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1 Introduction
Throughout w, y and A denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w? for the set of all complex sequences(x,,,); where m,n € N, the set of positive integers. Then, w? is a
linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [4]. Later on, they were investigated by Hardy [8],
Moricz [16], Moricz and Rhoades [17], Basarir and Solankan [3], Tripathy [20], Turkmenoglu [21], and many others.

We procure the following sets of double sequences:

Mu(t) = {(xmn) € w: Supm,nelemnltmn < oo };
Cpy () = {(xpn) € W2:p = lim py psoo | Xy — 1|"mn = 1 for some L € C},

Cop(t) = {(xmn) € Wz:p - lim m,n—»oolxmnltmn = 1}’

L) = {(xmn) € Wz:zwzlzillxmnltmn < o0 },
Cbp(t) = Cp(t) n Mu(t) and CObp(t) = COp (t) n Mu(t);

where t = (t,,,,,) is the sequence of strictly positive reals t,,, for all m,n € N and p — lim , ,_,., denotes the limit in
the Pringsheim's sense. In the case t,,,, = 1 for all m,n € N; M, (t), C,(t), Cop (£), L, (t), Cpp (t) and Copy (¢) reduce to
the sets My, C,, Cop, Ly, Cpp aNd Copy, respectively. Now, we may summarize the knowledge given in some document
related to the double sequence spaces. Gokhan and Colak [6,7] have proved that M, (t) and C,(t), Cy,(t) are complete
paranormed spaces of double sequences and gave the a—,f—,y — duals of the spaces M, (t) and C,,(t). Quite
recently, in her PhD thesis, Zelter [23] has essentially studied both the theory of topological double sequence spaces and
the theory of summability of double sequences. Mursaleen and Edely [14] and Tripathy [20] have independently
introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical
convergent and strongly Cesaro summable double sequences. Altay and Basar [1] have defied the spaces
BS,BS(t),CS,, CSyyp, €S, and BV of double sequences consisting of all double series whose sequence of partial sums
are in the spaces M, M, (t),C,, Cyp,, G- and L, respectively, and also examined some properties of those sequence
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spaces and determined the a — duals of the spaces BS, BV, CS,, and §(¥) — duals of the spaces CS,, and CS,. of
double series. Basar and Sever [2] have introduced the Banach space £, of double sequences corresponding to the well-
known space ¢, of single sequences and examined some properties of the space £,. Quite recently Subramanian and
Misra [19] have studied the space xZ (p, g, u) of double sequences and gave some inclusion relations.

The class of sequences which are strongly Cesaro summable with respect to a modulus was introduced by Maddox [15]
as an extension of the definition of strongly Cesaro summable sequences. Cannor [5] further extended this definition to
a definition of strong A — summability with respect to a modulus where A = (an,k) is a nonnegative regular matrix and
established some connections between strong A — summability, strong A — summability with respect to a modulus, and
A — statistical convergence. In [24] the notion of convergence of double sequences was presented by A. Pringsheim.
Also, in [9]-[10], and [11] the four dimensional matrix transformation (Ax).; = Ym=12ne1 ki Xmn Was studied
extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For a,b = 0and 0 < p < 1, we have
(a+ b)P < aP + bP.

The double series Y., =1 Xmy is called convergent if and only if the double sequence (s,,,) is convergent, where
mn

Smn = Zi,j=1xu (m,n € N).
A sequence x = (x,,,,) is said to be double analytic if sup .y, |%mn /™™ < co. The vector space of all double analytic

sequences will be denoted by A%. A sequence x = (x,,,) is called double gai sequence if ((m +n)! Ixmnl)l/mn
0 as m,n — oo. The double gai sequences will be denoted by x2. Let ¢ = {all finite sequences}.

Consider a double sequence x = (x;;). The (m,n)™ section x[™ of the sequence is defined by x™™ = 7" x;;&;;
for all m,n € N; where §;; denotes the double sequence whose only non zero term is a (H;])] in the (i, /)" place for
each i,j € N.

An FK-space (or a metric space) X is said to have AK property if (§,,,) is a Schauder basis for X. Or equivalently

xlmnl - oy,

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which
the coordinate mappings x = (x;) = () (M, n € N) are also continuous.

