronecker product of squares matrices H_{2}, L_{2} of size $m \times m$, and H_{1}, L_{1} of size $n \times n$ such that

$$
H=H_{2} \otimes H_{1}, \text { and } L=L_{2} \otimes L_{1}
$$

Therefore, by using the connection between the properties of the Kronecker product and linear operator vec, the problem (4) can be written as

$$
\begin{equation*}
\left(H_{1}^{T} H_{1}\right) X\left(H_{2}^{T} H_{2}\right)+\mu^{2}\left(L_{1}^{T} L_{1}\right) X\left(L_{2}^{T} L_{2}\right)=H_{1}^{T} G H_{2} \tag{5}
\end{equation*}
$$

where X and G are matrices such that $\operatorname{vec}(X)=x$ and $\operatorname{vec}(G)=g$. The linear matrix (5) is referred to as the generalized Sylvester matrix equation and is written in the following form

$$
\begin{equation*}
A X B+C X D=E, \tag{6}
\end{equation*}
$$

where

$$
A=H_{1}^{T} H_{1}, \quad B=H_{2}^{T} H_{2}, \quad C=\mu^{2} L_{1}^{T} L_{1}, \quad D=L_{2}^{T} L_{2} \quad \text { and } \quad E=H_{1}^{T} G H_{2} .
$$

For solving the generalized Sylvester matrix equation (6), we define the following linear operator

$$
\begin{aligned}
\mathscr{L}: \mathbb{R}^{m \times n} & \rightarrow \mathbb{R}^{m \times n} \\
X & \rightarrow \mathscr{L}(X)=A X B+C X D .
\end{aligned}
$$

Its transpose is defined by $\mathscr{L}^{T}(X)=A^{T} X B^{T}+C^{T} X D^{T}$. Hence, the generalized Sylvester matrix equation (6) is rewritten as

$$
\begin{equation*}
\mathscr{L}(X)=E . \tag{7}
\end{equation*}
$$

The linear operator \mathscr{L} is symmetric positive definite, whenever \mathscr{L} is symmetric, i.e. $\mathscr{L}=\mathscr{L}^{T}$, and the following condition is satisfied

$$
<\mathscr{L}(X), X>_{F}>0, \quad 0 \neq X \in \mathbb{R}^{m \times n}
$$

and then the matrix equation could be solved by a matrix version of the conjugate gradient method. If \mathscr{L} is not symmetric, then one can consider the following symmetric problem

$$
\begin{equation*}
\hat{\mathscr{L}}(X)=\left(\mathscr{L}^{T} \circ \mathscr{L}\right)(X) . \tag{8}
\end{equation*}
$$

3 The global LSQR for solving generalized Sylvester matrix equations

The global least squares (Gl-LSQR) method is a generalization of the classical least squares (LSQR) method [33] for solving the problem

$$
\begin{equation*}
\min _{X}\|\mathscr{L}(X)-E\|_{F} \tag{9}
\end{equation*}
$$

Let V_{1} and U_{1} be two matrices of size $m \times n$, let us denote by $\mathscr{K}_{k}\left(\mathscr{L}, V_{1}\right)$ and $\mathscr{K}_{k}\left(\mathscr{L}^{T}, U_{1}\right)$ the matrix Krylov subspaces generated by $\left\{V_{1}, \mathscr{L}\left(V_{1}\right), \ldots, \mathscr{L}^{k-1}\left(V_{1}\right)\right\}$ and $\left\{U_{1}, \mathscr{L}^{T}\left(U_{1}\right), \ldots, \mathscr{L}^{T k-1}\left(U_{1}\right)\right\}$, respectively. We note that $\mathscr{L}^{i}(V)$ is defined recursively as $\mathscr{L}\left(\mathscr{L}^{i-1}(V)\right)$. The global bidiagonalization process construct two F-orthonormal basis $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ and $\left\{U_{1}, U_{2}, \ldots, U_{k}\right\}$ of the matrix Krylov subspaces $\mathscr{K}_{k}\left(\mathscr{L}, V_{1}\right)$ and $\mathscr{K}_{k}\left(\mathscr{L}^{T}, U_{1}\right)$, respectively.

The global bidiagonalization steps are summarized in the following algorithm.

