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 Infinitely many large energy solutions of nonlinear Schrödinger-

Maxwell system 
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Abstract: This paper deals with the existence of infinitely many large energy solutions for nonlinear Schrödinger-Maxwell system 

{
−∆𝑢 + 𝑉(𝑥)𝑢 + 𝜆𝜙𝑢 = |𝑢|𝑝−1𝑢   in ℝ3

−∆𝜙 = 𝑢2                                           in ℝ3,
 

We use the Fountain theorem under Cerami conditions 2.2 to find infinitely many large solutions for 𝑝 ∈ (2,6) and 𝜆 ∈ ℝ+ − (
4

7
,

4

3
). 
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1.  Introduction  

In this paper we are concerned with the existence of infinitely many large energy solutions for the nonlinear 

Schrödinger-Maxwell system 

{
−∆𝑢 + 𝑉(𝑥)𝑢 + 𝜆𝜙𝑢 = |𝑢|𝑝−1𝑢   in ℝ3

−∆𝜙 = 𝑢2                                           in ℝ3,
 (1.1) 

where  𝜆 ∈ ℝ+ − (
4

7
,

4

3
) is a parameter, 𝑉 ∈ 𝐶(ℝ3, ℝ) which is satisfied in some suitable conditions and 𝑝 ∈ (2,6). In 

the classical model, the interaction of a charge particle with an electromagnetic field can be described by the nonlinear 

Schrödinger-Maxwell’s equations (see for examples [6, 9] and the references therein for more details on the physical 

aspects). 

More precisely, we use the Fountain theorem under Cerami conditions 2.2 to find infinitely many large solitions for 𝑝 ∈

(2,6) and 𝜆 ∈ ℝ+ − (
4

7
,

4

3
) which is different from obtained results in [1,6]. If we consider 𝑉(𝑥) = 1, then the system 

1.1 reduced to the following system 

{
−∆𝑢 + 𝑢 + 𝜆𝜙𝑢 = |𝑢|𝑝−1𝑢   in ℝ3

−∆𝜙 = 𝑢2                                  in ℝ3,
 (1.2) 

which considered by Jiang et. al, [15], of course in homogeneous case. The problem of finding infinitely many large 

solutions is a vary classical problem. There is an extensive literature concerning the existence of infinitely many large 

energy solutions of a plethora of problems via the symmetric Mountain Pass theorem and Fountain theorem [4, 7, 10]. 

But, the existence of solutions for problem 1.1 has been discussed under different ranges of p, for examples [11, 3] for 

𝑝 ∈ [3,5), 5 for 𝑝 ∈ (2,5) and [1, 2, 17] for 𝑝 ∈ (1,5). In particular case, with 𝑉(𝑥) = 1 and 𝑝 ∈ (2,5), Ambrosetti and 

Ruiz have proved that the system 1.2 has infinitely many solutions for all 𝜆 > 0 [1]. Here, we will show infinitely many 

large energy solutions for 1.1, where 𝑉 ∈ 𝐶(ℝ3, ℝ) and 𝑝 ∈ (2,6), via the Fountain theorem under cerami condition. In 

recent years, for the potential 𝑉, many authors assumed (see for examples [19,18]). 

http://www.ntmsci.com/
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     𝑉 *) 𝑉 ∈ 𝐶(ℝ3, ℝ)  and 𝑉(𝑥) ≥ 𝑀0 > 0  and there exists some 𝑀 > 0  such that Ω𝑀 ≔ {𝑥 ∈ ℝ3| 𝑉(𝑥) ≤ 𝑀}  is 

nonempty and has finite Lebesgue measure. 

We consider the more general case and weaken the condition of 𝑉*. We assume 

     𝑉1*) 𝑉 ∈ 𝐶(ℝ3, ℝ) and there exists some 𝑀 > 0 such that the set Ω𝑀 ≔ {𝑥 ∈ ℝ3| 𝑉(𝑥) ≤ 𝑀} is nonempty and has 

finite Lebesgue measure. Also we suppose that there exists a constant 𝜃 ≥ 1 such that  

𝜃𝑓𝜆(𝑢) ≥ 𝑓𝜆(𝑡𝑢) (1.3) 

for all 𝑥 ∈ ℝ3 , 𝑢 ∈ ℝ  and 𝑡 ∈ [0,1] , where 𝑓𝜆(𝑢) = (1 −
4

𝜆(𝑝+1)
) ∫ |𝑢|𝑝+1𝑑𝑥 − ‖𝑢‖𝐸

2 

ℝ3 , where 𝜆 ∈ ℝ+ − (
4

7
,

4

3
).  The 

assumption 𝑉1* implies that the potential 𝑉 is not periodie and changes sign. 