Let M and ¢ are mutually complementary modulus functions. Then, we have
0] Forallu,y =0,
uy < M(u) + ®(y), (Young's inequality) [See[12]]
(i) Forallu =0,
un(w) = M(w) + @(n(w)).
(iii) Forallu > 0,and 0 < 1 < 1,
M(Au) < AM (u).

Lindenstrauss and Tzafriri [13] used the idea of Orlicz function to construct Orlicz sequence space

o X
{’M={xEW:Z M(ll.Tkl)<00,forsomep>0}.
k=1

The space ¢,, with the norm

© X
x|l = inf{p > O:Z M (M) < 1},
k=1 1%

becomes a Banach space which is called an Orlicz sequence space. For M(t) = tP (1 < p < 1), the spaces £,, coincide
with the classical sequence space ).

A sequence f = (f,,,) of modulus function is called a Musielak-modulus function. A sequence g = (gmy) defined by
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Imn @) = supf{|v|u — () @W):u =0}, mn=1,2,..

is called the complementary function of a Musielak-modulus function f. For a given Musielak modulus function f, the
Musielak-modulus sequence space t; and its subspace hy are defined as follows

tf = {X € W2 : If(lxmnl)l/m+n - 0as mn-— OO},
hf = {X € WZ : If(lxmnl)l/m+n - 0as m,n-— OO},

where I is a convex modular defined by

If(x) - Z Z fmn(lxmnl)l/m+n X = (xmn) € tf'
m=1 n=1

We consider t; equipped with the Luxemburg metric

0 o 1/m+n
42, ) = 5P {mf(z ST <%)) By 1}

If X is a sequence space, we give the following definitions:

Q) X'=the continuous dual of X;

(i) X = {a = (amn): Z%,n:llamnxmnl < o, for eachx € X};

(iii) XB = {a = (Amn): Xmn=1AmnXmn is convegent, for each x € X};
(iv) XY = {a = (Amn): SUPmn = 1|Z%"1,\1’=1 amnxmn| < oo, for each x € X};
(v) Let X be an FK —space D ¢; then X/ = {f (§n); f € X'};

(vi) X% = {a = (@mn): SUPmn| Qmn Xmn | /™" < oo, for each x € X};

X% XB, X7 are called a — (orKothe — Toeplitz) dual of X, 8 — (or generalized — Kéthe — Toeplitz) dual of X,y —
dual of X, — dual of X respectively. X* is defined by Gupta and Kamptan [13]. It is clear that X* c X# and X% c X7,
but X# < XY does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as follows
Z(A) ={x = (xx) Ew: (Axy) € Z}
for Z = ¢, ¢y and £, where Ax;, = x;, — x4, forall k € N.

Here Z = ¢, ¢y and 4., denote the classes of convergent, null and bounded sclar valued single sequences respectively.
The difference sequence space bv, of the classical space ¢, is introduced and studied in the case 1 < p < o by Basar
and Altay and in the case 0 < p < 1 by Altay and Basar in [1]. The spaces c(A), cy(4), € () and bv, are Banach
spaces normed by

Y
o P
Il = b + supies 18] and el = (D7 1xel?) (1 < p < o0

Later on the notion was further investigated by many others. We now introduce the following difference double
sequence spaces defined by

Z(B) = {x = (tmn) EWY : (Axyn) € Z},

— A2 4,2 — —
where Z =A% x* and AxXpn = (xmn - xmn+1) - (xm+1n - xm+1n+1) = Xmn — Xmn+1 ~ Xmin T Xmainta for all
m,n € N.

2. Definition and Preliminaries

Let n € N and X be a real vector space of dimension w, where n < w. A real valued function d,(xy,...,x,) =
lldy (x1), .., dn (x) ||, ON X satisfying the following four conditions:
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M lldy(x1), ..., dy (x)l, = 0 if and and only if d; (xy), ..., d,, (x,,) are linearly dependent,

(i) lldy (x1), .., dp (x5) |l is invariant under permutation,

(i) ady(x1), ..., dn )l = lallldy (xq), .., dn ()l @ € R

(iv) dp((xplﬁ)' (x2,¥2)s wor) (xn'yn)) = (dx(xq, X2, oo, x)P + dy (31, Y2) ---:Yn)p)l/p for1 < p < o0;(or)
V) d((xplﬁ)' (x2,¥2)s wer) (xn'yn)): = sup{dy (x1, X2, -+, Xn), dy (Y1, Y25 -» Y0},

for x;, %y, ..., X, € X, ¥1,¥2, ., Vu € Y is called the p product metric of the Cartesian product of n metric spaces is the
p norm of the n-vector of the norms of the n subspaces.