Algorithme 1: The global bidiagonalization process

1. Set $\beta_{1}=\|E\|_{F}, U_{1}=E / \beta_{1}, \alpha_{1}=\left\|\mathscr{L}^{T}\left(U_{1}\right)\right\|_{F}, V_{1}=\mathscr{L}^{T}\left(U_{1}\right) / \alpha_{1}$.
2. For $j=1,2, \ldots, k$
(a) $\tilde{U}_{j}=\mathscr{L}\left(V_{j}\right)-\alpha_{j} U_{j}$
(b) $\beta_{j+1}=\left\|\tilde{U}_{j}\right\|_{F}$
(c) $U_{j+1}=\tilde{U}_{j} / \beta_{j+1}$
(d) $\tilde{V}_{j}=\mathscr{L}^{T}\left(U_{j+1}\right)-\beta_{j+1} V_{j}$
(e) $\alpha_{j+1}=\left\|\tilde{V}_{j}\right\|_{F}$
(f) $V_{j+1}=\tilde{V}_{j} / \alpha_{j+1}$

EndFor

We now define the matrices $\mathscr{V}_{k} \equiv\left[V_{1}, V_{2}, \ldots, V_{k}\right], \mathscr{U}_{k} \equiv\left[U_{1}, U_{2}, \ldots, U_{k}\right]$ and the lower bidiagonal matrix

$$
T_{k} \equiv\left[\begin{array}{llll}
\alpha_{1} & & & \tag{10}\\
\beta_{2} & \alpha_{2} & & \\
& \ddots & & \\
& & \ddots & \\
& & \beta_{k} & \alpha_{k} \\
& & & \beta_{k+1}
\end{array}\right]
$$

Let $*$ denotes the following product

$$
\mathscr{V}_{k} * t=\sum_{j=1}^{k} V_{j} t_{j}, \quad t \in \mathbb{R}^{k}
$$

where $t \in \mathbb{R}^{k}$. It is easy to see that the following relations are satisfied:

$$
\begin{gather*}
\mathscr{V}_{k} *(t+s)=\left(\mathscr{V}_{k} * t\right)+\left(\mathscr{V}_{k} * s\right), \quad s \in \mathbb{R}^{k} \tag{11}\\
\left(\mathscr{V}_{k} * T_{k}\right) * t=\mathscr{V}_{k} *\left(T_{k} t\right), \tag{12}\\
\left\|\mathscr{V}_{k} * t\right\|_{F}=\|t\|_{2}, \tag{13}
\end{gather*}
$$

where

$$
\mathscr{V}_{k} * T_{k}=\left[\mathscr{V}_{k} * T_{\cdot, 1}, \mathscr{V}_{k} * T_{., 2}, \ldots, \mathscr{V}_{k} * T_{., k}\right]
$$

where $T_{., j}$ is j th column of the matrix T_{k}.
Now, according to the notation $*$, the recurrence steps in Algorithme 1 may be rewritten as

$$
\begin{align*}
\mathscr{U}_{k+1} *\left(\beta_{1} e_{1}\right) & =E, \tag{14}\\
{\left.\left[\mathscr{L}^{(} V_{1}\right), \mathscr{L}\left(V_{2}\right), \ldots, \mathscr{L}\left(V_{k}\right)\right] } & =\mathscr{U}_{k+1} * T_{k} \tag{15}\\
{\left[\mathscr{L}^{T}\left(U_{1}\right), \mathscr{L}^{T}\left(U_{2}\right), \ldots, \mathscr{L}^{T}\left(U_{k+1}\right)\right] } & =\mathscr{V}_{k} * T_{k}^{T}+\alpha_{k+1} V_{k+1} * e_{k+1}^{T}, \tag{16}
\end{align*}
$$

where $e_{k+1}=(0, \ldots, 0,1)^{T} \in \mathbb{R}^{k+1}$.
Now, we seek an approximate solution X_{k} to (9) such that $X_{k} \in \operatorname{span}\left(\mathscr{V}_{k}\right)$ and write

$$
\begin{equation*}
X_{k}=\mathscr{V}_{k} * y_{k}, \quad y_{k} \in \mathbb{R}^{k} \tag{17}
\end{equation*}
$$

Then the corresponding residual matrix of the equation (9) is

$$
\begin{aligned}
R_{k} & =E-\mathscr{L}\left(X_{k}\right) \\
& =E-\left[\mathscr{L}\left(V_{1}\right), \mathscr{L}\left(V_{2}\right), \ldots, \mathscr{L}\left(V_{k}\right)\right] * y_{k} \\
& =\beta_{1} U_{1}-\left(\mathscr{U}_{k+1} * T_{k}\right) * y_{k} \\
& =\beta_{1} U_{1}-\mathscr{U}_{k+1} *\left(T_{k} y_{k}\right) \\
& =\mathscr{U}_{k+1} *\left(\beta_{1} e_{1}-T_{k} y_{k}\right)
\end{aligned}
$$

The global LSQR algorithm chooses the vector y_{k} which minimizes $\left\|R_{k}\right\|_{F}$. Thus from the last relatio, we get

$$
\begin{equation*}
\min \left\|R_{k}\right\|_{F}=\min _{y_{k} \in \mathbb{R}^{k}}\left\|\beta_{1} e_{1}-T_{k} y_{k}\right\|_{2} \tag{18}
\end{equation*}
$$

