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Abstract: In the present paper, we consider a special type of nearly quasi-Einstein manifold denoted by (QE)nN . Most of the 

sections are based on some properties of (QE)nN . We give some theorems about these manifolds. In the last section, a special type 

nearly quasi-Einstein spacetime is investigated. 
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1.  Introduction  

A non-flat n -dimensional Riemannian or a semi-Riemannian manifold ( , )M g ( 2)n   is said to be an Einstein 

manifold if the condition 

( , ) ( , )
r

S X Y g X Y
n

                                                                                              (1.1)       

holds on M , where S and r  denote the Ricci tensor and the scalar curvature of ( , )M g , respectively. 

Einstein manifolds play an important role in Riemannian Geometry, as well as in general theory of relativity. For this 

reason, these manifolds have been studied by many authors. 

A non-flat n -dimensional Riemannian manifold ( , )M g  ( 2)n   is defined to be a quasi-Einstein manifold if its 

Ricci tensor S of type (0, 2) is not identically zero and satisfies the following condition 

( , ) ( , ) ( ) ( )S X Y ag X Y bA X A Y                                                                                        (1.2) 

where ,a b  and A  is a non-zero 1-form such that 

( , ) ( )g X U A X                                                                                                                     (1.3) 

for all vector fields X on M , [4]. Then A  is called the associated 1-form and U  is called the generator of the 

manifold. 

Also M.C. Chaki and R.K. Maity [1] studied the quasi-Einstein manifolds by considering a  and b as scalars such 

that 0b   and U  as a unit vector field. 

In 2008, U.C. De and A.K. Gazi [2] introduced the notion of nearly quasi-Einstein manifold. A non-flat n -

dimensional Riemannian manifold  ( , )M g ( 2)n   is called a nearly quasi-Einstein manifold if its Ricci tensor S of 

type (0,2) is not identically zero and satisfies the following condition 

http://www.ntmsci.com/


101 
 

( , ) ( , ) ( , )S X Y ag X Y bE X Y                                                                                            (1.4) 

where a  and b are non-zero scalars and E  is a non-zero symmetric tensor of type (0,2). 

Then E is called the associated tensor and a  and b are called the associated scalars of M . An n -dimensional nearly 

quasi-Einstein manifold is denoted by (QE)nN . An example of 
4( )N QE  has been given in [2]. 

The nearly quasi-Einstein manifolds have also studied by A.K. Gazi, U.C. De [5], D.G. Prakasha, C.S. Bagewadi [7] 

and R.N. Singh, M.K. Pandey, D. Gautam [8]. 

In [8], R.N. Singh, M.K. Pandey, D. Gautam consider a type of nearly quasi-Einstein manifold whose associated 

tensor E of type (0,2) is in the form  

( , ) ( ) ( ) ( ) ( )E X Y A X B Y B X A Y                                                                                       (1.5) 

where A  and B  are non-zero 1-forms associated with orthogonal unit vector fields V and U , i.e.,  

( , ) 1, ( , ) 1 and ( , ) 0.g U U g V V g U V                                                                    (1.6) 

These vector fields are defined by 

   ( , ) ( ), ( , ) ( )g X U A X g X V B X   

for every vector field X . 

In the present paper, we consider a special type of nearly quasi-Einstein manifold, (QE)nN , whose associated tensor 

E  is of the form (1.5) with the condition (1.6). Some theorems about this manifold are proved and some properties are 

obtained. 

2. A Special Type Nearly Quasi-Einstein Manifold 

In this section, we consider a special type of (QE)nN  whose Ricci tensor satisfies the conditions (1.5) and (1.6), i.e., 

it satisfies the following condition 

( , ) ( , ) [ ( ) ( ) ( ) ( )]S X Y ag X Y b A X B Y B X A Y                                                                      (2.1) 

where A  and B  are non-zero 1-forms, a  and b  are non-zero scalars. 

Definition 1.  A vector field   in a Riemannian manifold M  is called torse-forming if it satisfies the following 

condition 

( )X X X                                                                                                                    (2.2) 

where X TM ,   is a linear form and   is a function, [10]. 

In the local transcription, this reads 

h h h

i i i                                                                                                                        (2.3) 

where 
h  and 

i  are the components of   and  , and h

i  is the Kronecker symbol. 

A torse-forming vector field   is called  

i)  recurrent, if 0  , 
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ii)  concircular, if the form 
i  is a gradient covector, i.e., there is a function ( )x  such that ( )d x  , 

iii) convergent, if it is concircular and . ( ).const exp   

Therefore, recurrent vector fields are characterized by the following equation 

( ) .X X                                                                                                                            (2.4) 

Also, from the Definition 1, for a concircular vector field  , we get 

( ) ( , )Y X g X Y                                                                                                                (2.5) 

for all , .X Y TM  

Theorem 2.1. Let 
nV   be a  

n
N QE  satisfying the condition (2.1) and let U  and V  be the vector fields corresponding 

to the associated 1-forms A  and B , respectively. Thus, the vector fields U  and V cannot be concircular vector fields. 

