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1 Introduction 

Throughout     and   denote the classes of all, gai and analytic scalar valued single sequences, respectively. 

We write    for the set of all complex sequences(   ); where      , the set of positive integers. Then,    is a 

linear space under the coordinate wise addition and scalar multiplication. 

Some initial works on double sequence spaces is found in Bromwich [4]. Later on, they were investigated by Hardy [8], 

Moricz [16], Moricz and Rhoades [17], Basarir and Solankan [3], Tripathy [20], Turkmenoglu [21], and many others. 

We procure the following sets of double sequences: 

  ( )  {(   )   
           |   |

      } 

  ( )  {(   )   
             |     |                   } 

   ( )  {(   )   
             |   |

     } 

  ( )  {(   )   
  ∑ ∑ |   |

   

 

   

 

   
   }  

   ( )    ( )    ( )         ( )     ( )    ( ) 

 

where   (   ) is the sequence of strictly positive reals     for all       and             denotes the limit in 

the Pringsheim's sense. In the case       for all         ( )   ( )    ( )   ( )    ( ) and     ( ) reduce to 

the sets                  and      respectively. Now, we may summarize the knowledge given in some document 

related to the double sequence spaces. Gökhan and Colak [6,7] have proved that   ( ) and   ( )    ( ) are complete 

paranormed spaces of double sequences and gave the          duals of the spaces   ( ) and    ( ). Quite 

recently, in her PhD thesis, Zelter [23] has essentially studied both the theory of topological double sequence spaces and 

the theory of summability of double sequences. Mursaleen and Edely [14] and Tripathy [20] have independently 

introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical 

convergent and strongly Cesaro summable double sequences. Altay and Başar [1] have defied the spaces 

     ( )              and    of double sequences consisting of all double series whose sequence of partial sums 

are in the spaces      ( )           and   , respectively, and also examined some properties of those sequence 
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spaces and determined the    duals of the spaces            and  ( )   duals of the spaces      and     of 

double series. Başar and Sever [2] have introduced the Banach space    of double sequences corresponding to the well-

known space    of single sequences and examined some properties of the space   . Quite recently Subramanian and 

Misra [19] have studied the space   
 (     ) of double sequences and gave some inclusion relations. 

The class of sequences which are strongly Cesaro summable with respect to a modulus was introduced by Maddox [15] 

as an extension of the definition of strongly Cesaro summable sequences. Cannor [5] further extended this definition to 

a definition of strong    summability with respect to a modulus where   (    ) is a nonnegative regular matrix and 

established some connections between strong    summability, strong    summability with respect to a modulus, and 

   statistical convergence. In [24] the notion of convergence of double sequences was presented by A. Pringsheim. 

Also, in [9]-[10], and [11] the four dimensional matrix transformation (  )    ∑ ∑    
     

 
   

 
    was studied 

extensively by Robison and Hamilton. 

We need the following inequality in the sequel of the paper. For       and      , we have 

(   )         

The double series ∑    
 
      is called convergent if and only if the double sequence (   ) is convergent, where 

    ∑    
   
      (     ). 

A sequence   (   ) is said to be double analytic if       |   |
    ⁄   . The vector space of all double analytic 

sequences will be denoted by   . A sequence   (   ) is called double gai sequence if ((   ) |   |)
    ⁄

 

          . The double gai sequences will be denoted by   . Let   {                    }. 

Consider a double sequence   (   ). The (   )   section  [   ] of the sequence is defined by  [   ]  ∑       
   
      

for all      ; where     denotes the double sequence whose only non zero term is a  
 

(   ) 
 in the (   )   place for 

each       .  

An FK-space (or a metric space)   is said to have AK property if (   ) is a Schauder basis for  . Or equivalently 

 [   ]   .  

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which 

the coordinate mappings   (  )  (   )(     ) are also continuous. 