This minimization problem is accomplished by using the $Q R$ decomposition

$$
Q_{k}\left[T_{k} \beta_{1} e_{1}\right]=\left[\begin{array}{cc}
R_{k} & f_{k} \\
0 & \bar{\phi}_{k+1}
\end{array}\right]
$$

where the matrix Q_{k} is a product $G_{k, k+1} G_{k-1, k} \ldots G_{1,2}$ chosen to eliminate the subdiagonal element $\beta_{2}, \ldots \beta_{k+1}$ of T_{k} and

$$
R_{k}=\left[\begin{array}{ccccc}
\rho_{1} & \theta_{2} & & & \\
& \rho_{2} & \theta_{3} & & \\
& & \ddots & \ddots & \\
& & & \rho_{k-1} & \theta_{k} \\
& & & & \rho_{k}
\end{array}\right], \quad \text { and } \quad f_{k}=\left[\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{k-1} \\
\phi_{k}
\end{array}\right]
$$

The minimizer y_{k} of (18) can then be obtained from $R_{k} y_{k}=f_{k}$. Therefore an approximate solution is formed as

$$
X_{k}=\mathscr{V}_{k} * y_{k}=\mathscr{V}_{k} *\left(R_{k}^{-1} f_{k}\right)=\left(\mathscr{V}_{k} * R_{k}^{-1}\right) * f_{k} .
$$

Letting $\mathscr{P}_{k} \equiv \mathscr{V}_{k} * R_{k}^{-1} \equiv\left[P_{1}, P_{2}, \ldots, P_{k}\right]$, the approximate solution is given by $X_{k}=\mathscr{P}_{k} * f_{k}$. With the initial guess $P_{0}=$ $X_{0}=0, X_{k}$ can be obtained by the relation

$$
X_{k}=X_{k-1}+P_{k} \phi_{k}
$$

The last block column P_{k} of \mathscr{P}_{k} can be updated by the previous P_{k-1} and V_{k},

$$
\begin{equation*}
P_{k}=\left(V_{k}-P_{k-1} \theta_{k}\right) \rho_{k}^{-1} \tag{19}
\end{equation*}
$$

and

$$
f_{k}=\left[\begin{array}{c}
f_{k-1} \\
\phi_{k}
\end{array}\right]
$$

where $\phi_{k}=c_{k} \overline{\phi_{k}}$.
The matrix residual norm $\left\|R_{k}\right\|_{F}$ is computed directly from the quantity

$$
\left\|R_{k}\right\|_{F}=\left|\bar{\phi}_{k+1}\right|
$$

The Gl-LSQR algorithm steps for resolving the linear operator equation (9) are summarized in Algorithme 2.

Algorithme 2: The Gl-LSQR algorithm for solving the generalized Sylvester equation (6)

1. Set $X_{0}=0_{m \times n}$
2. $\beta_{1}=\|E\|_{F}, U_{1}=E / \beta_{1}, \alpha_{1}=\left\|\mathscr{L}^{T}\left(U_{1}\right)\right\|_{F}, V_{1}=\mathscr{L}^{T}\left(U_{1}\right) / \alpha_{1}$.
3. Set $W_{1}=V_{1}, \bar{\phi}_{1}=\beta_{1}, \bar{\rho}_{1}=\alpha_{1}$
4. For $j=1,2, \ldots, k$
(a) $\tilde{U}_{j}=\mathscr{L}\left(V_{j}\right)-\alpha_{j} U_{j}$
(b) $\beta_{j+1}=\left\|\tilde{U}_{j}\right\|_{F}$
(c) $U_{j+1}=\tilde{U}_{j} / \beta_{j+1}$
(d) $\tilde{V}_{j}=\mathscr{L}^{T}\left(U_{j+1}\right)-\beta_{j+1} V_{j}$
(e) $\alpha_{j+1}=\left\|\tilde{V}_{j}\right\|_{F}$
(f) $V_{j+1}=\tilde{V}_{j} / \alpha_{j+1}$
(g) $\rho_{j}=\left(\bar{\rho}^{2}+\beta_{j+1}^{2}\right)^{1 / 2}, c_{j}=\bar{\rho}_{j} / \rho_{j}, s_{j}=\beta_{j+1} / \rho_{j}$
(h) $\theta_{j+1}=s_{j} \alpha_{j+1}, \bar{\rho}_{j+1}=c_{j} \alpha_{j+1}$
(i) $\phi_{j}=c_{j} \bar{\phi}_{j}, \bar{\phi}_{j+1}=-s_{j} \bar{\phi}_{j}$
(j) $X_{j}=X_{j-1}+\left(\phi_{i} / \rho_{i}\right) W_{i}$
(k) $W_{j+1}=V_{j-1}+\left(\theta_{i+1} / \rho_{i}\right)$
(l) If $\left|\bar{\phi}_{j+1}\right|$ is small enough, then stop.

