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Abstract A right module M over an associative ring with unity is a QTAG-
module if every finitely generated submodule of any homomorphic image of
M is a direct sum of uniserial modules. Recently the authors introduced the
notions of socle regular and strongly socle-regular QTAG-modules and investi-
gated their properties. Here we study those properties of these modules which
are shared by their maximal h-divisible submodules and isometrically large
submodules.
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1 Introduction and Preliminaries

Throughout this paper, all rings will be associative with unity and modules M
are unital QTAG-modules. An element x ∈M is uniform, if xR is a non-zero
uniform (hence uniserial) module and for any R-module M with a unique com-
position series, d(M) denotes its composition length. For a uniform element x ∈

M, e(x) = d(xR) andHM (x) = sup

{
d

(
yR

xR

)
| y ∈M, x ∈ yR and y uniform

}
are the exponent and height of x in M, respectively. Hk(M) denotes the sub-
module of M generated by the elements of height at least k and Hk(M) is
the submodule of M generated by the elements of exponents at most k. M
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is h-divisible if M = M1 =
∞⋂
k=0

Hk(M) and it is h-reduced if it does not

contain any h-divisible submodule. In other words it is free from the elements
of infinite height.

A submodule N ⊂ M is nice [2, Definition 2.3] in M, if Hσ(M/N) =
(Hσ(M) + N)/N for all ordinals σ, i.e. every coset of M modulo N may be
represented by an element of the same height.

A fully invariant submodule L ⊂M is a large submodule of M, if L+B
= M for every basic submodule B of M . A submodule N of M is h-pure
in M if N ∩ Hk(M) = Hk(N), for every integer k ≥ 0. For a limit ordinal
α, Hα(M) =

⋂
ρ<α

Hρ(M), for all ordinals ρ < α and it is α-pure in M if

Hσ(N) = Hσ(M) ∩N for all ordinals σ < α. A submodule B ⊆ M is a basic
submodule of M, if B is h-pure in M, B = ⊕Bi, where each Bi is the direct
sum of uniserial modules of length i and M/B is h-divisible. A characteristic
submodule N of a QTAG-module M is a submodule that is invariant under
each automorphism of M . For a submodule N of M, put σ = min{H(x) | x ∈
Soc(N)} and denote σ= inf(Soc(N)). Here Soc(N) ⊆ Soc(Hσ(M)). If K
is submodule of M containing N, inf(Soc(N)) may be calculated with re-
spect to N and M respectively. To differentiate we write inf(Soc(N))K and
inf(Soc(N))M respectively, but if K is an isotype submodule of M, then
inf(Soc(N))K = inf(Soc(N))M . Several results which hold for TAG-modules
also hold good for QTAG-modules [8]. Notations and terminology are follows
from [6,7].

2 Main Results

First we recall some basic definitions:

Definition 1 A h-reduced QTAG-module M is said to be socle-regular if for
all fully invariant submodules N of M, there exists an ordinal σ such that Soc
(N)=Soc (Hσ(M)). Hence σ depends on N.

Definition 2 A h-reduced QTAG-module M is said to be strongly socle-
regular if for all characteristic submodules N of M, there exists an ordinal
σ such that Soc (N)=Soc (Hσ(M)). Hence σ depends on N.

A strongly socle-regular QTAG-module is socle-regular but the converse
is not true, in general. Here we investigate the conditions under which socle-
regular modules become strongly socle-regular.

Proposition 1 Let D be the maximal h-divisible submodule of a socle-regular
(strongly socle-regular) QTAG-module M. Then M/D is also socle-regular
(strongly socle-regular).
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Proof Let K be a fully invariant (characteristic) submodule of M such that
N/K is also fully invariant (characteristic) submodule of M/K. For the en-
domorphism (automorphism) f : M → M we may define f̄ : M/K → M/K
which is induced by f. Here f̄ is well defined endomorphism (automorphism)
of M/K. Since f̄(x+K) = f(x)+K and f̄(N/K) ⊆ N/K, f(N) ⊆ N. There-
fore N is fully invariant (characteristic) in M.

