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Abstract: The concept of graph theory is therefore perfectly suitable to structure a problem in its initial analysis phases since a 

graph is the most general mathematical object. At the structural level, the nodes represent the objects, the variables… and the arc 

forms the binary relation of influence among them. Many real problems can be modeled as path partition in directed graph that 

played particular role in the operation of arranging a set of nodes especially in case of directed acyclic graph (DAG). We encounter 

such graph in schedule problems, the analysis of language structure, the probability theory, the game theory, compilers…. Moreover 

managerial problem can be modeled as acyclic graphs, also the potential problem has a suitable solution if and only if the graph   is 

acyclic. 

The arc – disjoint paths in a graph has an important application in several areas and needs exact algorithms to find it. In this paper we 

analyze the bounds of path number in directed graph and we give certain properties characterizing directed acyclic graph that permit 

to give a structural representation of such graph. The algorithm used determines the topological ordering in time           . We 

introduce two efficient algorithms that allow the construction of a minimal path-partition, one for the directed acyclic graph with time 

complexity             and the second for the strangely connected tournament having unique Hamiltonian circuit and having time 

complexity      . 
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1.  Introduction  

In management and economic, combinational problems necessitate a complicated formulation since their solution are 

not easily figured out, need complicated method and are sometime very difficult to set. The graph theory constitutes for 

instance, without any doubts, one of the most important and most efficient theories to model such kind of problem. 

In fact we can use graph as tools to structure relationships among objects, variables etc… where the information can 

be represented in compact form. The concept of graph theory is therefore perfectly suitable to structure a problem in its 

initial analysis phase since a graph is the most general mathematical object. At the structural level (relational level) the 

nodes represent the objects, the variables etc…. and the arcs form the binary relation of influence among them. 

Many real problems can be modeled as path-partition in directed graph that played particular role in the operation of 

arranging a set of points especially in case of directed acyclic graph (DAG). There exists several areas in which DAG 

arise as models e.g. project management, assignment problem network etc….we encounter such graphs in schedule 

problems, the analysis of language structure (Computation theory) the probability theory, the game theory etc… 

moreover managerial problem can be modeled as acyclic graphs. In the other hand the potential problem has a solution 

of certain type if and only if the graph   is acyclic see [17]. 

1.1. Concept of Graph 
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The terminologies and notations are those of ([6], [8], [9], [12]). A directed graph is a pair         where   is a 

finite set and   is a binary relation on  . The set   is called the vertex set and its elements are called vertices. The set   

is called the arcs set and its element is called directed edges or arcs. A path is a sequence of vertices              such 

that:             for               . The length of path is the number of arcs in the path. A path   

             forms a circuit if       and the path contains at least an arc. A directed graph with no circuit is called 

acyclic (DAG). 

Let         be a directed graph, for    , we denote by   –    the sub- graph obtained from   by deleting the 

vertex   and the adjacency arcs to it. The out-degree of vertex   denoted   
     is the number of arcs leaving it and in-

degree of vertex x denoted   
    , is the number of arcs entering it. 

From now on we denote: 

  
                   

  
                   

 

  
          

       
     

  
          

       
     

 

A path partition of directed graph         is a set   of arc-disjoint paths such that every arc in   is include in 

exactly one path of  . path my start and end anywhere, and they may be of any length including 0. 

A minimum path partition of   is a path partition of   that use a fewest possible number of paths. The path number of 

directed graph  , denoted     . 

Definition 1.2 

An asymmetric graph is a directed graph such that       is an arc implies       is not an arc. A tournament of order   

denoted          is a complete asymmetric graph on   vertices see [5, 7, 21, 24] 

Definition 1.3 

Let         be a directed graph of order  . If               
       

         
 . We say   has the property 

 . 

2. Results on the path number in directed graph. 

The arc–disjoint paths in a graph has an important application in several areas and needs exact algorithms to find it. 

Alspach and Pullman [4] have conjectured that for any simple graph   of order  ,             , O Brian [22], proved 

this conjecture. From O.Ore [23], we have: 

                
       

     
    

 
 

Thus for a directed graph  , we deduce that: 

            
  

 
  

For a further detailed study of     , we refer also to ( [1], [11]). 