2. Main results 

Here, we express Cerami condition which was established by G. Cerami in [12]. To approach the main result, we need 

the following critical point theorem. 

Definition 2.1. Suppose that functional 𝐼  is 𝐶1  and 𝑐 ∈ ℝ , if any sequence {𝑢𝑛}  satisfies in 𝐼(𝑢𝑛) → 𝑐  and (1 +

‖𝑢𝑛‖)𝐼′(𝑢𝑛) → 0 has a convergence subsequence, we say the 𝐼 is said to Cerami condition at the level 𝑐. 

Theorem 2.2. (Fountain theorem under Cerami condition) Let 𝑋 be a Banach space with the norm ‖. ‖ and let 𝑋𝑗 be a 

sequence of subspace of 𝑋 with dim𝑋𝑗 < ∞ for any 𝑗 ∈ ℕ. Further, 𝑋 = ⨁𝑗∈ℕ𝑋𝑗, the closure of the direct sum of all 𝑋𝑗. 

Set 𝑊𝑘 = ⨁𝑗=0
𝑘 𝑋𝑗, 𝑍𝑘 = ⨁𝑗=𝑘

∞ 𝑋𝑗. 

Consider an even functional 𝐼 ∈ 𝐶1(𝑋, ℝ), that is 𝐼(−𝑢) = 𝐼(𝑢) for any 𝑢 ∈ 𝑋. Suppose that for any 𝑘 ∈ ℕ, there exists 

𝜌𝑘 > 𝑟𝑘 > 0 such that 

𝐼1) 𝑎𝑘 ≔ max𝑢∈𝑊𝑘,‖𝑢‖=𝜌𝑘
 𝐼(𝑢) ≤ 0, 

𝐼2) 𝑏𝑘 ≔ inf𝑢∈𝑍𝑘,‖𝑢‖=𝑟𝑘
    𝐼(𝑢) → +∞ as 𝑘 → ∞, 

𝐼3) the Cerami condition holds at any level 𝑐 > 0. Then the functional 𝐼 has an unbounded sequence of critical values. 

Now, our main result is the following: 

Theorem 2.3. Let 𝑉1*, and assumption 1.3 satisfies. Then the system 1.1 has infinitely many solutions {(𝑢𝑘, 𝜙𝑘)}𝑘∈ℕ in 

𝐻1(ℝ3) × 𝐷1,2(ℝ3) satisfying 

1

2
∫ (|∇𝑢𝑘

|
2

+ 𝑉(𝑥)𝑢𝑘
2) 𝑑𝑥

 

ℝ3

−
𝜆

4
∫|∇𝜙𝑘

|
2

𝑑𝑥

 

ℝ3

+
𝜆

2
∫ 𝜙𝑘𝑢𝑘

2𝑑𝑥

 

ℝ3

−
1

𝑝 + 1
|𝑢|𝑝+1𝑑𝑥 → +∞, 

as 𝑘 → ∞. 

3. Some auxiliary results and notations 

In this section we give some notations and definitions on the function product space. We set 

𝐻1(ℝ3) ≔ {𝑢 ∈ 𝐿2(ℝ3)|∇𝑢∈ 𝐿2(ℝ3)}, (3.1) 

endowed with the norm 

‖𝑢‖𝐻1 ≔ ( ∫|∇𝑢|2 + 𝑢2𝑑𝑥

 

ℝ3

)

1
2

 (3.2) 

and we consider the function space  
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𝐷1,2(ℝ3) ≔ {𝑢 ∈ 𝐿2∗

(ℝ3) | ∇𝑢∈ 𝐿2(ℝ3)} (3.3) 

with the norm 

‖𝑢‖𝐷1,2 ≔ ( ∫|∇𝑢|2𝑑𝑥

 

ℝ3

)

1
2

 (3.4) 

where 2*=
2𝑛

𝑛−2
= 6. Now, we consider the function space  

𝐸 ≔ {𝑢 ∈ 𝐻1(ℝ3) |  ∫|∇𝑢|2 + 𝑢2𝑑𝑥

 

ℝ3

< ∞}. 