4 The global CG method for solving large general Sylvester matrix equations

The global conjugate gradient (Gl-CG) method is a generalization of CG method [9] for solving sparse symmetric positive definite (SPD) linear system of equations

$$
\begin{equation*}
\mathscr{M}(X)=E, \tag{20}
\end{equation*}
$$

where E and X are $m \times n$ matrices and the linear operator \mathscr{M} is assumed to be symmetric and postive definite. We demonstrate how to employ the Gl-CG method to get an approximate solution of the linear matrix operator equation (6). The global Lanczos process is a method for transforming the linear operator \mathscr{M} to a tridiagonal matrix. The algorithm is given as follows

Algorithme 3: The global Lanczos process

1. Set V_{1} of size $m \times n$ such that $\left\|V_{1}\right\|_{F}=1$.
2. Set $\beta_{1}=0$ and $V_{0}=0$.
3. For $j=1,2, . ., k$
(a) $W=\mathscr{M}\left(V_{j}\right)-\beta_{j} V_{j-1}$,
(b) $\alpha_{j}=<V_{j}, W>_{F}$,
(c) $W=W-\alpha_{j} V_{j}$,
(d) $\beta_{j+1}=\|W\|_{F}$,
(e) $V_{j+1}=W / \beta_{j+1}$,
4.EndFor

This algorithm constructs an F-orthogonal basis $\mathscr{V}_{k} \equiv\left[V_{1}, V_{2}, \ldots, V_{k}\right]$ of the matrix Krylov subspace $\mathscr{K}_{k}\left(\mathscr{M}, V_{1}\right)$. Let T_{k} be the tridiagonal matrix constructed by this algorithm and given by

$$
T_{k} \equiv\left[\begin{array}{llll}
\alpha_{1} & \beta_{2} & & \tag{21}\\
\beta_{2} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \beta_{k} \\
& \beta_{k} & \alpha_{k}
\end{array}\right] .
$$

Now, according to the notation $*$, the recurrence steps in Algorithme 3 may be rewritten as

$$
\begin{align*}
{\left[\mathscr{M}\left(V_{1}\right), \mathscr{M}\left(V_{2}\right), \ldots, \mathscr{M}\left(V_{k}\right)\right] } & =\mathscr{V}_{k} * T_{k}+\beta_{k+1}\left[0, \ldots, 0, V_{k+1}\right] \tag{22}\\
& =\mathscr{V}_{k+1} * \tilde{T}_{k} \tag{23}
\end{align*}
$$

where

$$
\tilde{T}_{k}=\left[\begin{array}{c}
T_{k} \\
\beta_{k+1} e_{k}^{T}
\end{array}\right]
$$

where $e_{k}=(0, \ldots, 0,1)^{T} \in \mathbb{R}^{k}$.
Starting from an initial guess $X_{0} \in \mathbb{R}^{m \times n}$ and the corresponding residual $R_{0}=E-\mathscr{M}\left(X_{0}\right)$, the approximate solution X_{k} of (6) is defined as follows:

$$
\begin{equation*}
X_{k}=X_{0}+Z_{k}, \quad \text { with } \quad Z_{k} \in \mathscr{K}_{k}\left(\mathscr{M}, V_{1}\right) \tag{24}
\end{equation*}
$$

where $V_{1}=\frac{R_{0}}{\left\|R_{0}\right\|_{F}}$.
From relation (24), the approximation X_{k} can be written as

$$
\begin{align*}
X_{k} & =X_{0}+\mathscr{V}_{k} * y_{k} \tag{25}\\
& =X_{0}+\mathscr{V}_{k}\left(y_{k} \otimes I_{n}\right), \tag{26}
\end{align*}
$$

where $y_{k} \in \mathbb{R}^{k}$ is the solution of the following linear system

$$
\begin{equation*}
T_{k} y_{k}=\left\|R_{0}\right\|_{F} e_{1} \tag{27}
\end{equation*}
$$

where e_{1} is the first unit vector of \mathbb{R}^{k}. From the LU factorization of T_{k}

$$
\begin{aligned}
T_{k} & =L_{k} U_{k} \\
& =\operatorname{tridiag}\left(\lambda_{i}, 1,0\right) \times \operatorname{tridiag}\left(0, \eta_{i}, \beta_{i+1}\right)
\end{aligned}
$$

the approximate solution X_{k} is expressed as

$$
\begin{aligned}
X_{k} & =X_{0}+\mathscr{V}_{k} *\left(U_{k}^{-1} L_{k}^{-1}\right)\left\|R_{0}\right\|_{F} e_{1}, \\
& =X_{0}+\left(\mathscr{V}_{k} * U_{k}^{-1}\right) *\left(L_{k}^{-1}\left\|R_{0}\right\|_{F} e_{1}\right), \\
& =X_{0}+\mathscr{P}_{k} * z_{k}, \\
& =X_{k-1}+\zeta_{k} \mathscr{P}_{k},
\end{aligned}
$$

where $\mathscr{P}_{k}=\mathscr{V}_{k} * U_{k}^{-1}=\left[P_{1}, P_{2}, \ldots, P_{k}\right]$ and $z_{k}=L_{k}^{-1}\left\|R_{0}\right\|_{F} e_{1}=\left[\begin{array}{c}z_{k-1} \\ \zeta_{k}\end{array}\right]$.
The last block column P_{k} of \mathscr{P}_{k} can be updated by the previous P_{k-1} and V_{k} as

$$
\begin{equation*}
P_{k}=\frac{1}{\eta_{k}}\left[V_{k}-\beta_{k} P_{k-1}\right] \tag{28}
\end{equation*}
$$

and

$$
\lambda_{k}=\frac{\beta_{k}}{\eta_{k-1}}, \quad \eta_{k}=\alpha_{k}-\lambda_{k} \beta_{k}
$$

