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Abstract: In the present paper, we consider some matrix Krylov subspace methods for solving ill-posed linear matrix equations and in
those problems coming from the restoration of blurred and noisy images. Applying the well known Tikhonov regularization procedure
leads to a Sylvester matrix equation depending the Tikhonov regularized parameter. We apply the matrix versions of the well known
Krylov subspace methods, namely the Least Squared (LSQR) and the conjugate gradient (CG) methods to get approximate solutions
representing the restored images. Some numerical tests are presented to show the effectiveness of the proposed methods.
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1 Introduction

Image restoration is the process of removing blur and noise from degraded images to recover an approximation of the
original image. This field of imaging technology is becoming increasingly significant in many scientific applications [1,
24,25]. Since blurring is the degradation from the process of image formation, it is a deterministic process which has
a sufficiently accurate mathematical model for its description. The goal of the image restoration is to recover a good
approximation of the original image X which is m× n, for a given the degraded image B of size m× n, the blur matrix
H of size mn×mn, and the statistics of the noise matrix E. The mathematical model [18,21,23,22] that relates the given
blurred and noisy image to the unknown true image is given as follows

Hx = b+ e. (1)

The key for obtaining this general linear model is to rearrange the elements of the images X , B and the noise matrix E into
column vectors by stacking the columns of these images into three long vectors x = vec(X), b = vec(B) and e = vec(E),
respectively, of length N = mn. See [22,3,8] for more details concerning image representation and modeling. By solving
the inverse problem for x, an approximation to the true image can be computed; however, this is not so simple due to the
severe ill-conditioning and large dimensions of the matrix H [?].
Since the blurring matrix H is ill-conditioned, the image restoration problem will be extremely sensitive to perturbations
in the right hand side vector. In order to diminish the effects of the noise in the data, we replace the original operator
by a better conditioned one. One of the most popular regularization methods is due to Tikhonov [15,17,20]. The method
replaces the problem (1) by the new one

min
x

(
∥ Hx−g ∥2

2 +µ2 ∥ Lx ∥2
2
)
, (2)
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where g = b+ e, L is a regularization operator chosen to obtain a solution with desirable properties. The matrix L could
be the identity matrix or a discrete form of first or second derivative. In the first case, the parameter µ acts on the size of
the solution, while in the second case µ acts on the smoothness of the solution.

2 Backgrounds

In Tikhonov regularization, the solution of the problem (1) is computed as the unique solution of the following linear least
squares problem

x̂ = argmin
x

∥∥∥∥∥
[

H
µL

]
x−

[
g
0

]∥∥∥∥∥
2

2

. (3)

See [11,12,17,18] for more details about theory of Tikhonov regularization. The minimizer of the problem (3) is computed
as the solution of the following normal equations

(HT H +µ2LT L)x = HT g. (4)

The Kronecker product of two matrices A ∈ Rm×m and B ∈ Rn×n is the matrix H ∈ Rmn×mn of the following bloc form

H = A⊗B =


a11B a12B · · · a1mB
a21B a21B · · · a2mB

...
...

...
am1B am2B · · · ammB

 ,

where ai j are the coefficients of the matrix A.
Here we list some of the most important properties of Kronecker products [30]:

(A⊗B)vec(X) = vec(BXAT ),

(A⊗B)T = AT ⊗BT , (A⊗B)−1 = A−1 ⊗B−1,

(AB)⊗ (CD) = (A⊗C)(B⊗D),

where the vec operator transforms the matrix A of size m×n to a vector a of size mn×1 by stacking the columns of A. For
A and B in Rm×n, we define the inner product < A,B >F= tr(AT B), where tr(Z) denotes the trace of the square matrix Z.
The Frobenius norm is defined by ∥ A ∥F= (< A,A >F)

1/2.
We assume that the matrices H and L are decomposed as a Kronecker product of squares matrices H2, L2 of size m×m,
and H1, L1 of size n×n such that

H = H2 ⊗H1, and L = L2 ⊗L1.