Proof. We consider a special type  
n

N QE satisfying the condition (2.1).  Let U  and V  corresponding to the 

associated 1-forms A  and B be concircular vector fields, respectively. In local coordinates, thus we have 

i j ijA g                                                                                                                               (2.6) 

and 

i j ijB g      (2.7) 

where   and   are non-zero scalar functions. 

Taking the covariant derivative of the condition ( , ) 1g U U  , it is found that 

( ) 0i

j iA A                                                                                                                            (2.8) 

where i ih

hA g A  and h  is the arbitrary choice for indexing and the summation runs from 1 to n. 

Multiplying (2.6) by jA  and using the equation (2.8), we get 

0iA   

which contradicts to the fact that   is a non-zero scalar function and A  is a non-zero 1-form. Similarly, it can be 

shown that the generator V cannot be a concircular vector field. In this case,  
n

N QE  satisfying the condition (2.1) 

does not admit concircular vector fields U  and V  corresponding to the associated 1-forms A and B , respectively. 

Hence, the proof is completed. 

Definition 2.  A quadratic conformal Killing tensor is defined as a second order symmetric tensor T  satisfying the 

condition 

( )( , ) ( )( , ) ( )( , ) ( ) ( , )

( ) ( , ) ( ) ( , )

X Y ZT Y Z T Z X T X Y X g Y Z

Y g Z X Z g X Y



 

     

 
                                        (2.9)                

where  is a 1-form, [9]. 

Now, we consider a  
n

N QE  admitting a generator vector as a torse-forming vector field and the other be not. If we 

assume that the generator U  is a torse-forming vector field, then we have from (1.6) and (2.3) 
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( )j i ij i jA g A A                                                                                                              (2.10) 

where   is a scalar function. 

Taking the covariant derivative of the condition ( , ) 0g U V   and using the equation (2.10), it can be seen that 

( ) .i

k i kA B B                                                                                                                   (2.11) 

By the aid of (2.9), (2.10) and (2.11), we prove the following theorem. 

Theorem 2.2. Let 
nV  be a  

n
N QE  satisfying the condition (2.1) and admitting the Ricci tensor as a quadratic 

conformal Killing tensor. If the vector field U  generated by the 1-form A is a torse-forming vector field and the other 

vector field V  generated by the 1-form B is not, then the vector field V  is divergence-free. 

Proof. Suppose that the Ricci tensor of a  
n

N QE  satisfying the condition (2.1) is a quadratic conformal Killing tensor. 

In this case, in local coordinates, we have from (2.9) 

k ij i jk j ki k ij i jk j kiS S S g g g                                                                           (2.12) 

where  is a 1-form. 

Taking the covariant derivative of (2.1), we get 

( )

(( ) ( ) ( ) ( ))

k ij k ij k i j j i

k i j i k j k j i j k i

S a g b A B A B

b A B A B A B A B

   

       
                                             (2.13) 

where a  and b  are the associated scalars of this manifold and k ka a  , k kb b  . 

If the vector field U  generated by the 1-form A  is a torse-forming vector field, then we have the relation (2.10). 

Changing the indices by cyclic in (2.13), using (2.10) and (2.12), it can be obtained that 

( 2 ) ( 2 ) ( 2 )

( ) ( ) ( )

( ( ) ( ) ( ) ( ) ( ) ( ))

2 ( ) 0.

k k k ij i i i jk j j j ik

k i j j i i j k k j j k i i k

i k j j k i j i k k j i k i j i j k

i k j j k i i j k

a b B g a b B g a b B g

b A B A B b A B A B b A B A B

b A B A B A B A B A B A B

b A A B A A B A A B

     



       

     

           

   

                 (2.14)  

Multiplying (2.14) by 
ijg and considering (2.11), we get 

( 2)( 2 ) 2 ( )

4 2 ( ( ) ( )) 0.

i i

k k k i k k

i i

k i k k i

n a b B b A B A B

b B b A B A B

 



    

     
                                                                  (2.15) 

Moreover, multiplying (2.15) by kA  and kB , respectively, and using the condition (1.6), we obtain the following 

equations 

( 2)( ) 2 2 0k k k

k k k kn a A b B b B                                                                              (2.16) 

( 2)( ) 2 2 0.k k

k k kn a B nb b A                                                                                 (2.17) 

On the other hand, multiplying (2.14) by i j kA A A  and using (2.11), it is found that 

( ) 0.k

k ka A                                                                                                                     (2.18)  



104 
 
Multiplying (2.14) by i j kB B A , we find 

( ) 2 0.k k

k k ka A b B                                                                                                       (2.19) 

Since b  is a non-zero scalar function,  from (2.16), (2.18) and (2.19), it can be seen that 

0.k

k B   

Thus, the vector field V  generated by the 1-form B  is divergence-free. This completes the proof. 