From the relation

$$
X_{j+1}=X_{j}+\alpha_{j} P_{j}
$$

the residual matrix of normal matrix must satisfy the recurrence

$$
R_{j+1}=R_{j}-\alpha_{j} \mathscr{M}\left(P_{j}\right)
$$

and the next search direction P_{j+1} is a linear combination of R_{j+1} and P_{j},

$$
P_{j+1}=R_{j+1}+\beta_{j} P_{j} .
$$

Thus the F-orthogonality of the R_{j} brings

$$
\alpha_{j}=\frac{<R_{j}, R_{j}>_{F}}{<\mathscr{M}\left(P_{j}\right), P_{j}>_{F}}
$$

and

$$
\beta_{j}=\frac{<R_{j+1}, R_{j+1}>_{F}}{<R_{j}, R_{j}>_{F}}
$$

If we apply the global $C G$ algorithm for solving the problem (6) given as

$$
\mathscr{M}(X)=\left(H_{1}^{T} H_{1}\right) X\left(H_{2}^{T} H_{2}\right)+\mu^{2}\left(L_{1}^{T} L_{1}\right) X\left(L_{2}^{T} L_{2}\right)
$$

and $E=H_{1}^{T} G H_{2}$, we get the following algorithm.

Algorithme 4: Gl-CG for sloving the generalized Sylvester equation (6)

1. Choose $X_{0} \in \mathbb{R}^{m \times n}$
2. Compute $R_{0}=F-\mathscr{M}\left(X_{0}\right), P_{0}=R_{0}$
3. For $j=1,2, . ., k$ until convergence Do
(a) $\alpha_{j}=\frac{<R_{j}, R_{j}>F}{<\mathscr{M}\left(P_{j}\right), P_{j}>F}$,
(b) $X_{j+1}=X_{j}+\alpha_{j} P_{j}$
(c) $R_{j+1}=R_{j}-\alpha_{j} \mathscr{M}\left(P_{j}\right)$,
(d) $\beta_{j}=\frac{\left\langle R_{j+1}, R_{j+1}>F\right.}{\left\langle R_{j}, R_{j}>_{F}\right.}$
(e) $P_{j+1}=R_{j+1}+\beta_{j} P_{j}$,
4.EnDo

5 A parameter selection method for Tikhonov regularization

We now consider a parameter choice method. An appropriate selection of the regularization parameter μ is important in Tikhonov regularization. The well-known method for choosing suitable regularization parameters is due to generalized cross validation (GCV) method [14]. GCV is a widely used and very successful predictive method for choosing the smoothing parameter. The basic idea is that, if one datum point is dropped, then a good value of the regularization parameter should predict the missing datum value fairly well. For this method, the regularization parameter is chosen to minimize the GCV function

$$
G C V(\mu)=\frac{\left\|H x_{\mu}-g\right\|_{2}^{2}}{\left[\operatorname{tr}\left(I-H H_{\mu}^{-1} H^{T}\right)\right]^{2}}=\frac{\left\|\left(I-H H_{\mu}^{-1} H^{T}\right) g\right\|_{2}^{2}}{\left[\operatorname{tr}\left(I-H H_{\mu}^{-1} H^{T}\right)\right]^{2}},
$$

where $H_{\mu}=H^{T} H+\mu^{2} L^{T} L$ and x_{μ} is the solution of $H_{\mu} x=H^{T} g$. Let $H=H_{2} \otimes H_{1}$ and $L=L_{2} \otimes L_{1}$ where H_{2}, L_{2} and H_{1}, L_{1} are of size $m \times m$ and $n \times n$, respectively. The GCV function can be simplified for Tikhonov regularization method using the generalized singular value decompositions (GSVD) [13] of the pairs (H_{1}, L_{1}) and (H_{2}, L_{2}). Thus, there exist
orthonormal matrices $U_{1}, U_{2}, V_{1}, V_{2}$ and invertible matrices X_{1}, X_{2} such that

$$
\begin{array}{ll}
U_{1}^{T} H_{1} X_{1}=C_{1}=\operatorname{diag}\left(c_{1,1}, \ldots, c_{m, 1}\right), & c_{i, 1} \geq 0 \\
U_{2}^{T} H_{2} X_{2}=C_{2}=\operatorname{diag}\left(c_{1,2}, \ldots, c_{n, 2}\right), & c_{i, 2} \geq 0
\end{array}
$$

and

$$
\begin{array}{ll}
V_{1}^{T} L_{1} X_{1}=S_{1}=\operatorname{diag}\left(s_{1,1}, \ldots, s_{m, 1}\right), \quad s_{i, 1} \geq 0 \\
V_{2}^{T} L_{2} X_{2}=S_{2}=\operatorname{diag}\left(s_{1,2}, \ldots, s_{n, 2}\right), & s_{i, 2} \geq 0
\end{array}
$$