Then 𝐸 is a Hilbert space [20] with the inner product 

(𝑢, 𝑣)𝐸 ≔ ∫(∇𝑢∇𝑣 + 𝑉(𝑥)𝑢𝑣)𝑑𝑥

 

ℝ3

 (3.5) 

and ‖𝑢‖𝐸 ≔ (𝑢, 𝑣)
𝐸

1

2 . 

Lemma 3.1. [19] If 𝑉1* holds. Then 𝐸 ↪ 𝐿𝑝(ℝ𝑁 , ℝ2) is continuous for 𝑝 ∈ [2, 2∗] and 𝐸 ↪ 𝐿𝑙𝑜𝑐
𝑝 (ℝ𝑁 , ℝ2) is compact 

for 𝑝 ∈ [2,2∗). 

Remark 3.2. The system 1.1 is the Euler-Lagrange equations of the functional 𝐽𝜆: 𝐸 × 𝐷1,2(ℝ3) → ℝ defind by 

𝐽𝜆(𝑢, 𝜙) ≔
1

2
‖𝑢‖𝐸

2 −
𝜆

4
∫|∇𝜙|2𝑑𝑥

 

ℝ3

+
𝜆

2
∫ 𝜙𝑢2𝑑𝑥

 

ℝ3

−
1

𝑝 + 1
∫|u|𝑝+1𝑑𝑥

 

ℝ3

 (3.6) 

The functional 𝐽𝜆 ∈ 𝐶1(𝐸 × 𝐷1,2(ℝ3), ℝ) and its critical points are the solutions of system 1.1. It is easy to know that 𝐽𝜆 

exhibits a strong indefiniteness, namely it is unbounded both from below and from above on infinitely dimensional 

subspaces. This indefiniteness can be removed using the reduction method described in [9]. We recall this method. For 

any 𝑢 ∈ 𝐸, the Lax-Milgram theorem [14] implies there exists a unique 𝜙𝑢 ∈ 𝐷1,2(ℝ3) such that 

−∆𝜙𝑢 = 𝑢2 

in a weak sense. We can write an integral expression for 𝜙𝑢 in the form: 

𝜙𝑢 =
1

4𝜋
∫

𝑢(𝑦)2

|𝑥 − 𝑦|
𝑑𝑦

 

ℝ3

, (3.7) 

for any 𝑢 ∈ 𝐸. 

Lemma 3.3. [13] for any 𝑢 ∈ 𝐸 

i. ‖𝜙𝑢‖𝐷1,2 ≤ 𝑀1‖𝑢‖
𝐿

12
5

2 , where 𝑀1 is positive constant which does not depend  

on 𝑢. In particular, there exists a positive constant 𝑀2 such that 

∫ 𝜙𝑢𝑢2𝑑𝑥

 

ℝ3

≤ 𝑀2‖𝑢‖𝐸
4 ; (3.8) 

ii. 𝜙𝑢 ≥ 0. 

According to the Lemma 3.3, we define the functional 𝐼𝜆: 𝐸 → ℝ by 
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𝐼𝜆(𝑢) ≔ 𝐽𝜆(𝑢, 𝜙𝑢). 

Remark 3.4. Using the relation −∆𝜙𝑢 = 𝑢2 and integration by parts, we can obtain 

∫|∇𝜙𝑢|2𝑑𝑥

 

ℝ3

= ∫ 𝜙𝑢𝑢2𝑑𝑥

 

ℝ3

. 

