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Abstract: This paper deals with the existence of infinitely many large energy solutions for nonlinear Schradinger-Maxwell system

{—Au +V(@)u + Apu = |ulP"'u inR3
—A¢p = u? in R3,

We use the Fountain theorem under Cerami conditions 2.2 to find infinitely many large solutions for p € (2,6) and 2 € Rt — (g%)
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1. Introduction

In this paper we are concerned with the existence of infinitely many large energy solutions for the nonlinear
Schrodinger-Maxwell system

— — p—-1 : 3
{ Au+V(xX)u + Apu = |u|/P~'u inR (1.1)

—A¢p = u? in R3,

where 1 € Rt — GE) is a parameter, V € C(R3, R) which is satisfied in some suitable conditions and p € (2,6). In

the classical model, the interaction of a charge particle with an electromagnetic field can be described by the nonlinear
Schrodinger-Maxwell’s equations (see for examples [6,9] and the references therein for more details on the physical
aspects).

More precisely, we use the Fountain theorem under Cerami conditions 2.2 to find infinitely many large solitions for p €
4 4
2.3

(2,6) and 1 € R* — (7
1.1 reduced to the following system

) which is different from obtained results in [1,6]. If we consider V(x) = 1, then the system

{—Au +u+ A¢pu = [ul’"u inR3

1.2
—A¢p = u? in R3, (1.2

which considered by Jiang et. al, [15], of course in homogeneous case. The problem of finding infinitely many large
solutions is a vary classical problem. There is an extensive literature concerning the existence of infinitely many large
energy solutions of a plethora of problems via the symmetric Mountain Pass theorem and Fountain theorem [4, 7, 10].
But, the existence of solutions for problem 1.1 has been discussed under different ranges of p, for examples [11, 3] for
p € [3,5), 5 forp € (2,5) and [1, 2, 17] for p € (1,5). In particular case, with V(x) = 1 and p € (2,5), Ambrosetti and
Ruiz have proved that the system 1.2 has infinitely many solutions for all 2 > 0 [1]. Here, we will show infinitely many
large energy solutions for 1.1, where V € C(R3,R) and p € (2,6), via the Fountain theorem under cerami condition. In
recent years, for the potential 7, many authors assumed (see for examples [19,18]).
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V*) VeCR3R) and V(x) = M, > 0 and there exists some M > 0 such that O, = {x € R3| V(x) < M} is
nonempty and has finite Lebesgue measure.

We consider the more general case and weaken the condition of V*. We assume

V,*) V € C(R3,R) and there exists some M > 0 such that the set Q,, := {x € R3| V(x) < M} is nonempty and has
finite Lebesgue measure. Also we suppose that there exists a constant 8 > 1 such that

0f,(w) = f(tw) (1.3)

for all x € R3, u € R and ¢ € [0,1], where f;(w) = (1 - ﬁ) JoslulP*tdx — llull, where 1 € R* — (—,—). The

assumption V;* implies that the potential V is not periodie and changes sign.

2. Main results

Here, we express Cerami condition which was established by G. Cerami in [12]. To approach the main result, we need
the following critical point theorem.

Definition 2.1. Suppose that functional I is C! and ¢ € R, if any sequence {u,} satisfies in I(u,) — c and (1 +
llu, IDI'(u,) = 0 has a convergence subsequence, we say the [ is said to Cerami condition at the level c.

Theorem 2.2. (Fountain theorem under Cerami condition) Let X be a Banach space with the norm || || and let X; be a

sequence of subspace of X with dimX; < co for any j € N. Further, X = @ ey X;, the closure of the direct sum of all X;.
Set Wy = ®F_oX;, Zi = ®FL,X;.

Consider an even functional I € C*(X, R), that is I(—u) = I(u) for any u € X. Suppose that for any k € N, there exists
Pr > 1 > 0 such that

I1) ay = MaXyew, |ull=p, [ (W) <0,

L) by = infyez, juj=r), (W) > +owask - oo,

I3) the Cerami condition holds at any level ¢ > 0. Then the functional I has an unbounded sequence of critical values.
Now, our main result is the following:

Theorem 2.3. Let V;*, and assumption 1.3 satisfies. Then the system 1.1 has infinitely many solutions {(uy, ¢)}key in
H'(R3) x D¥2(IR3) satisfying

1 A A 1
3 f (|Vuk|2 + V(x)u,%) dx ~32 J|V¢k|2dx +EDJ3 Prusdx — — |u|P*tdx — +oo,

R3 R3
ask — oo.
3. Some auxiliary results and notations
In this section we give some notations and definitions on the function product space. We set
H'(R®) = {u € L*(R%)|V, € L*(R*)}, 31
endowed with the norm

1

2

lulls = (190 + w2 (3:2)
]R3

and we consider the function space
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D2(R?) := {u € L¥ (R®) | V,,€ L2(R®)} (3.3)

with the norm

1
2
lullpiz = | [ 17 dx (3.4)
]R3
where 2*= % = 6. Now, we consider the function space

E:={u € H'(R?) | f|vu|2 +u?dx < ooy,
]R3

Then E is a Hilbert space [20] with the inner product

(W, V)5 = f (Va¥y + V(O uv)dx (3.5)
]R3

1
and [lullg = (u, v).