Let   and   are mutually complementary modulus functions. Then, we have 

(i) For all       ,  

    ( )   ( ) (                  ) [   [  ]] 
(ii) For all     ,  

  ( )   ( )   ( ( ))  

(iii) For all               ,  

 (  )    ( )  

Lindenstrauss and Tzafriri [13] used the idea of Orlicz function to construct Orlicz sequence space 

   {    ∑  (
|  |

 
)   

 

   
             }  

The space    with the norm 

‖ ‖     {    ∑  (
|  |

 
)   

 

   
}   

becomes a Banach space which is called an Orlicz sequence space. For  ( )     (     ), the spaces    coincide 

with the classical sequence space   .  

A sequence   (   ) of modulus function is called a Musielak-modulus function. A sequence   (   ) defined by 
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   ( )     {| |  (   )( )    }           

is called the complementary function of a Musielak-modulus function  . For a given Musielak modulus function  , the 

Musielak-modulus sequence space    and its subspace    are defined as follows 

   {       (|   |)
    ⁄            }   

   {       (|   |)
    ⁄            }  

where    is a convex modular defined by 

  ( )  ∑ ∑    (|   |)
    ⁄

 

   

 

   
   (   )      

We consider    equipped with the Luxemburg metric 

 (   )       {   (∑ ∑    (
(|   |)

    ⁄

  
)

 

   

 

   
)   } 

If   is a sequence space, we give the following definitions: 

(i)   = the continuous dual of  ; 

(ii)    {  (   ) ∑ |      |
 
                    }  

(iii)    {  (   ) ∑       
 
                               }  

(iv)    {  (   )        |∑       
   
     |                 }  

(v) Let   be an    space     then    { (   )    
 }  

(vi)    {  (   )      |      |
    ⁄                 }  

         are called   (                ) dual of     (                             ) dual of      

dual of      dual of   respectively.    is defined by Gupta and Kamptan [13]. It is clear that       and      , 

but       does not hold, since the sequence of partial sums of a double convergent series need not to be bounded. 

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as follows 

 ( )  {  (  )    (   )   } 

for        and    where             for all    . 

Here        and    denote the classes of convergent, null and bounded sclar valued single sequences respectively. 

The difference sequence space     of the classical space    is introduced and studied in the case       by Başar 

and Altay and in the case       by Altay and Başar in [1]. The spaces  ( )   ( )   ( ) and     are Banach 

spaces normed by 

‖ ‖  |  |        |   |      ‖ ‖    (∑ |  |
 

 

   
)

 
 ⁄

 (      )  

Later on the notion was further investigated by many others. We now introduce the following difference double 

sequence spaces defined by 

 ( )  {  (   )   
  (    )   }  

where         and      (         )  (             )                          for all 

      .  

2. Definition and Preliminaries 

Let     and   be a real vector space of dimension  , where    . A real valued function   (       )  

‖  (  )     (  )‖  on   satisfying the following four conditions: 
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(i) ‖  (  )     (  )‖    if and and only if   (  )     (  ) are linearly dependent, 

(ii) ‖  (  )     (  )‖  is invariant under permutation, 

(iii) ‖   (  )     (  )‖  | |‖  (  )     (  )‖      

(iv)   ((     ) (     )   (     ))  (  (          )
    (          )

 )
 
 ⁄  for       (  ) 

(v)  ((     ) (     )   (     ))     {  (          )   (          )}  

for                            is called the   product metric of the Cartesian product of   metric spaces is the 

  norm of the  -vector of the norms of the   subspaces. 

A trivial example of   product metric of   metric space is the   norm space is     equipped with the following 

Euclidean metric in the product space is the   norm: 

‖  (  )     (  )‖     (|   (   (   ))|)     (|

   (   )    (   )

   (   )    (   )
    (   )

    (   )
  

   (   )    (   )
  
    (   )

|) 

where    (         )   
  for each          . 

If every Cauchy sequence in   converges to some    , then   is said to be complete with respect to the    metric. 