2.1. Path-Partition in Tournaments 

Theorem 1. 

Let          be a tournament of order   then        
     

 
 . 
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The number of arc in tournament   , is given by the following result: 

    
       

     
   

             

Then     
      

 
 

The maximum number of arcs in any path partition is    –    . Thus the minimum number of paths needed to cover 

every arc in    is 
 

 
, since       is an integer, we must have: 

       
     

 
  

From the preceding result and for any tournament   , we deduce then: 

 
     

 
         

  

 
  

Thereafter, we study the tournament    having a unique Hamiltonian circuit. A characterization of    have been 

given by Douglas [13]. 

Theorem 2. 

For    , a tournament          admits a unique Hamiltonian circuit   if and only if the following conditions 

hold: 

(i) There exist a partition of vertices in             

Where                                                       

(ii)    

          

     

(iii)                         

(iv) For                               

(v) If     and     and if           then:           

If       we have a tournament having a unique Hamiltonian circuit and has exactly   –        elementary circuits. 

This tournament will be denoted         . The path                  is a spanning tree and the vertices 

               constitute the canonical ordering of   , and in the following this sequence will be denoted 

            . 

The tournament    is characterized by: 

                                        

A curious fact concerning the number      of tournament    having a unique Hamiltonian circuit is equal to 

    –    
  

 Fibonacci number. Garray [15] shows that for     we have: 

          –     –      –      

Gutin G. [16] provides a characterization allowing to find the number of non isomorphic tournament for       

Paths and circuits are fundamental sub-structure in tournaments see : [5], [10], [19], [25], [26]. 

There is a      algorithm for finding Hamiltonian circuit in a tournaments ([20]). 
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Theorem 3. (I. Abdel Kader [1]). 

Let          be a tournament having a unique Hamiltonian circuit, then               –   . 

For a further detailed study of tournament having unique Hamiltonian circuit and their number, we refer to ([15], 

[16]). 

Property 1        
  

 
    

It is clear that    

                         

           

        

     
     

 
 

but    

         

          –        –                       

   

         

          

Then                            
  

 
      

    

As                                

We have then the equality. 

From the above result, the upper bound of       is the best possible. 

It is important to note that there exist tournaments having a unique Hamiltonian circuit which are not isomorphic to 

   and which satisfy the equality              
  

 
   . An example of this is the tournament    for which     

 . 

Algorithm 1. Path Partition of Tournament          

1 Initialize the number of vertices    of the tournament    
 

2 Determine the canonical ordering             
  of this tournament 

3 Initialize                                

4     

5 while      

6     

7 For    
 

 
         –    

8                                 

9         

10     –     

11 End for 

12                    

13       

14 For         
 

 
  

15                

16 End for 
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17        

18 end while 

Theorem 4 . 

The path partition in tournament    can be computed in       time. 

Proof. 

We not by    the cost of statement           . The algorithm 1 is based on 2 consecutive For Loops. The running 

time of the first For Loop is less than or equal to 
 

 
           , whereas for the second For Loop the running time 

is 
 

 
   . The While Loop implicates that each statement is executed   times. The running time    of algorithm 1 is the 

sum of the running time of each statement executed. Then the worst running time can be expressed as: 

             
 

 
                

 

 
       

Thus            

Application 1 

Consider the tournament    having the spanning tree                    

 

Figure 1. Spanning tree 

Let                                 the set of arc-disjoint paths partitioning the arc of tournament    generated by 

 –     . From    we have the set of paths                                                      that partition the arcs of 

  . 

2.2. Path Partition in Directed Acyclic Graph 

In this section we prove that any directed acyclic graph   satisfies          . This result confirms that the lower 

bound of      is the best possible. The result obtained in this section will be interesting since there exist several 

important application areas in which directed acyclic graph arises as model: project management, assignment problem, 

network, etc… see Abdel Kader [2]. 

In the following we give a short and neat method to take advantage of directed acyclic graphs 

Lemma 1. 

Let         be a graph of order  , if   included in   
    , then   has at least a circuit. 