Then, we can consider the functional 3.6 as following 

𝐼𝜆(𝑢) =
1

2
‖𝑢‖𝐸

2 +
𝜆

4
∫ 𝜙𝑢𝑢2𝑑𝑥

 

ℝ3

−
1

𝑝 + 1
∫|𝑢|𝑝+1𝑑𝑥

 

ℝ3

. (3.9) 

It well-known that I is 𝐶1-functional with derivative given by 

〈𝐼𝜆
′(𝑢), 𝑢〉 = ∫[∇𝑢∇𝑣 + 𝑉(𝑥)𝑢𝑣 + 𝜙𝑢𝑢𝑣 − |𝑢|𝑝−1𝑢𝑣]𝑑𝑥

 

ℝ3

 (3.10) 

Now, using the proposition 2.3 in [16] we can consider the following proposition for our functional 𝐽𝜆: 

Proposition 3.5. The following statements are equivalent: 

i) (𝑢, 𝜙) ∈ 𝐸 × 𝐷1,2(ℝ3) is a critical point 𝐽𝜆 i.e. (𝑢, 𝜙) is a solution of problem 1.1; 

ii) 𝑢 is a critical point of 𝐼𝜆 and 𝜙𝑢 = 𝜙. 

Proof. It follows using the remark 3.2 and theorem 2.3 in [9]. 

4. Proof of main theorem 

We take an orthogonal basis {𝑒𝑗} of product space 𝑋 ≔ 𝐸 and we define 𝑊𝑘 ≔ 𝑠𝑝𝑎𝑛{𝑒𝑗}
𝑗=1,…,𝑘

, 𝑍𝑘 ≔ 𝑊𝑘
⊥. 

Lemma 4.1. [13] for any 𝑝 ∈ [2, 2∗)𝛽𝑘 ≔ sup

𝑢 ∈ 𝑍𝑘, ‖𝑢‖ = 1

‖𝑢‖𝐿𝑝 → 0, as 𝑘 → ∞. 

Now, we prove that the functional 𝐼𝜆: 𝐸 → ℝ satisfies the Cerami condition. 

Proposition 4.2. Under the assumption 1.3, the functional 𝐼𝜆(𝑢) satisfies the Cerami condition at any positive level. 

Proof. We suppose that {𝑢𝑛} is the Cerami sequence, that is for some 𝑐 ∈ ℝ+, 

𝐼𝜆(𝑢𝑛) =
1

2
‖𝑢‖𝐸

2 +
𝜆

4
∫ 𝜙𝑢𝑛

𝑢𝑛
2𝑑𝑥

 

ℝ3

−
1

𝑝 + 1
∫|𝑢𝑛|𝑝+1𝑑𝑥

 

ℝ3

→ 𝑐 (4.1) 

as 𝑛 → ∞ and  

(1 + ‖𝑢𝑛‖𝐸)𝐼𝜆
′(𝑢𝑛) → 0 (4.2) 

as 𝑛 → ∞. From relations 4.1 and 4.2 for 𝑛 large enough, 

1 + 𝑐 ≥ 𝐼𝜆(𝑢𝑛) −
𝜆

4
〈𝐼𝜆

′(𝑢𝑛), 𝑢𝑛〉 =
1

2
‖𝑢𝑛‖𝐸

2 + ∫ 𝜙𝑢𝑛
𝑢𝑛

2𝑑𝑥

 

ℝ3

− 

1

𝑝 + 1
∫|𝑢𝑛|𝑝+1𝑑𝑥

 

ℝ3

−
𝜆

4
[ ∫(∇𝑢𝑛

∇𝑢𝑛
+ 𝑉(𝑥)𝑢𝑛

2 + 𝜙𝑢𝑛
𝑢𝑛

2 − |𝑢𝑛|𝑝−1𝑢𝑛
2)𝑑𝑥

 

ℝ3

]. 

Then, 
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1 + 𝑐 ≥ (
1

2
−

𝜆

4
) ‖𝑢𝑛‖𝐸

2 − (
1

𝑝 + 1
−

𝜆

4
) ∫|𝑢𝑛|𝑝+1𝑑𝑥

 

ℝ3

. (4.3) 

We show that {𝑢𝑛} is bounded sequence. Otherwise, there exists a subsequence of {𝑢𝑛} satisfying ‖𝑢𝑛‖𝐸 → ∞ as 𝑛 →