Now D is the maximal h-divisible submodule of M, it is fully invariant
(characteristic), N is fully invariant (characteristic) in M whenever N/D is
fully invariant (characteristic) in M/D. Therefore for some ordinal α,

Soc(N/D) =
Soc(N) +D

D
=
Soc(Hα(M)) +D

D
=
Soc(Hα(M) +D) +D

D

= Soc

(
Hα(M) +D

D

)
= Soc(Hα(M/D)).

This implies that M/D is socle-regular (strongly socle-regular).

Remark 1 If M is socle-regular (strongly socle-regular), then the maximal h-
divisible submodule D ⊆ M , is also socle-regular (strongly socle-regular).
Conversely, if M = D ⊕ A, where A is h-reduced then for any fully invari-
ant submodule C of M, C = (C ∩D)⊕ (C ∩A) where C ∩D is fully invariant
in D and C ∩A is fully invariant in A. If D and M/D are socle-regular, then
M is also socle-regular as M/D ∼= A.

Proposition 2 Suppose that M = N ⊕ K with Hσ(N) = Hσ(K) for some
σ ≥ 0.

(i) Then M is socle-regular if and only if M is strongly socle-regular, provided
that σ = n is an integer.

(ii) If M is fully transitive, then M is strongly socle-regular provided that σ =
ω.

Proof (i) Let M = N ⊕K with Hn(N) = Hn(K), for some non-negative in-
teger n. Then M is socle-regular if and only if M is strongly socle-regular [3].
Therefore (i) holds.

(ii) Let M be a QTAG-module with a decomposition M = M1⊕M2 such that
Hω(M1) and Hω(M2) have the same Ulm supports. Then M is fully transitive
if and only if M is transitive [3], therefore M should be transitive and we are
done as every transitive QTAG-module is strongly socle-regular.

Definition 3 A large submodule L of of a QTAG-module M is said to be
isometrically large if its every automorphism preserves heights, i.e., HM (x) ≤
HM (f(x)), ∀ x ∈ L.
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It was proved in [4] and [5] that if L is a large submodule of the socle-
regular (strongly socle-regular) QTAG-module M , then L is socle-regular
(strongly socle-regular) as well.

For any n ∈ N, Hn(M) is isometrically large in M , but there may be
isometrically large submodules which are not of the form Hn(M). Also, a
large submodule need not be isometrically large. Therefore we investigate these
situations.

Proposition 3 If L is isometrically large strongly socle-regular submodule of
the QTAG-module M, then M is a strongly socle-regular QTAG-module.

Proof Let N be a characteristic submodule of M. If Soc(N) * Hω(M), then
inf(Soc(N)) is finite and by [5, Proposition 2.1], we have

Soc(N) = Soc(Hn(M))

for some non-negative n.
If Soc(N) ⊆ Hω(M) = Hω(L), where the equality is well known, then

Soc(N) is a characteristic submodule of L by virtue of [3]. Thus there exists an
ordinal σ ≥ 0 with Soc(N) = Soc(Hσ(L)) ⊆ Soc(Hω(L)). So we may assume
that σ ≥ ω and as Hσ(M) = Hσ(L), we have that Soc(N) = Soc(Hσ(M))
and we are done.

As an immediate consequence of the above, we have

Corollary 1 If L is an isometrically large submodule of a QTAG-module M,
then M is strongly socle-regular if and only if L is strongly socle-regular.

We define fully nice complete and globally nice complete QTAG-modules
as follows:

Definition 4 A QTAG-module M is said to be fully nice-complete if for every
fully invariant submodule K of M, there exists a nice submodule N of M
(eventually depending on K) such that Soc(K) = Soc(N).

which states that each socle-regularQTAG-module is fully nice-complete.
There is an immediate relation between socle-regular and fully nice-complete
QTAG-modules

Definition 5 A QTAG-module M is said to be globally nice-complete if for
every characteristic submodule Q of M, there exists a nice submodule N of
M (eventually depending on Q) such that Soc(Q) = Soc(N).

Similarly, strongly socle-regularQTAG-modules are globally nice-complete.

Evidently, strongly socle-regularQTAG-modules are globally nice-complete
as well as globally nice-complete QTAG-modules are fully nice-complete.

We end this note with the following open problems:
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Problem 1. If M = L ⊕ K with Hω(L) = Hω(K) and M is socle-regular,
does it follow that M is strongly socle-regular.

Problem 2. Characterize the classes of fully nice-complete QTAG-modules
and globally nice-complete QTAG-modules.
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