Proof. 
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Let    be a vertex of graph  , by hypothesis we have          
    , then there exists at least an element      

with      
                 etc… at step            

    , there exists a vertex      with            , if    

is a vertex already encountered we have a circuit if not the process continues and as   is finite, we will have a circuit. 

Theorem 5. 

Let         be an acyclic graph, the following statements are held: 

i.  There exists at least a vertex   such that   
       

ii.  The vertices of   can be arrayed in such a way the index of each vertex is less than the index of its 

successors. 

Proof. 

i.  Assume   
      , for all    , then there exists at least a vertex      such that        

     (for all 

   ), so   is included in   
    , and from lemma 1,   has a circuit, contradiction then our assumption is 

false and there exists at least an    , with   
       

ii.  Let             
                      the sub-graph of   induced by    . The graph    is 

acyclic then there exists at least a vertex        such that:            for certain      , and so on, 

at step   we have the sub-graph              of graph  .    is acyclic then there exists at least a vertex    

such that  
        and            . Thus the vertices of   can be arrayed in such a way that the index of 

each vertex is less than the index of its successors. 

It is obvious that the condition (ii) is equivalent to the fact that   is directed acyclic graph. 

From the previous result we deduce that the vertices of the directed acyclic graph   can be indexed as:            

such that:   
        

         
      where the arcs in   run from left to right. In this way we have a topological 

ordering of graph  . 

Theorem 6. The topological ordering can be computed in          time. 

To prove this result, enumerate the arcs of   one by one, this allows the computation of the in-degree    
      for all 

node   in linear time. Consider the array   that contains all the sources of graph  . Now execute the following 

algorithm, using an auxiliary list    that is initially empty: 

Procedure: Typological Ordering ( ) 

repeat 

for each vertex     do 

for each arc         do 

begin 

  
       

        

If   
       then add j    

end 

print L 

      

      

until      

It is obvious that the computation takes only          total time since every node and every arc appears precisely 

one in the process. 

Theorem 7. 
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Let         be a directed graph of order n and     
 . If   satisfies the following conditions: 

i.   
       

ii.     –         –     (that is   –    has the property  ), 

Then   has the property  . 

Proof. 

    
     

          
    

     , and     –         –    . If       
    

    , then     
       

     and 

    
       

      . Moreover, for       
       

    
     , we have:     

       
     and     

       
    . 

But in   –   , through each vertex       
    

     there pass              
        elementary paths of origin   

which belong to a path partition   of the arcs of the digraph, the cardinal of   being     –    . Among those paths of 

origin  , consider the path        . Since         , the path   allows the construction in   of the path    

         of origin  . Thus the number of paths of origin   in   becomes   
       

     . Moreover, for each   

  
          

    
     , we construct the path       of origin   in  . Let    be the set of elementary paths obtained 

from   by cancelling those paths   which have been used to define the path   of origin   in  . Let   be the following set 

of elementary paths: 

                          
    

                   
          

    
       

It is obvious that the set   partitions the arcs of  , and we have              . 

Therefore          . 

Remark. If we replace the condition     of the Theorem by condition     ,   
      , we get a similar result. Moreover 

the preceding Theorem allows us the construct from a digraph of order    –     satisfying  , another digraph of order   

still satisfying  . 

From this theorem, we deduce the following results: 

Property 2 

Let         be a directed acyclic graph, then: 

          

Proof. 

By recurrence on the number   of vertices, for         the property is true. Assume that it is true for any acyclic 

graph with   –    vertices and prove it for any acyclic graph having   vertices. In   there exists a vertex   such that 

  
      . The sub graph    of   induced by   –    is an acyclic graph with   –    vertices, then from our assumption 

    –         –    . Thus from theorem 7 we have          . 

Remark: If     is the transitive tournament then the vertices of     can be arrayed as: 

               where:     

        –                . 

Property 3 

If    , is the transitive tournament of order  , then                . 

    is an acyclic tournament then from Property 2 we have: 

                 –        –                 
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This result prove that the upper bound of      is the best possible. 

The following algorithm allows finding a path partition in directed acyclic graph        . 

Algorithm 2. Path Partition     

1 Call Topological ordering     

2 Determine the set   of sinks of graph   

3         

4 Initialize                      

5 While     

6     

7 While     
      

8 If             then 

9              

10      –          

11 Else               

12 End if 

13       

14     –    

15 end while 

Theorem 8. 