∞. Then we consider 𝜔𝑛 =
𝑢𝑛

‖𝑢𝑛‖𝐸
∈ 𝐸, so the sequence 𝜔𝑛 is bounded. Up to a subsequence, for some 𝜔 ∈ 𝐸, 

𝜔𝑛 ⇀ 𝜔 

in 𝐸, 

𝜔𝑛 → 𝜔 𝑖𝑛 𝐿𝑡(ℝ3) ∀𝑡 ∈ [2, 2∗) 

and  

𝜔𝑛(𝑥) → 𝜔(𝑥)  𝑎. 𝑒.  𝑖𝑛  ℝ3. (4.4) 

Now, we consider two cases. In first case suppose that 𝜔 ≠ 0 in 𝐸. Dividing by ‖𝑢𝑛‖𝐸
2  in both sides of relation 4.1 and 

by lemma 3.3 we can get 

1

𝑝 + 1
∫

|𝑢𝑛|𝑝+1

|𝑢𝑛|2
𝑑𝑥

 

ℝ3

= 1 +
∫ 𝜙𝑢𝑛

𝑢𝑛
2𝑑𝑥

 

ℝ3

‖𝑢𝑛‖𝐸
2 + 𝒪(‖𝑢𝑛‖𝐸

2 ) ≤ 𝑀3 < ∞ (4.5) 

where 𝑀3 is a positive constant. We consider, 

Ω ≔ {𝑥 ∈ ℝ3 | 𝜔(𝑥) ≠ 0}, 

then for all 𝑥 ∈ Ω and 𝑝 ∈ (2, ∞) 

|𝑢𝑛|𝑝+1

‖𝑢𝑛‖𝐸
2 =

|𝑢𝑛|𝑝+1

|𝑢𝑛|2
𝜔𝑛(𝑥)2 → +∞ (4.6) 

as 𝑛 → ∞. Since 𝑚𝑒𝑎𝑠(Ω) > 0, using Fatou’s lemma, 

1

𝑝 + 1
∫

|𝑢𝑛|𝑝+1

‖𝑢𝑛‖𝐸
2 𝑑𝑥

 

ℝ3

→ +∞ (4.7) 

as 𝑛 → ∞. This is contradiction with relation 4.5. In second case, suppose that 𝜔(𝑥)  =  0, then we define a sequence, 

𝑡𝑛 ∈ ℝ as  

𝐼𝜆(𝑡𝑛𝑢𝑛) = max
𝑡∈[0,1]

𝐼𝜆(𝑡𝑢𝑛). 

For any positive 𝑚, we set �̅�𝑛 = √4𝑚
𝑢𝑛

‖𝑢𝑛‖𝐸
= √4𝑚𝜔𝑛. Hence, by relation 4.5 and for 𝑛 large enough, 

𝐼𝜆(𝑡𝑛𝑢𝑛) ≥ 𝐼𝜆(�̅�𝑛) =
1

2
‖�̅�𝑛‖𝐸

2 +
𝜆

4
∫ 𝜙�̅�𝑛

�̅�𝑛
2𝑑𝑥

 

ℝ3

−
1

𝑝 + 1
∫|�̅�𝑛|𝑝+1𝑑𝑥

 

ℝ3

= 2𝑚 +
𝜆

4
∫ 𝜙�̅�𝑛

�̅�𝑛
2𝑑𝑥

 

ℝ3

−
1

𝑝 + 1
∫|�̅�𝑛|𝑝+1𝑑𝑥

 

ℝ3

≥ 𝑚. 
(4.8) 

Therefore, lim
𝑛→∞

𝐼𝜆(𝑡𝑛𝑢𝑛) = +∞  by relation 4.8. Since 𝐼𝜆(0) = 0  and 𝐼𝜆(𝑢𝑛) → 𝑐  then for 𝑡𝑛 ∈ (0,1)  and 𝑛  large 

enough, we obtain that  
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∫(∇𝑡𝑛𝑢𝑛
∇𝑡𝑛𝑢𝑛

+ 𝑉(𝑥)𝑡𝑛𝑢𝑛𝑡𝑛𝑢𝑛 + 𝜙𝑡𝑛𝑢𝑛
𝑡𝑛𝑢𝑛𝑡𝑛𝑢𝑛 − |𝑡𝑛𝑢𝑛|𝑝−1𝑡𝑛𝑢𝑛𝑡𝑛𝑢𝑛)𝑑𝑥

 

ℝ3

= 〈𝐼𝜆
′(𝑡𝑛𝑢𝑛), 𝑡𝑛𝑢𝑛〉

= 𝑡𝑛

𝑑

𝑑𝑡
|𝑡=𝑡𝑛

𝐼𝜆(𝑡𝑢𝑛) = 0. 