Any complete    metric space is said to be    Banach metric space. 

Let (  ‖ (  )  (  )    (    )‖ ) be an    metric space and            be    subspaces of    A map 

                   is called    functional on              , whenever for all 

                                                                                 . 

(i)  (

        
        

     
     

  
        

  
     

) 

(ii)  (

          
          

      
      

  
          

  
      

)  (          ) (

      
      

    
    

  
      

  
    

) 

Let (  ‖ (  )  (  )    (    )‖ ) be an    metric space and                we denote by   
  the Banach 

metric space of all bounded functionals on   〈  〉  〈  〉    〈  〉 where 〈 〉  be the subspace of   generated by   

and   {          }. 

A sequence (   ) in an    metric space (  ‖ (  )  (  )    (    )‖ ) is said to converge in the    metric if 

        (‖    ( (  )  (  )    (  ))‖
 
)     

for every               

Any complete    metric space is said to be    Banach metric space. 

A sequence (   ) in an    metric space (  ‖ (  )  (  )    (    )‖ ) is said to be Cauchy with respect to the 

   metric if 

            (‖        ( (  )  (  )    (  ))‖
 
)     

for every               

2.1. Definition. Let (  ‖ (  )  (  )    (    )‖ ) be an    metric space we say that   is    orthogonal to   if 

‖  ( (  )  (  )    (  ))‖
 
 ‖     ( (  )  (  )    (  ))‖
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for all                  and we call   is    orthogonal to  . 

2.2. Definition. Let (  ‖ (  )  (  )    (    )‖ ) be an    metric space,   a non-empty subspace of   and     

then      is called    best approximation of     in  , if for every     and             . 

‖     ( (  )  (  )    (  ))‖
 
 ‖    ( (  )  (  )    (  ))‖

 

  

If for every      ̅ there exists at least one    best approximation in  , then   is called    proximinal subspace 

of  . 

If for every      ̅ there exists a unique    best approximation in  , then   is called an   Chebyshev subspace of 

 . 

For     we write, 

  
 ( )  {                                       } 

2.3. Definition. Let (  ‖ (  )  (  )    (    )‖ ) be a real linear    metric space and   ( ) denotes    valued 

sequence space. Then for an Musielak modulus function   (   ) we define the following sequence spaces for every 

every             : 

[  
 ] ‖( (  )  (  )    (  ))‖

 
  

{  (   )    
 ( )          (((   ) |   |)

 
   ⁄

 ‖( (  )  (  )    (  ))‖
 
)   }  

[  
 ] ‖( (  )  (  )    (  ))‖

 
  

{  (   )    
 ( )        (|   |

 
   ⁄  ‖( (  )  (  )    (  ))‖

 
)   }  

Let   be a linear metric space. A function       is called paranorm, if 

(1)  ( )   , for all    ; 

(2)  (  )   ( ), for all    ; 

(3)  (   )   ( )   ( ), for all      ; 

(4) If (   ) is a sequence of scalars with       as       and (   ) is a sequence of vectors with 

 (     )    as      , then  (         )    as      . 

A paranorm w for which  ( )    implies     is called total paranorm and the pair (   ) is called a total 

paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [22], 

Theorem 10.4.2, p.183). 

The following inequality will be used throughout the paper. If                     (      ) then 

|       |
     {|   |

    |   |
   } 

for all     and          . Also | |       (  | | ) for all    . 

The main aim of this paper is to study some sequence spaces defined by a Musielakmodulus function over   metric 

spaces also study some topological properties and some inclusion relations between these spaces. 

3. Main Results 

3.1.Theorem. Let   (   ) be a Musielak-modulus function. Then then spaces [  
  ‖( (  )  (  )    (  ))‖

 
] 

and [  
  ‖( (  )  (  )    (  ))‖

 
]  are linear spaces. 