A trivial example of p product metric of n metric space is the p norm space is X = R equipped with the following
Euclidean metric in the product space is the p norm:

di1(x11)  dip(x12) o din(X4n)
s Ger)s Gl = sup(|det(dynn Ci))[) = sup | [F22(20) - d2ize) o danCan)
dnl (xnl) dn2 (xnz) dnn (xnn)

where x; = (x4, ..., Xin) € R foreach i = 1,2, ..., n.

If every Cauchy sequence in X converges to some L € X, then X is said to be complete with respect to the p — metric.
Any complete p — metric space is said to be p — Banach metric space.

Let (X, ||d(x1),d(x2),...,d(xn_l)llp) be an p — metric space and W;, W,,...,W, be p — subspaces of X. A map
f[iWy x Wy XWX ... XxW, >R is calledp— functional on W, x W, x W; X ..xW,, whenever for all
X11, X12, X135 s X1n € W1, X1, X2, X33, 0oy Xom € Wo, 0, X1, X2, X3y s Xnn € Wy and 44, 4, ..., 4, € R

X117+ X+ .o X
0 f x2%+ x22:+ +9§2n
Xp1 4+ Xng+ e FXpn
Mxin MXz e AXap X11 X12 e Xin
Gy —p| e Moy Rl o, af R OR T
ApnXni AnXnz o ApXpm Xn1 Xpnz o Xnn

Let (X, lld(x,), d(xy), ..., d(xn—1)ll,,) be an p — metric space and 0 # u,, us, ..., u, € X We denote by X} the Banach
metric space of all bounded functionals on X X {u,) X (u3) X ... X {u,,) where (Z) be the subspace of X generated by Z
and B = {uz,u3, ...,up}.

A sequence (x,,,) in an p — metric space (X, [|d(x,), d(xy), ., d(x,-1)ll,) is said to converge in the p — metric if

limy 0 (”xmn, (d(uz),d(u3), ...,d(up))”p) =0,

for every u,, us, ..., u, € X.
Any complete p — metric space is said to be p — Banach metric space.

A sequence (x,,,,) inan p — metric space (X, 1d(xy), d(xy), ..., d(xn_l)ll,,) is said to be Cauchy with respect to the
p — metric if

limpy, nyvooo (||an — Xy (d(uz),d(u3), ""d(u”))”p> =0,

for every u,, us, ..., u, € X.

2.1. Definition. Let (X, [1d(xy), d(x3), ...,d(xn_l)llp) be an p — metric space we say that x is p — orthogonal to y if

||x, (d(uz),d(u3), ...,d(u,,))”p < ”x + ay, (d(uz),d(u3), ...,d(up))”
p
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forall uy, us, ...,u, € X, € Rand we call x is p — orthogonal to y.

2.2. Definition. Let (X, [d(x;1), d(xy), ...,d(xn_l)llp) be an p — metric space, M a non-empty subspace of X and x € X
then g, € M is called p — best approximation of x € X in M, if for every g € M and u,, us, ..., u, € X.

”x - Jo (d(uz),d(ug), ...,d(up))”p < ”x -9 (d(uz),d(u3), ...,d(up))” .
14
If for every x € X\M there exists at least one p — best approximation in M, then M is called p — proximinal subspace

of X.

If for every x € X\ M there exists a unique p — best approximation in M, then M is called an p —Chebyshev subspace of
X.

For x € X we write,
PE(x) = {go € M: g, is an p — best approximation of x}

2.3. Definition. Let (X, 1d(xy), d(xy), ..., d(xn_l)llp) be a real linear p — metric space and w?(X) denotes X — valued
sequence space. Then for an Musielak modulus function f = (f;,,) we define the following sequence spaces for every
eVery u,, U, ..., Uy € X:

(2] || (dCua), dCus), o d () |

=
{x = (tyn) € W2(X): liMyy pseo f (((m ) ) T4, (2, dus), ---'d(”p))”p) = 0}'

[42] | (duz), dus), ...,d(up))”p -

{x = (Xmn) € W2(X): Supmnf <|xmn|1/m+n, ||(d(u2),d(u3), ...,d(up))||p> < 00}.