Hence, by assumption 1.3, 

𝐼𝜆(𝑢𝑛) −
𝜆

4
〈𝐼𝜆

′(𝑢𝑛), 𝑢𝑛〉 =
2 − 𝜆

4
‖𝑢𝑛‖𝐸

2 −
4 − 𝜆(𝑝 + 1)

4(𝑝 + 1)
∫|𝑢𝑛|𝑝+1𝑑𝑥

 

ℝ3

= 

1

2
‖𝑢𝑛‖𝐸

2 −
1

𝑝 + 1
∫|𝑢𝑛|𝑝+1𝑑𝑥

 

ℝ3

−
𝜆

4
‖𝑢𝑛‖𝐸

2 +
𝜆

4
∫|𝑢𝑛|𝑝+1𝑑𝑥

 

ℝ3

= 

1

2
‖𝑢𝑛‖𝐸

2 +
𝜆

4
[1 −

4

𝜆(𝑝 + 1)
∫|𝑢𝑛|𝑝+1𝑑𝑥

 

ℝ3

− ‖𝑢𝑛‖𝐸
2 ] = 

1

2
‖𝑢𝑛‖𝐸

2 +
𝜆

4
𝑓𝜆(𝑢𝑛) ≥

1

2𝜃
‖𝑡𝑛𝑢𝑛‖𝐸

2 +
𝜆

4𝜃
𝑓𝜆(𝑡𝑛𝑢𝑛) = 

1

𝜃
𝐼𝜆(𝑡𝑛𝑢𝑛) −

𝜆

4𝜃
〈𝐼𝜆

′(𝑡𝑛𝑢𝑛), 𝑡𝑛𝑢𝑛〉 → ∞, 

as 𝑛 → ∞. This contradicts relation 4.3. Therefore, {𝑢𝑛} is bounded sequence. Assume that 𝑢𝑛 ⇀ 𝑢 in 𝐸. By lemma 3.1 

𝑢𝑛 → 𝑢 in 𝐿𝑡(ℝ3) for any 𝑡 ∈ [2, 2∗). By relation 3.10, 

‖𝑢𝑛 − 𝑢‖𝐸
2 = 〈𝐼𝜆

′(𝑢𝑛) − 𝐼𝜆
′(𝑢), 𝑢𝑛 − 𝑢〉 + ∫|𝑢𝑛|𝑝−1 − |𝑢|𝑝−1(𝑢𝑛 − 𝑢)𝑑𝑥

 

ℝ3

− ∫(𝜙𝑢𝑛
𝑢𝑛 − 𝜙𝑢𝑢)(𝑢𝑛 − 𝑢)𝑑𝑥

 

ℝ3

. 

By the Höder inequality, Sobolev inequality and lemma 3.3 

| ∫ 𝜙𝑢𝑛
𝑢𝑛(𝑢𝑛 − 𝑢)𝑑𝑥

 

ℝ3

| ≤ ‖𝜙𝑢𝑛
𝑢𝑛‖

𝐿2‖𝑢𝑛 − 𝑢‖𝐿2 ≤ ‖𝜙𝑢𝑛
‖

𝐿6‖𝑢𝑛‖𝐿3‖𝑢𝑛 − 𝑢‖𝐿2 

𝑀4‖𝜙𝑢𝑛
‖

𝐷1,2‖𝑢𝑛‖𝐿3‖𝑢𝑛 − 𝑢‖𝐿2 ≤ 𝑀2𝑀4‖𝑢𝑛‖
𝐿

12
5

2 ‖𝑢𝑛‖𝐿3‖𝑢𝑛 − 𝑢‖𝐿2 , 

where 𝑀4 is a positive constant. Again using 𝑢𝑛 → 𝑢 in 𝐿𝑡(ℝ3) for any 𝑡 ∈ [2, 2∗), we obtain that  