Therefore, by using the connection between the properties of the Kronecker product and linear operator vec, the problem
(4) can be written as

(HT
1 H1)X(HT

2 H2)+µ2(LT
1 L1)X(LT

2 L2) = HT
1 GH2, (5)

where X and G are matrices such that vec(X) = x and vec(G) = g. The linear matrix (5) is referred to as the generalized
Sylvester matrix equation and is written in the following form

AXB+CXD = E, (6)
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where
A = HT

1 H1, B = HT
2 H2, C = µ2LT

1 L1, D = LT
2 L2 and E = HT

1 GH2.

For solving the generalized Sylvester matrix equation (6), we define the following linear operator

L : Rm×n → Rm×n

X → L (X) = AXB+CXD.

Its transpose is defined by L T (X) = AT XBT +CT XDT . Hence, the generalized Sylvester matrix equation (6) is rewritten
as

L (X) = E. (7)

The linear operator L is symmetric positive definite, whenever L is symmetric, i.e. L = L T , and the following
condition is satisfied

< L (X),X >F> 0, 0 ̸= X ∈ Rm×n,

and then the matrix equation could be solved by a matrix version of the conjugate gradient method. If L is not symmetric,
then one can consider the following symmetric problem

L̂ (X) = (L T ◦L )(X). (8)

3 The global LSQR for solving generalized Sylvester matrix equations

The global least squares (Gl-LSQR) method is a generalization of the classical least squares (LSQR) method [33] for
solving the problem

min
X

∥ L (X)−E ∥F . (9)

Let V1 and U1 be two matrices of size m×n, let us denote by Kk(L ,V1) and Kk(L
T ,U1) the matrix Krylov subspaces

generated by {V1,L (V1), ...,L k−1(V1)} and {U1,L T (U1), ...,L T k−1(U1)}, respectively. We note that L i(V ) is defined
recursively as L (L i−1(V )). The global bidiagonalization process construct two F-orthonormal basis {V1,V2, ...,Vk} and
{U1,U2, ...,Uk} of the matrix Krylov subspaces Kk(L ,V1) and Kk(L

T ,U1), respectively.

The global bidiagonalization steps are summarized in the following algorithm.

Algorithme 1: The global bidiagonalization process

1. Set β1 = ||E||F , U1 = E/β1, α1 = ||L T (U1)||F , V1 = L T (U1)/α1.
2. For j = 1,2, ...,k

(a) Ũ j = L (Vj)−α jU j

(b) β j+1 = ||Ũ j||F
(c) U j+1 = Ũ j/β j+1

(d) Ṽj = L T (U j+1)−β j+1Vj

(e) α j+1 = ||Ṽj||F
(f) Vj+1 = Ṽj/α j+1

EndFor
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We now define the matrices Vk ≡ [V1,V2, ...,Vk], Uk ≡ [U1,U2, ...,Uk] and the lower bidiagonal matrix

Tk ≡



α1

β2 α2
. . . . . .

βk αk

βk+1


. (10)

Let ∗ denotes the following product

Vk ∗ t =
k

∑
j=1

Vjt j, t ∈ Rk,

where t ∈ Rk. It is easy to see that the following relations are satisfied:

Vk ∗ (t + s) = (Vk ∗ t)+(Vk ∗ s), s ∈ Rk (11)

(Vk ∗Tk)∗ t = Vk ∗ (Tkt), (12)

||Vk ∗ t||F = ||t||2, (13)

where
Vk ∗Tk = [Vk ∗T.,1,Vk ∗T.,2, ...,Vk ∗T.,k],

where T., j is jth column of the matrix Tk.
Now, according to the notation ∗, the recurrence steps in Algorithme 1 may be rewritten as

Uk+1 ∗ (β1e1) = E, (14)[
L (V1),L (V2), ...,L (Vk)

]
= Uk+1 ∗Tk, (15)[

L T (U1),L
T (U2), ...,L

T (Uk+1)
]
= Vk ∗T T

k +αk+1Vk+1 ∗ eT
k+1, (16)

where ek+1 = (0, ...,0,1)T ∈ Rk+1.
Now, we seek an approximate solution Xk to (9) such that Xk ∈ span(Vk) and write