Let X be a linear metric space. A function w: X — R is called paranorm, if

1) w(x) = 0, forall x € X;

2 w(—x) = w(x), forall x € X;

(3) wx +y) <w(x) +w(y), forall x,y € X;

4) If (0,,,) is a sequence of scalars with ¢,,, » ¢ as m,n - o and (x,,,) is a sequence of vectors with
WX —x) = 0asm,n - oo, then w(opmpXmn — 0x) » 0 asm,n - oo,

A paranorm w for which w(x) = 0 implies x = 0 is called total paranorm and the pair (X,w) is called a total
paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [22],
Theorem 10.4.2, p.183).
The following inequality will be used throughout the paper. If 0 < ¢ < SUP Gmn = H, K = max(1, 2771) then

|@mn + by | < K{|@gn [T + [ Dy | Tmn }

for all m, n and @, by, € C. Also |a|9mn < max(1, |a|®) forall a € C.

The main aim of this paper is to study some sequence spaces defined by a Musielakmodulus function over p —metric
spaces also study some topological properties and some inclusion relations between these spaces.

3. Main Results

3.1.Theorem. Let f = (f,,,) be a Musielak-modulus function. Then then spaces [Xf ||(d(u2),d(u3), ...,d(up))”p]

and [A} ||(d(u2),d(u3), ...,d(u,,))”p] are linear spaces.

Proof: The proof is a routine verification and so omitted.
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3.2. Theorem. Let f = (f,,,) be a Musielak-modulus function, g = (g,,,) be double analytic sequence of positive real
numbers. Then then spaces [szq, ||(d(uz),d(u3), ...,d(up))” ] is a paranormed space with respect to the paranorm
P

defined by

9 = inf{([fmn (1) (), acu, ....d(up))llp)]qm")w} <1,

where H = max (1, supnGmn < ©).
Proof: Clearly g(x) = 0for x = (x,,) € [sz‘?, (a0, dus), .. d(wy)) ] .
p

Since f,,,(0) = 0, we get g(0)

Conversely, suppose that g(x) = 0, then

inf {([fmn (%20, (), aca), ...,d(up))IIP)]qmn)l/H} <1-0.

Suppose that X2(x) # 0 for each m,n € N. Then ||X2(x),(d(u2),d(u3), ...,d(up))” — oo. It follows that
14

([ (52000 (022, d ), .. () ||p)]q’”")1/H S

which is a contradiction. Therefore X?(x) = 0. Let

1/H

([ (70, (0022, ), ...,d(up))||p>]qmn) .

and

1/H

([fn (209, (a0 a0, ...,d(up))”p)]qmn) -,

Then by using Minkowski’s inequality, we have

1/H

:fmn (”XZ(x + ), (d(uz), d(us3), ...,d(up)) ”p)]qmn) -

)
)

~~
m|~

/N

o (%20, (), 4, 2| )]
I

/N

o (|20, (22, 40, .. )| )

So we have

glx+y)=inf {([fmn (”XZ(x +y), (d(uz), d(uz), .. d(up))” )]qmn) 1} <

IA

" {qun ([Ix2e0. (4w, aus), ...,d(up))”p)]qmn)lm 1} ¥

inf {([fmn (20, (4w, aus, ...,d(u,,))l'p)]qmn)lm < 1}
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Therefore,

gx+y) < gl)+gQ»).

Finally, to prove that the scalar multiplication is continuous. Let A be any complex number. By definition,

90w = inf {([fmn (|20, (atun), ), ...,d(up))”p)]qmn)l/H < 1}
Then
g0x) = inf{((lklt)qmn“’ : ([fmn (Jlx> 00, (duo), aus), ...,d(up))”p)]qmn)l/H < 1}

where t = ﬁ Since |A|9mn < max(1, |A|$¥PPmn), we have

g(x) < max(1, [A|uPPmn)

inf {tqmn/” ([ fon (200, (20220, da), ...,d(up))||p)]qmn>1/H < 1}

This completes the proof.