Proof: The proof is a routine verification and so omitted. 
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3.2. Theorem. Let    (   ) be a Musielak-modulus function,   (   ) be double analytic sequence of positive real 

numbers. Then then spaces [  
  
 ‖( (  )  (  )    (  ))‖

 
] is a paranormed space with respect to the paranorm 

defined by 

 ( )      {([   (‖( (  )  (  )    (  ))‖
 
)]

   

)
   

}   , 

where H =    (            ). 

Proof: Clearly  ( )    for    (   )   [  
  
 ‖( (  )  (  )    (  ))‖

 
] . 

Since    ( )       we get  ( ) 

Conversely, suppose that   ( )   , then 

   {([   (‖ 
 ( ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

}     . 

Suppose that    ( )    for each       . Then ‖  ( ) ( (  )  (  )    (  ))‖
 
  .  It follows that 

([   (‖ 
 ( ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

    

which is a contradiction. Therefore   ( )   . Let  

([   (‖ 
 ( ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

    

and 

([   (‖ 
 ( ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

  . 

Then by using Minkowski’s inequality, we have 

([   (‖ 
 (   ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

 

([   (‖ 
 ( ) ( (  )  (  )    (  ))‖

 
)]

   

)

 

 

 

([   (‖ 
 ( ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

.  

So we have 

  (   )     {([   (‖ 
 (   ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

  }   

   {([   (‖ 
 ( ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

  }   

   {([   (‖ 
 ( ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

  } 
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Therefore, 

 (   )   ( )   ( ). 

Finally, to prove that the scalar multiplication is continuous. Let λ be any complex number. By definition, 

 (  )     {([   (‖ 
 (  ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

  } 

Then 

 (  )     {((| | )      ([   (‖ 
 (  ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

  } 

where   
 

| |
.  Since | |       (  | |      )  we have  

 (  )     (  | |      ) 

   {       ([   (‖ 
 (  ) ( (  )  (  )    (  ))‖

 
)]

   

)
   

  } 

This completes the proof.  

3.3. Theorem. The     dual space of 

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

 [  
  ‖( (  )  (  )    (  ))‖

 
] 

Proof: First, we observe that 

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

 [  
  ‖( (  )  (  )    (  ))‖

 
]. 

Therefore 

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

 [  
  ‖( (  )  (  )    (  ))‖

 
]
 

. 

But [  
 ]
 
 
 
  
[  

  ‖( (  )  (  )    (  ))‖
 
]. Hence 

[  
  ‖( (  )  (  )    (  ))‖

 
]  [  

  ‖( (  )  (  )    (  ))‖
 
]
 

 (3.1) 

Next we show that 

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

 [  
  ‖( (  )  (  )    (  ))‖

 
]. 

Let   (   )  [  
  ‖( (  )  (  )    (  ))‖

 
]
 

.  

Consider  ( )  ∑ ∑       
 
   

 
    with   (   )  [  

  ‖( (  )  (  )    (  ))‖
 
] 

  [(         )  (             )]  
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   

0 0 ...0 0 ... 0

0 0 ...0 0 ... 0

.

.

.

1 1
0 0 ... ... 0

! !

0 0 ...0 0 ... 0

m n m n

 
 
 
 
 
 
 
 

 
  
 
 
 

 

   

0 0 ...0 0 ... 0

0 0 ...0 0 ... 0

.

.

.

1 1
0 0 ... ... 0

! !

0 0 ...0 0 ... 0

m n m n

 
 
 
 
 
 
 
 

 
  
 
 
 

 

[   (‖( (  )  (  )    (  ))‖
 
)]   

(

 
 
 
 
 
 
 
 
 
 
 

   

   

0 0 ...0 0 ... 0

0 0 ...0 0, ... 0

.

.

.

1 1
0 0 ... 0

! !

1 1
0 0 ... 0

! !

0 0 ...0 0, ... 0

...

...

mn mn

mn mn

m n m n

m n m n

f f

f f

   
          

   
          

)

 
 
 
 
 
 
 
 
 
 
 

. Hence converges to zero. 