Xk = Vk ∗ yk, yk ∈ Rk, (17)

Then the corresponding residual matrix of the equation (9) is

Rk = E −L (Xk)

= E −
[
L (V1),L (V2), ...,L (Vk)

]
∗ yk

= β1U1 − (Uk+1 ∗Tk)∗ yk

= β1U1 −Uk+1 ∗ (Tkyk)

= Uk+1 ∗ (β1e1 −Tkyk)
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The global LSQR algorithm chooses the vector yk which minimizes ||Rk||F . Thus from the last relatio, we get

min||Rk||F = min
yk∈Rk

||β1e1 −Tkyk||2. (18)

This minimization problem is accomplished by using the QR decomposition

Qk

[
Tk β1e1

]
=

[
Rk fk

0 ϕ̄k+1

]
,

where the matrix Qk is a product Gk,k+1Gk−1,k...G1,2 chosen to eliminate the subdiagonal element β2, ...βk+1 of Tk and

Rk =



ρ1 θ2

ρ2 θ3
. . . . . .

ρk−1 θk

ρk


, and fk =



ϕ1

ϕ2
...

ϕk−1

ϕk


,

The minimizer yk of (18) can then be obtained from Rkyk = fk. Therefore an approximate solution is formed as

Xk = Vk ∗ yk = Vk ∗ (R−1
k fk) = (Vk ∗R−1

k )∗ fk.

Letting Pk ≡ Vk ∗R−1
k ≡

[
P1,P2, ...,Pk

]
, the approximate solution is given by Xk = Pk ∗ fk. With the initial guess P0 =

X0 = 0,Xk can be obtained by the relation
Xk = Xk−1 +Pkϕk.

The last block column Pk of Pk can be updated by the previous Pk−1 and Vk,

Pk = (Vk −Pk−1θk)ρ−1
k , (19)

and

fk =

[
fk−1

ϕk

]
,

where ϕk = ckϕ̄k.

The matrix residual norm ||Rk||F is computed directly from the quantity

||Rk||F = |ϕ̄k+1|

The Gl-LSQR algorithm steps for resolving the linear operator equation (9) are summarized in Algorithme 2.

Algorithme 2: The Gl-LSQR algorithm for solving the generalized Sylvester equation (6)

1. Set X0 = 0m×n

2. β1 = ||E||F , U1 = E/β1, α1 = ||L T (U1)||F , V1 = L T (U1)/α1.
3. Set W1 =V1, ϕ̄1 = β1, ρ̄1 = α1

4. For j = 1,2, ...,k
(a) Ũ j = L (Vj)−α jU j
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(b) β j+1 = ||Ũ j||F
(c) U j+1 = Ũ j/β j+1

(d) Ṽj = L T (U j+1)−β j+1Vj

(e) α j+1 = ||Ṽj||F
(f) Vj+1 = Ṽj/α j+1

(g) ρ j = (ρ̄2 +β 2
j+1)

1/2, c j = ρ̄ j/ρ j, s j = β j+1/ρ j

(h) θ j+1 = s jα j+1, ρ̄ j+1 = c jα j+1

(i) ϕ j = c jϕ̄ j, ϕ̄ j+1 =−s jϕ̄ j

(j) X j = X j−1 +(ϕi/ρi)Wi

(k) Wj+1 =Vj−1 +(θi+1/ρi)

(l) If |ϕ̄ j+1| is small enough, then stop.

4 The global CG method for solving large general Sylvester matrix equations

The global conjugate gradient (Gl-CG) method is a generalization of CG method [9] for solving sparse symmetric positive
definite (SPD) linear system of equations

M (X) = E, (20)

where E and X are m × n matrices and the linear operator M is assumed to be symmetric and postive definite. We
demonstrate how to employ the Gl-CG method to get an approximate solution of the linear matrix operator equation (6).
The global Lanczos process is a method for transforming the linear operator M to a tridiagonal matrix. The algorithm is
given as follows

Algorithme 3: The global Lanczos process

1. Set V1 of size m×n such that ||V1||F = 1.
2. Set β1 = 0 and V0 = 0.
3. For j = 1,2, ..,k

(a) W = M (Vj)−β jVj−1,
(b) α j =<Vj,W >F ,
(c) W =W −α jVj,
(d) β j+1 = ||W ||F ,
(e) Vj+1 =W/β j+1,

4.EndFor

This algorithm constructs an F-orthogonal basis Vk ≡ [V1,V2, ...,Vk] of the matrix Krylov subspace Kk(M ,V1). Let Tk be
the tridiagonal matrix constructed by this algorithm and given by

Tk ≡


α1 β2

β2 α2
. . .