3.3. Theorem. The g — 1 dual space of

[ (e dusy )| ] = [, (e, au, . a(e)]

Proof: First, we observe that

[fo, (42, dus), ...,d(up))"p]ﬁ c [1}2, | (dCuz), aquy), ---,d(up))||p]-

Therefore
|72 (e dwsy )| | 2. (e dus .. )] |

But[12)” 2 [A}, (a2, d(us), .., d(uy)) ”,,] Hence

[A,%, (), deuy), ...,d(up))”p] c [fo, (a2, duy), ...,d(up))”p]l? o

Next we show that
[sz' [(aquz), deus), ...,d(uw)ll,,]ﬁ < [A?' (2, dcus) ""d(””))”p]'
Lety = (V) € [X]?, ||(d(u2):d(u3): ---:d(up))“pr'

Consider f(x) = S, %% %,y With x = (x,,) € [X;, (), dcus), ...,d(up))”p]

X = [(Amn — Admn+1) — insin — Am+1n+1)]
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00 0 0 . 0 00 0 0 0

00 0 0 . 0 00 0 0 0

00 .t L0 00 .t -1
(m+n)! (m+n)! (m+n)! (m+n)!

00 .0 0 .. 0 00 .0 0 .. 0

:fmn <||(d(u2),d(u3), ...,d(up))”p)] -

. Hence converges to zero.

Therefore [(Lmn — Amns1) = msin = Amsinsn)] € [XJZ, |(@uz), aquy), ...,d(up))”p].

Hence d((/lmn = Ann+1) = Amiin = Ameinss)s 0) =1

BUt [Ymnl < IfIld((Aimn = Amns1) = Aimsin = Amains1),0) < IfI.1 < oofor each m,n. Thus () is @ best
approximation of p — metric double analytic sequence.

In  other words yE€ [A} ||(d(u2),d(u3), ""d(up))”,,]' But  y=(yn,) IS  arbitrary  in
7. (4., .. )| ]

Therefore

[xfz, (@2, d(us), ...,d(up))”p]‘* c [Ag, |(du), dus), ...,d(up))”p] (3.2)

From (3.1) and (3.2) we get
7. (uar. sy, .aw)]| | = [ | (atea, .. aw)] |

3.4. Theorem. The dual space of [X]? ||(d(u2),d(u3), ...,d(up))”p] is [A]% ||(d(u2),d(u3), ...,d(up))”p]. In other

words [sz ||(d(u2),d(u3), ...,d(up))”p]* _ [Aj% ||(d(u2),d(u3), ...,d(up))”p].
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00 .0 0
00 .0 0
Proof: We recall that x,,,,, =
00 1 0 .
(m+n)!
00 .0 0

1
(m+n)!

With

in the (m, n)th position and zero’s else where, with

0 . 0
[X]?, ||(d(u2),d(u3), ...,d(up))”p] | L
0 f[(m+n)! 0
(m7n)th
0 . 0

which is a p — metric of double gai sequence. Hence,

X € [X7, [ (A2, dCus), o d())]| | FGI= DT i

with x € [x,?, ||(d(u2),d(u3),...,d(up))”p] and f € [X,?, ||(d(u2),d(u3),...,d(up))”p]*  where
[sz, ||(d(u2), d(us), ...,d(up)) ”p]* is the dual space of [X]? || (d(uz), d(us), ...,d(u,,)) ”p].

Take x = (Xpn) € [x,?, ||(d(u2),d(u3),...,d(up))”p].Then,

[Ymnl < If1ld(Xmn, 0) < 00 Vm,n (33)

Thus, () is @ p — metric of double analytic sequence and hence an p — metric of double analytic sequence.In other
words, y € [A%, ||(d(u2),d(u3), ...,d(up))”p].

Therefore [X]? ||(d(u2),d(u3), ...,d(up))”p]* _ [Aj% ||(d(u2),d(u3), ...,d(up))”p] . This completes the proof.
3.5. Proposition. Yoy Y01 Xmn Amn CONVerges for all
x = (o) € X (002, dCus), . d))| | & famnd € |2 [[(AC02), dCus), o d )] |

Proof: |Xmnamn| < frnn([Xmal) + Gimn(@mn)

& Lm=12n=1lXmnmn| < Xm=12n=1 finn (Xmn ) + Zim=1 221 Gimn (|amn -

Since a = {a,,} € [X;, ||(d(u2),d(u3), ...,d(up))”p] we have
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2221 Z‘;.lo:1 gmn(l Amn D < oo, Hence Z?)?l=1 2?10:1 XmnQmn Converges <

a= {an,} € [Xj, ||(d(u2),d(u3), ""d(up))”p]' This completes the proof.