 

Therefore [(         )  (             )]   [  
  ‖( (  )  (  )    (  ))‖

 
]. 

Hence  ((         )  (             )  )   .  

But |   |  ‖ ‖ ((         )  (             )  )  ‖ ‖     for each    . Thus (   )  is a best 

approximation of    metric double analytic sequence. 

In other words   [  
  ‖( (  )  (  )    (  ))‖

 
]. But   (   ) is arbitrary in 

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

.  

Therefore 

  [  
  ‖( (  )  (  )    (  ))‖

 
]
 

 [  
  ‖( (  )  (  )    (  ))‖

 
] (3.2) 

From (3.1) and (3.2) we get 

 [  
  ‖( (  )  (  )    (  ))‖

 
]
 

 [  
  ‖( (  )  (  )    (  ))‖

 
] 

3.4. Theorem. The dual space of [  
  ‖( (  )  (  )    (  ))‖

 
]  is [  

  ‖( (  )  (  )    (  ))‖
 
]. In other 

words [  
  ‖( (  )  (  )    (  ))‖

 
]
 

 [  
  ‖( (  )  (  )    (  ))‖

 
]. 
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Proof: We recall that     =

(

 
 
 
 
 
 
 
 

 

0 0 ...0 0 ...

0 0 ...0 0 ...

.

.

.

1
0 0 ... 0 ...

!

0 0 ...0 0 ...

m n

)

 
 
 
 
 
 
 
 

 

With 
 

(   ) 
 in the (   )   position and zero’s else where, with 

 [  
  ‖( (  )  (  )    (  ))‖

 
]   

(

 
 
 
 
 
 
 
 
 

 

 

1/

0. . . 0

.

.

.

1
0 . 0

!

,

0 . . 0

m n

th

f
m n

m n


 
   

)

 
 
 
 
 
 
 
 
 

 

which is a    metric of double gai sequence. Hence, 

      [  
  ‖( (  )  (  )    (  ))‖

 
]   ( )   ∑       

 

     
 

with    [  
  ‖( (  )  (  )    (  ))‖

 
] and      [  

  ‖( (  )  (  )    (  ))‖
 
]
 

   ,       

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

 is the dual space of [  
  ‖( (  )  (  )    (  ))‖

 
]. 

Take   (   )    [  
  ‖( (  )  (  )    (  ))‖

 
]. Then, 

|   |  ‖ ‖ (     )         (3.3) 

Thus, (   ) is a    metric of double analytic sequence and hence an     metric of double analytic sequence.In other 

words,     [  
  ‖( (  )  (  )    (  ))‖

 
]. 

Therefore [  
  ‖( (  )  (  )    (  ))‖

 
]
 

  [  
  ‖( (  )  (  )    (  ))‖

 
]  .  This completes the proof. 

3.5. Proposition. ∑ ∑       
 
   

 
    converges for all 

  {   }   [  
  ‖( (  )  (  )    (  ))‖

 
]  

 
⇔ {   }    [  

  ‖( (  )  (  )    (  ))‖
 
]. 

Proof: |      |     (|   |)      (   ) 

 
⇔ ∑ ∑ |      |

 
   

 
     ∑ ∑    (|   |)

 
   

 
     ∑ ∑    (|   |)

 
   

 
   . 

Since    {   }   [  
  ‖( (  )  (  )    (  ))‖

 
] we have 
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∑ ∑    (|   |)

 
   

 
     .  Hence ∑ ∑       

 
   

 
    converges  

 
⇔  

   {   }    [  
  ‖( (  )  (  )    (  ))‖

 
]. This completes the proof. 

3.6. Theorem.  

(i) If the sequence (   ) satisfies uniform     condition, then 

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

 [  
  ‖( (  )  (  )    (  ))‖

 
]. 