Lemma 3.1. [19] If V;* holds. Then E & LP(R",R?) is continuous for p € [2,2*] and E & L} (RY,R?) is compact
forp € [2,2").

Remark 3.2. The system 1.1 is the Euler-Lagrange equations of the functional J,: E x D?(R3) — R defind by
i) = g Il =5 [1voPax +5 [ gutdr——— [up+iax 26
A 2070 4 2 p+1 (3.6)
R3 R3 R3

The functional J, € C*(E x D¥?(R3),R) and its critical points are the solutions of system 1.1. It is easy to know that J,
exhibits a strong indefiniteness, namely it is unbounded both from below and from above on infinitely dimensional
subspaces. This indefiniteness can be removed using the reduction method described in [9]. We recall this method. For
any u € E, the Lax-Milgram theorem [14] implies there exists a unique ¢,, € D¥2(R?) such that

—A¢, = u?
in a weak sense. We can write an integral expression for ¢,, in the form:

1 [ u@®)?

P ) e ™
R3

3.7)

foranyu € E.
Lemma 3.3. [13] foranyu € E

i llpullprz < My |lull?sz, where M, is positive constant which does not depend
L5
on u. In particular, there exists a positive constant M, such that
[ duax < m )
R3

i ¢y = 0.

According to the Lemma 3.3, we define the functional I;: E - R by
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L = 1w, ¢).

Remark 3.4. Using the relation —A¢,, = u? and integration by parts, we can obtain
[Wwauzax = [ guax
R3 R3

Then, we can consider the functional 3.6 as following
I()—lll IIZ+& 2y~ lulP*id
Au—ZuE 7 P udx ] u X. (3.9)
R3 R3
It well-known that I is C*-functional with derivative given by

(Lw),u) = f [VuVy + V(uv + ¢yuv — [ulP~ uv]dx (3.10)
]R3

Now, using the proposition 2.3 in [16] we can consider the following proposition for our functional J;:
Proposition 3.5. The following statements are equivalent:

i) (u, ) € E x DV2(R3) is a critical point J; i.e. (u, ¢) is a solution of problem 1.1;

ii) u is a critical point of I; and ¢, = ¢.

Proof. It follows using the remark 3.2 and theorem 2.3 in [9].

4. Proof of main theorem

We take an orthogonal basis {e; } of product space X := E and we define W, = Span{e]-}jzl o 2= Wi

Lemma 4.1. [13] forany p € [2,2")B) = sup lull, = 0,ask — oo.
u€Z|lull=1

Now, we prove that the functional I: E — R satisfies the Cerami condition.
Proposition 4.2. Under the assumption 1.3, the functional I, (u) satisfies the Cerami condition at any positive level.

Proof. We suppose that {u, } is the Cerami sequence, that is for some ¢ € R™,
() = 3 Il + f Puuldx ——— f g P2 ¢ @)

asn — oo and

(1 + lluglle) 3 (un) = 0 (4.2)

asn — oo. From relations 4.1 and 4.2 for n large enough,

A 1
1402 ) = 5 (G wnd = 5l + [ e -
3

— flunlp“dx f(VunVun + V(Ui + ¢y, un — lun P12 )dx |-
R3

Then,
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1 A ) 1 A 41
14+c=> (E_Z) ||un||5—<m—z> J-lunl dx. (4.3)
R3
We show that {u,,} is bounded sequence. Otherwise, there exists a subsequence of {u,} satisfying ||u,|lz = 0 asn —

“"_ e E, so the sequence w,, is bounded. Up to a subsequence, for some w € E,

. Then we consider w,, = .
nlE

Wy, =
inkE,
w, — o in LL(R3) Vvt € [2,2%)
and
w,(x) > w(x) a.e. in R3, (4.4)

Now, we consider two cases. In first case suppose that w # 0 in E. Dividing by ||lu,||% in both sides of relation 4.1 and
by lemma 3.3 we can get

R A

— [ +0(ugllz) < My < o0 45
1) TP a2 nlie) = Hs (4.5)

where M; is a positive constant. We consider,
Q:={x e R®|w(k) =0},

then forall x € Qand p € (2, )

un Pt Juy [P*

= 25+ 4.6
TunlZ = upe O 2 F (46

asn — oo. Since meas(Q)) > 0, using Fatou’s lemma,

1 |un P

p+1 e ”un”é

dx - +oo (4.7)

asn — oo. This is contradiction with relation 4.5. In second case, suppose that w(x) = 0, then we define a sequence,
t, € Ras

L(tyuy) = [max L (tuy).