. . . . . . βk

βk αk

 . (21)

Now, according to the notation ∗, the recurrence steps in Algorithme 3 may be rewritten as[
M (V1),M (V2), ...,M (Vk)

]
= Vk ∗Tk +βk+1

[
0, ...,0,Vk+1

]
(22)

= Vk+1 ∗ T̃k (23)
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where

T̃k =

[
Tk

βk+1eT
k

]
,

where ek = (0, ...,0,1)T ∈ Rk.
Starting from an initial guess X0 ∈ Rm×n and the corresponding residual R0 = E −M (X0), the approximate solution Xk

of (6) is defined as follows:
Xk = X0 +Zk, with Zk ∈ Kk(M ,V1), (24)

where V1 =
R0

||R0||F
.

From relation (24), the approximation Xk can be written as

Xk = X0 +Vk ∗ yk, (25)

= X0 +Vk(yk ⊗ In), (26)

where yk ∈ Rk is the solution of the following linear system

Tkyk =∥ R0 ∥F e1, (27)

where e1 is the first unit vector of Rk. From the LU factorization of Tk

Tk = LkUk,

= tridiag(λi,1,0)×tridiag(0,ηi,βi+1),

the approximate solution Xk is expressed as

Xk = X0 +Vk ∗ (U−1
k L−1

k )||R0||F e1,

= X0 +(Vk ∗U−1
k )∗ (L−1

k ||R0||F e1),

= X0 +Pk ∗ zk,

= Xk−1 +ζkPk,

where Pk = Vk ∗U−1
k = [P1,P2, ...,Pk] and zk = L−1

k ||R0||F e1 =

[
zk−1

ζk

]
.

The last block column Pk of Pk can be updated by the previous Pk−1 and Vk as

Pk =
1
ηk

[Vk −βkPk−1], (28)

and
λk =

βk

ηk−1
, ηk = αk −λkβk.

From the relation
X j+1 = X j +α jPj,

the residual matrix of normal matrix must satisfy the recurrence

R j+1 = R j −α jM (Pj),
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and the next search direction Pj+1 is a linear combination of R j+1 and Pj,

Pj+1 = R j+1 +β jPj.

Thus the F-orthogonality of the R j brings

α j =
< R j,R j >F

< M (Pj),Pj >F
,

and
β j =

< R j+1,R j+1 >F

< R j,R j >F
.

If we apply the global CG algorithm for solving the problem (6) given as

M (X) = (HT
1 H1)X(HT

2 H2)+µ2(LT
1 L1)X(LT

2 L2)

and E = HT
1 GH2, we get the following algorithm.

Algorithme 4: Gl-CG for sloving the generalized Sylvester equation (6)

1. Choose X0 ∈ Rm×n

2. Compute R0 = F −M (X0), P0 = R0

3. For j = 1,2, ..,k until convergence Do
(a) α j =

<R j ,R j>F
<M (Pj),Pj>F

,

(b) X j+1 = X j +α jPj

(c) R j+1 = R j −α jM (Pj),

(d) β j =
<R j+1,R j+1>F

<R j ,R j>F

(e) Pj+1 = R j+1 +β jPj,

4.EnDo

5 A parameter selection method for Tikhonov regularization

We now consider a parameter choice method. An appropriate selection of the regularization parameter µ is important in
Tikhonov regularization. The well-known method for choosing suitable regularization parameters is due to generalized
cross validation (GCV) method [14]. GCV is a widely used and very successful predictive method for choosing the
smoothing parameter. The basic idea is that, if one datum point is dropped, then a good value of the regularization
parameter should predict the missing datum value fairly well. For this method, the regularization parameter is chosen to
minimize the GCV function