(ii) If the sequence (   )  satisfies uniform     condition, then 

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

 [  
  ‖( (  )  (  )    (  ))‖

 
]  

Proof: Let the sequence (   )                                , we get 

[  
  ‖( (  )  (  )    (  ))‖

 
]  [  

  ‖( (  )  (  )    (  ))‖
 
]
 

 (3.4) 

To prove the inclusion  

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

 [  
  ‖( (  )  (  )    (  ))‖

 
], 

let      [  
  ‖( (  )  (  )    (  ))‖

 
]
 

. 

Then for all {   } with (   )     [  
  ‖( (  )  (  )    (  ))‖

 
] we have  

 ∑ ∑|      |

 

   

 

   

   (3.5) 

Since  the sequence (   )  satisfies uniform     condition, then 

(   )     [  
  ‖( (  )  (  )    (  ))‖

 
], we get ∑ ∑ |

      

(   ) 
| 

   
 
     . by (3.5). Thus (   )     

[  
  ‖( (  )  (  )    (  ))‖

 
]   [  

  ‖( (  )  (  )    (  ))‖
 
] 

and hence  

(   )     [  
  ‖( (  )  (  )    (  ))‖

 
] .  This gives that 

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

  [  
  ‖( (  )  (  )    (  ))‖

 
] (3.6) 

we are granted with (3.4) and (3.6) 

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

   [  
  ‖( (  )  (  )    (  ))‖

 
] 

(ii) Similarly ,one can prove that 

[  
  ‖( (  )  (  )    (  ))‖

 
]
 

  [  
  ‖( (  )  (  )    (  ))‖

 
] 
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If the sequence (   )                                  

3.7 Proposition. Let [  
  ‖( (  )  (  )    (  ))‖

 
] be an    metric linear space and          

  .  Then the 

following statements are equivalent: 

(i)   is    orthognal to   

(ii) There exist   (  )  (  )    (  )      
  and     (  

 )
 

 
 such that  (   )      

  [  
 ( ) ‖( (  )  (  )    (  ))‖

 
]    [  

 ( ) ‖( (  )  (  )    (  ))‖
 
]     

and 

    { (  )  (  )    (  )}. 

3.8.Corollary.  Let  [  
 ( ) ‖( (  )  (  )    (  ))‖

 
] be an    metric linear space, f a non empty subspace of 

  
        

  and     .  Then the following statements are equivalent: 

(i)        
 ( ) 

 (ii) There exist  (  )  (  )    (  )      
  and     (  

 )
 

 
 such that  (   )       

  [  
      ( (  )  (  )    (  ))

 
]  ‖  

     ( (  )  (  )    (  ))‖
 
 

and  

 [  ( (  )  (  )    (  ))]                { (  )  (  )    (  )}. 

3.9.Lemma. We define the following function 

 [  
 ( ) ‖( (  )  (  )    (  ))‖

 

 

]  on         (         ) by ‖((   ) |   |) 
     

 ((  

 ) |   |) 
     

  ((   ) |   |) 

 

 
  
 ‖

 
  

are linearly dependent, and 

  ‖((   ) |   |) 
     

 ((   ) |   |) 
     

  ((   ) |   |) 

 

 
  
 ‖

 
    {             

  
  (‖((   ) |   |)

 

 
  
 ( (  )  (  )    (  ))‖

 
)   }  

if  ((   ) |   |) 
     

 ((   ) |   |) 
     

  ((   ) |   |) 

 

 
  

 are linearly independent. 

3.10.Example. Consider the space    of real sequences with only finite number of non-zero terms. Let us define : 

‖          ‖  = 0, if            are  are linearly dependent, 

    
     

(((   ) |   |) 

 
 
  
 ((   ) |   |) 

 
 
  
  ((   ) |   |) 

 
 
  
)  

if            are  are linearly independent. Then ‖  
 ( ) ( (  )  (  )    (  ))‖

 
is  an    metric   on    

consisting of real sequences. 
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