Definition 3.  A non-flat n -dimensional Riemannian manifold ( , )M g ( 2)n   is called a generalized Ricci-recurrent 

manifold if its Ricci tensor S  of type (0,2) satisfies the condition 

( )( , ) ( ) ( , ) ( ) ( , )X S Y Z X S Y Z X g Y Z                                                                       (2.20) 

where   and   are non-zero 1-forms, [3]. If 0  , then the manifold reduces to a Ricci-recurrent manifold, [6]. 

Theorem 2.3. Let  
n

N QE  be a generalized Ricci-recurrent manifold. Thus, the vector fields U  and V  generated by 

the 1-forms A  and B  cannot be torse-forming vector fields. 

Proof.  We consider that 
nV  is a  

n
N QE  satisfying the condition (2.1). In this case, in local coordinates, we have the 

equation (2.13) by Theorem 2.2. Let the vector field U  generated by the 1-form A  be a torse-forming vector field and 

the other be not. Then the relation (2.10) is satisfied. If we suppose that 
nV  is a generalized Ricci-recurrent manifold, by 

the aid of (2.10), (2.13) and (2.20), we obtain 

( ) ( )( ) [ ( )

( ) ( ) ( )] 0

k k k ij k k i j j i ik i k j

i k j jk j k i j k i

a a g b b A B A B b g A A B

A B g A A B A B

   



      

      
                                  (2.21) 

where 
k and 

k denote the components of the 1-forms   and  . 

Multiplying (2.21) by 
ijg  and using the condition (2.11), it can be seen that 

.k k ka a                                                                                                                          (2.22) 

Moreover, multiplying (2.21) by i jA A  and using (1.6), we get 

2 ( ) 0.i

k k k k ia a bA B                                                                                               (2.23) 

By the aid of (2.11), (2.22) and (2.23), it is found that 

0kb B   

which contradicts to the fact that b  and  are non-zero scalar functions and B  is a non-zero 1-form. Therefore, the 

vector field U  of this manifold cannot be a torse-forming vector field. By similar calculations it can be easily obtained 

that the vector field V of this manifold also cannot be a torse-forming vector field. Thus, the proof is completed. 

3. A Special Type  
n

N QE Spacetime 

In this section, we will examine 4( )N QE  spacetime which will be denoted by 
4( )N QES satisfying the condition (2.1). 

The Einstein field equations (EFE) without cosmological constant is written as the following form 



105 
 

( , ) ( , ) ( , )
2

r
kT X Y S X Y g X Y                                                                                                 (3.1) 

where S is the Ricci tensor, r  is the scalar curvature, g  is the metric tensor, k  is a constant and T  is the energy-

momentum tensor. 

Theorem 3.1.  In a 
4( )N QES  satisfying the condition (2.1), the trace of the energy-momentum tensor is constant if and 

only if the associated scalar a  is constant. 

Proof. Let us consider a 
4( )N QES  satisfying the condition (2.1). From (3.1) and (2.1), it is obtained that 

( , ) ( ) ( , ) ( ( ) ( ) ( ) ( )).
2

r
kT X Y a g X Y b A X B Y A Y B X                                                  (3.2)  

Moreover, using (2.1), the scalar curvature of a 
4( )N QES  is found as 

4 .r a                                                                                                                                      (3.3) 

From (3.2) and (3.3), we have 

( , ) ( , ) ( ( ) ( ) ( ) ( )).kT X Y ag X Y b A X B Y A Y B X                                                          (3.4) 

Contracting (3.4) over X  and Y , we obtain 

4
T a

k
                                                                                                                                   (3.5) 

where T  denotes the trace of the energy-momentum tensor. 

It follows from (3.5) that if the associated scalar a  is constant, then the trace of the energy-momentum tensor is 

constant. The converse is also true. Hence, the proof is completed. 

Theorem 3.2. In a perfect fluid 
4( )N QES  spacetime satisfying the condition (2.1) with the constant associated scalar a , 

the change of the isotropic pressure is proportional to the change of the energy density. 

Proof. In a perfect fluid spacetime, the energy-momentum tensor is in the form 

( , ) ( ) ( ) ( ) ( , )T X Y p X Y pg X Y                                                                                (3.6) 

where   is the energy density, p  is the isotropic pressure and   is a non-zero 1-form such that ( , ) ( )g X V X  for 

all X , V  being the velocity vector field of the flow, that is,  , 1g V V   . Also, 0.p    

Using (3.6) in (3.1) and contracting the resulting equation over X  and Y , and considering the condition  , 1g V V    

and (3.3), it can be seen that 

4
3p a

k
                                                                                                                           (3.7) 

where a  is the associated scalar of the manifold and k  is a constant. 

If the associated scalar a  of 4( )N QES  is constant, then taking the covariant derivative of the equation (3.7) yields 

3 Z Zp                                                                                                                             (3.8) 
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for all vector fields Z . 

Thus, the change of the isotropic pressure is proportional to the change of the energy density. This completes the proof. 
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