GCV (µ) =
||Hxµ −g||22

[tr(I −HH−1
µ HT )]2

=
||(I −HH−1

µ HT )g||22
[tr(I −HH−1

µ HT )]2
,

where Hµ = HT H + µ2LT L and xµ is the solution of Hµ x = HT g. Let H = H2 ⊗H1 and L = L2 ⊗L1 where H2, L2 and
H1, L1 are of size m×m and n×n, respectively. The GCV function can be simplified for Tikhonov regularization method
using the generalized singular value decompositions (GSVD) [13] of the pairs (H1,L1) and (H2,L2). Thus, there exist
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orthonormal matrices U1, U2, V1, V2 and invertible matrices X1, X2 such that

UT
1 H1X1 =C1 = diag(c1,1, ...,cm,1), ci,1 ≥ 0

UT
2 H2X2 =C2 = diag(c1,2, ...,cn,2), ci,2 ≥ 0

and

V T
1 L1X1 = S1 = diag(s1,1, ...,sm,1), si,1 ≥ 0

V T
2 L2X2 = S2 = diag(s1,2, ...,sn,2), si,2 ≥ 0

Then the GSVD of the pair (H,L) is given by

UT HX =C = diag(c1, ...,cN), ci ≥ 0

V T LX = S = diag(s1, ...,sN), si ≥ 0

where U = U2 ⊗U1, V = V2 ⊗V1, C = C2 ⊗C1, S = S2 ⊗ S1 and N = mn. Therefore, the GCV function when used with
Tikhonov regularization can be simplified to

GCV (µ) = ∑N
i=1(s

2
i ĝi/(c2

i +µ2s2
i ))

2

(∑N
i=1 s2

i /(c
2
i +µ2s2

i ))
2
, (29)

with ĝ =UT g. For the particular case where the matrix L reduces to the identity I, the GSVD of the pair (H, I) reduces to
the SVD of the matrix H and the expression of GCV is given by the following formula

GCV (µ) = ∑N
i=1(ĝi/(σ2

i +µ2))2

(∑N
i=1 1/(σ2

i +µ2))2
, (30)

where σi is the ith singular value of the matrix H.
Because GCV (µ) in this case is a continuous function, we use the Matlab function fminbnd, which is based on a
combination of golden section search and quadratic interpolation search, to find the value of µ at which GCV (µ) is
minimized.

6 Numerical results

This section presents a culmination of all the numerical tests and experiments we performed. We provide numerical
experiments with application of Gl-LSQR and Gl-CG for solving generalized Sylvester equation appearing in the image
restoration problem. In order to understand these numerical experiments, we frst recall the problem (1)

Hx = b+ e

where b is the blurred image, H is a blurring matrix, x is the true image and e is the noise. The noise, which is generated
by Matlab’s random function, is composed of normally distributed random numbers. Various noise levels can be utilized
by taking a percentage of the generated noise; usually we pick from 0,01 or 0,001. The blurring matrix H is determined
from two ingredients: the PSF [22], which defines how each pixel is blurred, and the boundary conditions, which specify
our assumptions on the scene just outside our image. In order to obtain a high-quality deblurred image we must choose
the boundary conditions appropriately. Each boundary condition makes the PSF matrix H having a different special
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structure. In this work we consider Neumann boundary conditions (the pixels outside image have mirror image values
of the scene inside the image borders), the coefficient matrix H is a sum of block Toeplitz with Toeplitz blocks (BTTB),
block Toeplitz with Hankel blocks (BTHB), block Hankel with Toeplitz blocks (BHTB), and block Hankel with Hankel
blocks (BHHB). Let x̂ = vec(X̂) be the vector whose entries are the pixel values of the original image X̂ . We would like
to determine an approximate solution of the unavailable system Hx̂ = b by computing an approximate solution of the
available linear system of equations (1) which is equivalent to find an approximate solution of the linear operator equation
(6) by using GCV method for the optimal regularization parameter. To compare the effectiveness of our approach, it is
hard to determine whether one method is better than the others just by looking at the images; therefore, it is necessary to
compute the relative error of each solution

||X̂ −Xk||F
||X̂ ||F

,

where Xk is the approximate solution of the linear operator equation (6).
In some cases the horizontal and vertical components of the blur PSF can be separated. If this is the case, the blurring
matrix H given in (1) can be decomposed as a Kronecker product H = H2 ⊗H1 and the blurred image is then given by
HT