Then the GSVD of the pair (H, L) is given by

$$
\begin{aligned}
U^{T} H X & =C=\operatorname{diag}\left(c_{1}, \ldots, c_{N}\right), \quad c_{i} \geq 0 \\
V^{T} L X & =S=\operatorname{diag}\left(s_{1}, \ldots, s_{N}\right), \quad s_{i} \geq 0
\end{aligned}
$$

where $U=U_{2} \otimes U_{1}, V=V_{2} \otimes V_{1}, C=C_{2} \otimes C_{1}, S=S_{2} \otimes S_{1}$ and $N=m n$. Therefore, the GCV function when used with Tikhonov regularization can be simplified to

$$
\begin{equation*}
G C V(\mu)=\frac{\sum_{i=1}^{N}\left(s_{i}^{2} \hat{g}_{i} /\left(c_{i}^{2}+\mu^{2} s_{i}^{2}\right)\right)^{2}}{\left(\sum_{i=1}^{N} s_{i}^{2} /\left(c_{i}^{2}+\mu^{2} s_{i}^{2}\right)\right)^{2}} \tag{29}
\end{equation*}
$$

with $\hat{g}=U^{T} g$. For the particular case where the matrix L reduces to the identity I, the GSVD of the pair (H, I) reduces to the SVD of the matrix H and the expression of GCV is given by the following formula

$$
\begin{equation*}
G C V(\mu)=\frac{\sum_{i=1}^{N}\left(\hat{g}_{i} /\left(\sigma_{i}^{2}+\mu^{2}\right)\right)^{2}}{\left(\sum_{i=1}^{N} 1 /\left(\sigma_{i}^{2}+\mu^{2}\right)\right)^{2}} \tag{30}
\end{equation*}
$$

where σ_{i} is the i th singular value of the matrix H.
Because $\operatorname{GCV}(\mu)$ in this case is a continuous function, we use the Matlab function fminbnd, which is based on a combination of golden section search and quadratic interpolation search, to find the value of μ at which $G C V(\mu)$ is minimized.

6 Numerical results

This section presents a culmination of all the numerical tests and experiments we performed. We provide numerical experiments with application of Gl-LSQR and Gl-CG for solving generalized Sylvester equation appearing in the image restoration problem. In order to understand these numerical experiments, we frst recall the problem (1)

$$
H x=b+e
$$

where b is the blurred image, H is a blurring matrix, x is the true image and e is the noise. The noise, which is generated by Matlab's random function, is composed of normally distributed random numbers. Various noise levels can be utilized by taking a percentage of the generated noise; usually we pick from 0,01 or 0,001 . The blurring matrix H is determined from two ingredients: the PSF [22], which defines how each pixel is blurred, and the boundary conditions, which specify our assumptions on the scene just outside our image. In order to obtain a high-quality deblurred image we must choose the boundary conditions appropriately. Each boundary condition makes the PSF matrix H having a different special
structure. In this work we consider Neumann boundary conditions (the pixels outside image have mirror image values of the scene inside the image borders), the coefficient matrix H is a sum of block Toeplitz with Toeplitz blocks (BTTB), block Toeplitz with Hankel blocks (BTHB), block Hankel with Toeplitz blocks (BHTB), and block Hankel with Hankel blocks (BHHB). Let $\hat{x}=\operatorname{vec}(\hat{X})$ be the vector whose entries are the pixel values of the original image \hat{X}. We would like to determine an approximate solution of the unavailable system $H \hat{x}=b$ by computing an approximate solution of the available linear system of equations (1) which is equivalent to find an approximate solution of the linear operator equation (6) by using GCV method for the optimal regularization parameter. To compare the effectiveness of our approach, it is hard to determine whether one method is better than the others just by looking at the images; therefore, it is necessary to compute the relative error of each solution

$$
\frac{\left\|\hat{X}-X_{k}\right\|_{F}}{\|\hat{X}\|_{F}}
$$

where X_{k} is the approximate solution of the linear operator equation (6).
In some cases the horizontal and vertical components of the blur PSF can be separated. If this is the case, the blurring matrix H given in (1) can be decomposed as a Kronecker product $H=H_{2} \otimes H_{1}$ and the blurred image is then given by $H_{1}^{T} \hat{X} H_{2}$. In the nonseparable case, one can approximate the matrix H by solving the Kronecker product approximation (KPA) problem [37] $\left(\hat{H}_{1}, \hat{H}_{2}\right)=\arg \min _{H_{1}, H 2}\left\|H-H_{2} \otimes H_{1}\right\|_{F}$,