∫ 𝜙𝑢𝑛
𝑢𝑛(𝑢𝑛 − 𝑢)𝑑𝑥

 

ℝ3

→ 0, 

as 𝑛 → ∞. Similarly, 

∫ 𝜙𝑢𝑛
𝑢(𝑢𝑛 − 𝑢)𝑑𝑥

 

ℝ3

→ 0, 

as 𝑛 → ∞. Hence, 

∫(𝜙𝑢𝑛
𝑢𝑛 − 𝜙𝑢𝑢)(𝑢𝑛 − 𝑢)𝑑𝑥

 

ℝ3

→ 0, 

as 𝑛 → ∞. Thus ‖𝑢𝑛 − 𝑢‖𝐸 → 0. Therefore, 𝐼𝜆(𝑢) satisfies Cerami condition. 
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Proof of theorem 2.3.From proposition 4.2. 𝐼𝜆(𝑢) satisfies Cerami condition. Next, we show that 𝐼𝜆(𝑢) satisfies the rest 

conditions of theorem 2.2. First of all, we prove that 𝐼𝜆(𝑢) satisfies 𝐼1. Since 𝑝 ∈ (2,6), so lim
|𝑢|→∞

|𝑢|𝑝+1

|𝑢|2 = +∞. Then for 

any 𝐾 > 0 there exist 𝛿 > 0 such that for |𝑢| ≥ 𝛿, 

|𝑢|𝑝+1 ≥
𝜆

4
𝐾|𝑢|2. (4.9) 

Hence, 

𝐼𝜆(𝑢) ≤
1

2
‖𝑢‖𝐸

2 +
𝜆𝑀2

4
‖𝑢‖𝐸

4 −
𝜆𝐾

4(𝑝 + 1)
‖𝑢‖𝐿2 . 

Since, norms on finite dimension spaces 𝑊𝑘 are equivalent, 

𝐼𝜆(𝑢) ≤
1

2
‖𝑢‖𝐸

2 +
𝜆𝑀2

4
‖𝑢‖𝐸

4 −
𝜆𝐾𝑀5

4(𝑝 + 1)
‖𝑢‖𝐸

2 , 

where 𝑀5 is a constant. Since  

𝜆𝑀2

4
−

𝜆𝐾𝑀5

4(𝑝 + 1)
< 0 

when 𝐾 is large enough, it follows that 

𝑎𝑘 ≔ max
𝑢∈𝑊𝑘,‖𝑢‖=𝜌𝑘

𝐼𝜆(𝑢) ≤ 0 

for some 𝜌𝑘 > 0 large enough. Using the lemma 3.3 and 3.1 we show that 𝐼𝜆(𝑢) satisfies in condition 𝐼2. By definition 

of 𝐼𝜆, 

𝐼𝜆(𝑢) ≥
1

2
‖𝑢‖𝐸

2 −
1

𝑝 + 1
∫|𝑢|𝑝+1𝑑𝑥

 

ℝ3

≥
1

2
‖𝑢‖𝐸

2 −
1

𝑝 + 1
‖𝑢‖

𝐿𝑝
𝑝

≥
1

2
‖𝑢‖𝐸

2 −
𝛽𝑘

𝑝

𝑝 + 1
‖𝑢‖𝐸

𝑝
, 

where 𝛽𝑘 is defined in lemma 4.1. defining 𝑟𝑘 ≔ (
𝑝𝛽𝑘

𝑝

𝑝+1
)

1

2−𝑝

, implies that  

𝑏𝑘 ≔ inf
𝑢∈𝑍𝑘,‖𝑢‖𝐸=𝑟𝑘

𝐼𝜆(𝑢) ≥ inf
𝑢∈𝑍𝑘,‖𝑢‖𝐸

(
1

2
‖𝑢‖𝐸𝑊

2 −
𝛽𝑘

𝑝
𝑝

𝑝 + 1
‖𝑢‖𝐸

𝑝
) ≥ (

1

2
−

1

𝑝
) (

𝑝𝛽𝑘
𝑝

𝑝 + 1
)

2
2−𝑝

→ +∞ 

as 𝑘 → ∞. Using 2.2 completes the proof. 
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