1 X̂H2. In the nonseparable case, one can approximate the matrix H by solving the Kronecker product approximation
(KPA) problem [37] (Ĥ1, Ĥ2) = arg min

H1,H2
∥ H −H2 ⊗H1 ∥F ,

Example 1. For a test we use a PSF array for out-of-focus blur [22], where the entris are given by

(PSF)i j =

{
1

(πr2)
, if (i− k)2 +( j− l)2 ≤ r2,

0 else

where (k, l) is the center of PSF, and r is the radius of the blur. For a test we set r = 3. In this example the original image
is the cameraman image of dimension 256× 256 from Matlab and it is shown in the left of Figure 1. The blurred and
noisy image of Figure 1 has been built by the product HT

1 X̂H2 and adding a 0.001 noise level. In this example, the matrix
L in the linear discrete ill-posed problem is chosen to be the identity of size 2562 × 2562. Using the GCV method, the

Fig. 1: Original image (left), degraded image (center) and restored image (right).

regularization parameter is given by: µ = 8.7 × 10−3. For this optimization parameter value, the restored image
determined by solving the linear operator equation with Gl-CG is shown in the right of Figure 1. The relative error of
restored image was 5.13×10−2.
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Example 2. In this example the original image is the vendredi image of dimension 256× 256 from Matlab and it is

shown in the left of Figure 2. The blurring matrix H is given by H = H2 ⊗H1 ∈ R2562×2562
, where H1 = H2 = [hi j] and

[hi j] is the Toeplitz matrix of dimension 256×256 given by

hi j =

{
1

2r−1 , |i− j| ≤ r,
0 otherwise

The blurring matrix H models a uniform blur. In our example we set r = 5. The blurred and noisy image of Figure 2 has
been built by the product HT

1 X̂H2 and adding a 0.01 noise level. In this example, the matrix L in the linear discrete
ill-posed problem is chosen to be the identity of size 2562 × 2562. Using the GCV method, the regularization parameter

Fig. 2: Original image (left), degraded image (center) and restored image (right).

is given by: µ = 9.7907× 10−4. For this optimization parameter value, the restored image determined by solving the
linear operator equation (6) with Gl-CG is shown in the right of Figure 2. The relative error of restored image was
1.392×10−1.

Example 3. In this example the original image is the iograyBorder image of dimension 256×256 from Matlab and it is

shown in the left of Figure 3. The blurring matrix H is given by H = H2 ⊗H1 ∈ R2562×2562
, where H1 = H2 = [hi j] and

[hi j] is the Toeplitz matrix of dimension 256×256 given by

hi j =

{
1

σ
√

2π exp
(
− (i− j)2

2σ2

)
, |i− j| ≤ r,

0 sinon

The blurring matrix H models a blur arising in connection with the degradation of digital images by atmospheric
turbulence blur. We let σ = 5 and r = 35. The blurred and noisy image of Figure 3 has been built by the product HT

1 X̂H2

and adding a 0.001 noise level. In this example, the matrix L in the linear discrete ill-posed problem is chosen to be the
identity of size 2562 × 2562. Using the GCV method, the regularization parameter is given by: µ = 9.2149× 10−4. For
this optimization parameter value, the restored image determined by solving the linear operator equation (6) with
Gl-LSQR is shown in the right of Figure 3. The relative error of restored image was 8.04×10−2.
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Fig. 3: Original image (left), degraded image (center) and restored image (right).

7 Conclusion

We have considered two filtering methods for image restoration and a method for choosing the regularization parameter.
We have demonstrated how to apply the Gl-LSQR and Gl-CG algorithm to solve the generalized Sylvester matrix equation.
The implementation of these methods illustrate that our techniques are efficient.
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