Example 1. For a test we use a PSF array for out-of-focus blur [22], where the entris are given by

$$
(\mathrm{PSF})_{i j}=\left\{\begin{array}{lr}
\frac{1}{\left(\pi r^{2}\right)}, & \text { if } \\
0 & (i-k)^{2}+(j-l)^{2} \leq r^{2} \\
0 & \text { else }
\end{array}\right.
$$

where (k, l) is the center of PSF, and r is the radius of the blur. For a test we set $r=3$. In this example the original image is the cameraman image of dimension 256×256 from Matlab and it is shown in the left of Figure 1. The blurred and noisy image of Figure 1 has been built by the product $H_{1}^{T} \hat{X} H_{2}$ and adding a 0.001 noise level. In this example, the matrix L in the linear discrete ill-posed problem is chosen to be the identity of size $256^{2} \times 256^{2}$. Using the GCV method, the

Fig. 1: Original image (left), degraded image (center) and restored image (right).
regularization parameter is given by: $\mu=8.7 \times 10^{-3}$. For this optimization parameter value, the restored image determined by solving the linear operator equation with $\mathrm{Gl}-\mathrm{CG}$ is shown in the right of Figure 1. The relative error of restored image was 5.13×10^{-2}.

Example 2. In this example the original image is the vendredi image of dimension 256×256 from Matlab and it is shown in the left of Figure 2. The blurring matrix H is given by $H=H_{2} \otimes H_{1} \in \mathbb{R}^{256^{2} \times 256^{2}}$, where $H_{1}=H_{2}=\left[h_{i j}\right]$ and $\left[h_{i j}\right]$ is the Toeplitz matrix of dimension 256×256 given by

$$
h_{i j}= \begin{cases}\frac{1}{2 r-1}, & |i-j| \leq r \\ 0 & \text { otherwise }\end{cases}
$$

The blurring matrix H models a uniform blur. In our example we set $r=5$. The blurred and noisy image of Figure 2 has been built by the product $H_{1}^{T} \hat{X} H_{2}$ and adding a 0.01 noise level. In this example, the matrix L in the linear discrete ill-posed problem is chosen to be the identity of size $256^{2} \times 256^{2}$. Using the GCV method, the regularization parameter

Fig. 2: Original image (left), degraded image (center) and restored image (right).
is given by: $\mu=9.7907 \times 10^{-4}$. For this optimization parameter value, the restored image determined by solving the linear operator equation (6) with Gl-CG is shown in the right of Figure 2. The relative error of restored image was 1.392×10^{-1}.

Example 3. In this example the original image is the iograyBorder image of dimension 256×256 from Matlab and it is shown in the left of Figure 3. The blurring matrix H is given by $H=H_{2} \otimes H_{1} \in \mathbb{R}^{256^{2} \times 256^{2}}$, where $H_{1}=H_{2}=\left[h_{i j}\right]$ and [$h_{i j}$] is the Toeplitz matrix of dimension 256×256 given by

$$
h_{i j}=\left\{\begin{array}{lr}
\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(i-j)^{2}}{2 \sigma^{2}}\right),|i-j| \leq r, \\
0 & \text { sinon }
\end{array}\right.
$$

The blurring matrix H models a blur arising in connection with the degradation of digital images by atmospheric turbulence blur. We let $\sigma=5$ and $r=35$. The blurred and noisy image of Figure 3 has been built by the product $H_{1}^{T} \hat{X} H_{2}$ and adding a 0.001 noise level. In this example, the matrix L in the linear discrete ill-posed problem is chosen to be the identity of size $256^{2} \times 256^{2}$. Using the GCV method, the regularization parameter is given by: $\mu=9.2149 \times 10^{-4}$. For this optimization parameter value, the restored image determined by solving the linear operator equation (6) with Gl-LSQR is shown in the right of Figure 3. The relative error of restored image was 8.04×10^{-2}.

Fig. 3: Original image (left), degraded image (center) and restored image (right).

7 Conclusion

We have considered two filtering methods for image restoration and a method for choosing the regularization parameter. We have demonstrated how to apply the Gl-LSQR and Gl-CG algorithm to solve the generalized Sylvester matrix equation. The implementation of these methods illustrate that our techniques are efficient.