The path partition in directed acyclic graph can be computed in       time. 

Proof. 

We not by    the cost of the statement   for       . The statement 1 can be executed in                time 

but the maximal value of     is around           . Then         
 . The algorithm 2 is based on 2 nested While 

Loops. In the worst case the internal While Loops has a running time of               . Since the running time 

of algorithm 2 is the sum of the running time of each statement executed; from the external While Loop of algorithm 2, 

the worst running time      can be expressed as: 

        
                                

        
          

Thus            

Application 2 

Consider the following acyclic graph         
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Figure 2. Acyclic Graph         

The topological ordering of graph   is                  

Let                                         be a set of arc-disjoint paths partitioning      –   . From    we 

have: 

                                               

2.3. Computer Representation 

The particular implementation for the graph  , can have a profound effect on the complexity of algorithm. In the 

following we give the most useful representation, for more details we refer to: [3], [14], [18]. 

2.3.1. Vertex Query Representation 

The first representation use the Adjacency matrix             of graph   is define as follows: 

                                                 

The adjacency matrix requires       storage locations while retaining      time access to its elements. 

We note that the form of adjacency matrix     , depends on the order in which the vertices of   can be arrayed. Then 

we have the following result: 

Theorem 9. 

Two graphs   and    are isomorphic if and only if           . 

Proof. 

If   and    are isomorphic then           if and only if                          if and only if          and 

         . Then            

If             , it is obvious that   and    are isomorphic. 

We deduce then that the order in which the adjacency matrix is written does not have any influence on the result of 

computation. 

2.3.2. Adjacency list representations 

The adjacency list of graph         consists of an array Adj of     lists, one of each vertex    . Adj     contains 

all the vertices     such that:        . We note that in Adj     the vertices are stored in any arbitrary order and are 

usually a more compact representation that the adjacency matrix. The sum of the length of the entire adjacency list is 

   . The adjacency list representation requires          storage locations. 
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The simplicity of a adjacency matrix may make it preferable when graphs are reasonable small. 

If   has a particular representation, it may well be exploited to give a suitable representation in computer storage 

([18]). For example if the graph         is acyclic, from the above theorem the nodes of   can be arrayed in such a 

way that all arc run strictly from left to right; we obtain then the topological ordering of graph  . 

Conclusion 

There exists theoretical and practical reasons for studying special classes of directed graph, and it can be very 

interesting and worthwhile to explore a graph – algorithm problem for special types of graphs. This leads to study the 

very important class, we mean the networks, related to important problems in several field such as: Science, Economic, 

Management, Wireless network etc….. Many real problems can be modeled as path partition problems in directed graph 

especially in the case of network. The problem of constructing of arc-disjoint paths is a hard problem and has been 

studied by several authors. 

In this paper, we give some properties concerning the number      of arc-disjoint paths partitioning the arcs of a 

given graph  , also certain properties characterizing the directed acyclic graph, that allow to give a structural 

representation of such class of graph. The result obtained facilitates the implementation of the given algorithms, so the 

problem of finding minimum arc-disjoint paths is of obvious interest in many network problems. 

For future, research, we plan to study the most important areas related to the problem of arc-disjoint paths such as: 

schedule problems, network etc… especially the wireless sensor network. 

In sensor network, to manage how a sensor node uses its power, we need a power management plan that allows the 

sensor nodes to work together in a power efficiency way, to transfer data in wireless network. In other words the goal is 

to extend the life time of the network by reducing the every use in the routing phase while maintaining a similar level of 

resilience to node failures. To achieve this objective, we need a routing protocol for energy efficiency in real-time 

communication over sensor network, avoiding then each sensor to work on its own. 

The result obtained from these algorithms can be used to provide a reliable transmission of the entire data sent from 

the source to the sink over the available disjoint paths, which will be split into sub-packets corresponding to the number 

of available paths to ensure efficient energy consumption. Actually we work in the implementation of a new method to 

resolve such kind of problems. 

We propose the following conjecture: 

For any strongly connected graph   of order         
  

 
 . 
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