Un

llunllg

For any positive m, we set w,, = V4m = v4muw,. Hence, by relation 4.5 and for n large enough,

— LT A =2 1 — |p+1
Ill(tnun) 2 I/l(wn) = E ”wn”E +- ¢E)nwndx T 1 |a)n|p dx

4 A p+1 A
= 2m+Z fd)w E)ndx—? flwnlp+1dx>m
R3 R3

Therefore, lim [,(t,u,) = +o by relation 4.8. Since [,(0) = 0 and I,(u,) = c then for t, € (0,1) and n large
n—-oo

enough, we obtain that
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f(vtnunvtnun + V(x) tnuntnun + ¢tnuntnuntnun - |tnun|p_1tnuntnun)dx = ([/{ (tnun)’ tnun>
R3

= ndt |t tnla(tun) =0.

Hence, by assumption 1.3,

I (uy,) — Z(I}“(un)' Uy) = T ||un||}25 4( ) fl n|p+1dx _

1 1 A A
il = [l =l + 5 [l =
R

R3

1 2 A p+1
gl +3 1= +1) 2 x — Il 13| =

1 A
”un”E +— fﬂ(un) === ”tnunllﬁ +Ef/1(tnun) =

20
1 A ,
5IA(tnun) - E (I (tauy), thy) = o,

as n — oo, This contradicts relation 4.3. Therefore, {u,} is bounded sequence. Assume that u,, — u in E. By lemma 3.1
u, — u in L*(R®) for any t € [2,2*). By relation 3.10,

it — ull2 = (L () — L), un — u) + f P~ = JulP ™ (up — w)dx — f (b ttn — )ty — w)dx.
]R3

By the Hoder inequality, Sobolev inequality and lemma 3.3

f¢unun(un —uw)dx| < ||¢unun”Lz”un —ullz < ||¢un”L6”un”L3”un —ull,2
R3

2
M| || 22 et ll 3 Nt = wll 2 < M2M4”un”L%”un”L3”un —ull,2,

where M, is a positive constant. Again using u,, = u in L*(R®) for any t € [2, 2*), we obtain that
f Oy, Un (U, —u)dx — 0,
3
asn — oo. Similarly,
f ¢y, u(u, —wdx - 0,
3
as n — oo, Hence,
f(d)unun - ¢uu)(un —u)dx - 0,
R3

asn — oo. Thus ||u, — u|lg = 0. Therefore, I, (u) satisfies Cerami condition.
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Proof of theorem 2.3.From proposition 4.2. I, (u) satisfies Cerami condition. Next, we show that I, (u) satisfies the rest
|u|p+1

conditions of theorem 2.2. First of all, we prove that I, (u) satisfies I;. Since p € (2,6), so |l}m W +o0. Then for
u|—0o
any K > 0 there exist § > 0 such that for |u| = &,
A
lu|P*t > Z1<|u|2. (4.9)

Hence,

1. My
L) < 5 lhellf + =2 lully - lull =

4p+ 1)
Since, norms on finite dimension spaces W, are equivalent,

AK M

@) < = fhulz + 222 s - M5
—2"NE E 4(p+1)

2
u ’
7 lell
where M; is a constant. Since

AM,  AKM;

T_4—(p+1)<0

when K is large enough, it follows that

ay = max L(u) <0
UEW llull=pg

for some p,, > 0 large enough. Using the lemma 3.3 and 3.1 we show that I, (u) satisfies in condition I,. By definition
of I,

1 Jiie
—flullz - —=
p+1

llullp = llull,

1 2 1 p+1 1 2
L(w) = §||u||5 T 3 lulP dx > E”u”E - >
R

p+1

1
p

where B, is defined in lemma 4.1. defining r;, = <%)2_p, implies that

1 Bip 1 1\ pBp \*?
= inf L) > inf [=|lull?, - —= 4 2(———) k - 400
T T <2 el =g llulle |2 (5= 5) 51

as k — oo. Using 2.2 completes the proof.
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