References

[1] H. Andrews, B. Hunt, Digital image restoration, Prentice-Hall, Engelwood Cliffs, NJ, 1977.
[2] R. H. Bartels and G. W. Stewart Algorithm 432: Solution of the matrix equation AX+XB=C, Circ. Syst. and Signal Proc., 13(1994), 820-826.
[3] M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, IOP Publishing Ltd., London, 1998.
[4] A. Bouhamidi, K. Jbilou , A Sylvester-Tikhonov regularization method for image restauration, J. Compt. Appl. Math., 206(2007), 86-98.
[5] A. Bouhamidi, K. Jbilou, An iterative method for Bayesian Gauss-Markov image restauration, App. Math. Model., 33(2009), 361-372.
[6] D. Calvetti, L. Reichel, Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl., 17(1996), 165-186.
[7] D. Calvetti, N. Levenberg, L. Reichel, Iterative methods for $X-A X B=C$, J. Comput. Appl. Math. 86 (1997), 73-101.
[8] B. Chalmond, Modeling and Inverse Problems in Image Analysis, Springer, New York, 2003.
[9] R. H. Chan, M. K. Ng, Conjuguate gradient methods for Toeplitz systems, SIAM Review 38(1996), 427-482.
[10] K. -W. E., Chu, Exclusion theorems and the perturbation analysis of the generalized eigenvalue problem, SIAM J. Numer. Anal., 24(1987), pp. 1114-1125.
[11] H.W. Engl, Regularization methods for the stable solution of inverse problems, Surveys Math. Indust., 3 (1993), pp. 71-143.
[12] H.W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, Kluwer, Dordrecht, The Netherlands, 1996. 71-143.
[13] G.H. Golub, C. van Loan, Matrix Computations, third ed., The Johns Hopkins University Press, 1996.
[14] G. H. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, , Technometrics 21(1979), 215-223.
[15] G. H. Golub, P. C. Hansen, D. P. O’Leary, Tikhonov regularization and total least squares, SIAM J. Matrix Anal. Appl., 21(1)(1999), 185-194.
[16] G. H. Golub and , S. Nash and C. Van Loan emph A Hessenberg-Schur method for the problem AX+XB=C, IEEC Trans. Autom. Contr., AC-24(1979), 909-913.
[17] C. W. Groetsch, The theory of Tikhonov regularization for Fredholm integral equations of the first kind, Pitman, Boston, 1984.
[18] C. W. Groetsch, Inverse Problems in the Mathematical Sciences, Vieweg, Wiesbaden, Germany, 1993.
[19] Hansen, P. C., Nagy, J. G., and O’Leary, D. P, Deblurring Images : Matrices, Spectra, and Filtering, SIAM, 2006.
[20] M. Hanke and P. C. Hansen Regularization methods for large-scale problems, Surveys Math. Indust., 3 (1993), 253-315.
[21] P. C. Hansen Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (1992), 561-580.
[22] P. C. Hansen Regularization tools, a MATLAB package for analysis of discrete regularization problems, Numer Algorithms, 6 (1994), 1-35.
[23] P. C. Hansen and D. P. O'Leary The use of the L-curve in the regularization of discrete Ill-posed problems, SIAM J. Sci. Compt., 14(1993), 1487-1503.
[24] R. H. Huding, Wave-front reconstruction for compensated imaging, J. Opt. Soc. Am., 67(1977), 375-578.
[25] A. K. Jain, Fundamentals of digital image processing, Prentice-Hall, Engelwood Cliffs, NJ, 1989.
[26] M. Konstantinov, V. Mehrmann and P. Petkov, On properties of Sylvester and Lyapunov operators, Linear Algebra and its Applications., 312(2000), 35-71.
[27] K. Jbilou A. Messaoudi H. Sadok Global FOM and GMRES algorithms for matrix equations, Appl. Num. Math., Appl. Num. math., 31(1999), 49-63.
[28] K. Jbilou, L. Reichel, H. Sadok, Vector extrapolation enhanced TSVD for linear discrete Ill-Posed problems, Numer. Algo., 51(2)(2009), 195-208.
[29] R. L. Lagendijk and J. Biemond, Iterative identification and restoration of images, Norwell, MA: Kluwer Academic Publishers, 1991.
[30] P. Lancaster, L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford, 1995.
[31] J. Kamm, J. G. Nagy, Kronecker product and SVD approximations in image restoration, Linear Algebra and its Applications 284(1998), 177-192.
[32] J. Kamm, J. G. Nagy, Kronecker product approximations for restoration image with reflexive boundary conditions, SIAM J. Matrix Anal. Appl., vol 25, No. 3(2004), 829-841.
[33] C.C. Paige, A. Saunders, LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software 8 (1982), 43-71.
[34] H. Ren and R. Dekany Fast wave-front recontrtuction by solving the Sylvester equation with the alternating direction implicit method, Optics Express., vol. 12, No. 14 (2004), 3279-3296.
[35] Y. Saad and M. H. Schultz GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statis. Comput., 7(1986), 856-869.
[36] G. W. Stewart and Ji-guang Sun Matrix Perturbation Theory, Academic Press, New York, 1990.
[37] C. F. Van Loan, N. P. Pitsianis, Approximation with Kronecker products, M. S. Moonen, G. H. Golub (Eds), Linear Algebra for large scale and real time applications, Kluwer Academic Publishers, Dordrecht, (1993), 293-314.
[38] G. Wahba, Pratical approximation solutions to linear operator equations when the data are noisy, SIAM J. Numer. Anal. 14(1977), 651-667.

[^0]: * Corresponding author e-mail: jbilou@lmpa.univ-littoral.fr