3.6. Theorem.

(i) If the sequence (f;,,,) satisfies uniform A, — condition, then

7. (. ). o a@) | | =[x (4. dw).na@)]| |

(i) If the sequence (g,,,) satisfies uniform A, — condition, then

[x}, [(aCua), d(us), ...,d(up))”p]“ _ [X;, (), d(us), ...,d(up))”p]

Proof: Let the sequence (fy,,,) satisfies uniform A, — condition, we get

[, (@ aush .. aGw)|| | = 42| (aun atu, ..aw)| | (3.4)

To prove the inclusion
[%2. | (o). acu), ...,d(up))”p]“ < [%2. (a2, dtws), .. d(w,))]| |
et a € [x7]|(aaw, . dGw))| |

Then for all {x,,,,} with (x,,,,) € [x,?, (a2, deus), ...,d(up))”p] we have

DD Pl < o0 (35)
m=1n=1

Since the sequence (f,,,) satisfies uniform A, — condition, then

YmnAmn

Om) € [ 7| (40, ), o d(w))|| | we et mip i [t

[z | (a0, dtus, .. aw)| | = [22. | (acua). dcus), ... atu)| |

<o. by (35). Thus (ap,) €

and hence
(@) € [X;, (), dus), ...,d(up))”p] . This gives that

[sz, |(@uz), dcuy), ...,d(up))”p]“ c [xgz, | (@2, d(uy), ...,d(up))”p] (3.6)
we are granted with (3.4) and (3.6)

[XfZ, (i), d(us), ...,d(up))”pr = [X;, | (auz), aquy), ---,d(up))“p]

(if) Similarly ,one can prove that

|2, || (du2), acus), ...,d(up))”p]oc < %] (de), dcws), .. d(w))]| |
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If the sequence (gm,,) satisfies uniform A, — condition.

3.7 Proposition. Let [X]? ||(d(u2),d(u3), ...,d(up))”p] be an p — metric linear space and 0 # x, € sz . Then the

following statements are equivalent:

(i) x is p — orthognal to y
(i) There exist d(uy),d(us), ...,d(u,) € X?and F € (X]?); such that d(F,0) =1,
P xpco||(dee) daus), .. d(w)|| | = F [0 [ (a), dews), .. ()| | =0

and
B = {d(up),d(us), ...,d(u,)}.

3.8.Corollary. Let [sz(x), ||(d(u2),d(u3), ...,d(up))” ] be an p — metric linear space, f a non empty subspace of
14

X?,0 # x € X? and g, € f. Then the following statements are equivalent:
(i) go € Pf(x)

(ii) There exist d(u,), d(us), ..., d(u,) €X?and F € (X,Z)B such that d(F,0) = 1,

F % = g0 (a), dws) ---,d(up)),,] = [|%7 - g0, (4w, dws). . d(w) |
and

Flg,(d(uz), d(us), ..., d(up))| = 0,vf € f and B = {d(up), d(us), ..., d(u)}.
3.9.Lemma. We define the following function

1/m+n

[X,Z(x), (), dus), ...,d(up))”:] on Y XY X..xY(p— factors) by ||((m £ 1! )™ (Gm +

1/m+n Lin
n)! Ixmnl)2 s (M + )] Ixmnl);" ,
P

are linearly dependent, and

1/m+n

1/m+n Lin )
I)1 ,((m+n)! |xmn|)2 s (M +1)! |xmn|);" ,||P = inf {m,n >1,u,..u, €

||((m + )

Xif <||((m +n)! |xmn|)%+", (dus), d(us), ...,d(up))”p) - 1}

1/m+n

1
I)i/mm, ((m+n)! Ixmn|)2 s ((m+n)! |xmn|);"+" are linearly independent.

if ((m+n)!|xmn

3.10.Example. Consider the space X2 of real sequences with only finite number of non-zero terms. Let us define :
[|%1, x2, ...,xp||p =0, if x;, X,, ..., x, are are linearly dependent,

1 1 N
g <((m 1)1 B )5, (G4 1) )7 (G o+ ) |xmn|);n+n)'

if x4, %, ..., x, are are linearly independent. Then ”Xj?(x), (d(uz),d(u3), ...,d(up))” is an —p metric on x
14

consisting of real sequences.
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