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Abstract: In this paper, we present a fully unsupervised segmentation process of magnetic resonance image (MRI) of the brain using 

a data fusion technique and some of ideas of the possibility theory context. The fusion methodology is decomposed into three 

fundamental phases. We modeling information coming from T2 and PD weighted images in a common framework, in this step an 

hybridization between FCM and PCM algorithms is retained. In the second phase an operator of fusion is used to combine then this 

information. Finally, an image of fusion is generated when a decision rule is applied. Some results are presented and discussed using 

a set of simulated MR image. 
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1.  Introduction  

Fully automatic brain tissue classification from magnetic resonance images (MRI) is of great importance for research 

and clinical study of much neurological pathology. The accurate segmentation of MR images into different tissue 

classes, especially gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), is an important task. 

In medical imaging field, segmenting MR images has been found a quite hard problem due to the existence of image 

noise, partial volume effects, the presence of smoothly varying intensity in homogeneity, and large amounts of data to 

be processed. To handle these difficulties, a large number of approaches have been studied, including fuzzy logic 

methods [1], neural networks [2], Markov random field methods with the maximum expectation [3], statistical methods 

[3], and data fusion methods [4], to name a few. 

In recent years, the need for data fusion in medical image processing increases in relation to the increase of acquisition 

techniques such as magnetic resonance imaging (MRI), tomography(CT), the newer positron emission tomography 

(PET) and a functional modality SPECT. These techniques are more and more jointly used to give access to a better 

knowledge [5]. 

As one typical data fusion problem, the segmentation of multispectral brain MR images aims at achieving improved 

segmentation performance by taking advantage of redundancy and complementariness in information provided by 

multiple sources. There have existed many data fusion methodologies, which are capable of reasoning under various 

types of uncertainty. Typical ones include probability theory based approaches, possibility theory based approaches, and 

Dempster-Shafer evidence theory based approaches [5]. 

Traditionally probabilities theory was the primary model used to deal with uncertainty problems, but they suffer from 

drawbacks. Whereas the Dempster-Shafer theory also allows to representing these two natures of information using 

functions of mass but the set of operators used by this theory is very restricted. 

Alternative to this approach is the possibility theory where uncertainty and imprecision are easily modeled and it allows 

to combining information coming from various sources by the use a wide range of available combination operators [5]. 

http://www.ntmsci.com/
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In this work we aim to improve the segmentation of the human brain tissues using a multispectral fusion approach. This 

approach consists of the computation of fuzzy tissue maps in each of tow modalities of MR images namely T2 and PD 

as an information source, the creation of fuzzy maps by a combination operator and a segmented image is computed in 

decision step. This paper is organized as follows: In section II, we summarize the main ideas of FCM algorithm. In 

section III, we introduce the principals of possibility theory reasoning. Section IV outlined the fusion process 

methodology. Steps of our proposed method are described in section V. Section VI presents some experimental results. 

Finally, conclusion and perspectives of our work are suggested in section VII. 

2. The FCM Algorithm Clustering 

Clustering is a process of finding groups in unlabeled dataset based on a similarity measure between the data patterns 

(elements). A cluster contains similar patterns placed together. The fuzzy clustering technique generates fuzzy partitions 

of the data instead of hard partitions. Therefore, data patterns may belong to several clusters, having different 

membership values with different clusters. The membership value of data pattern to a cluster denotes similarity between 

the given data pattern to the cluster. Given a set of 𝑁 data patterns 𝑋 = {𝑥1, 𝑥2𝑥3, … , 𝑥𝑛} the Fuzzy C-Means (FCM) 

clustering algorithm minimizes the objective function [26][27]: 

𝐽(𝐵, 𝑈, 𝑋) =∑∑𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑗 , 𝑏𝑖)

𝑁

𝑗=1

𝐶

𝑖=1

  (1) 

Where 𝑥𝑗 is the 𝑗 −th P-dimensional data vector, 𝑏𝑖 is the center of cluster 𝑖, 𝑢𝑖𝑗 is the degree of membership of 𝑥𝑗 in the 

𝑗 −th cluster, 𝑚 is the weighting exponent 𝑑2(𝑥𝑗 , 𝑏𝑖) is the Euclidean distance between data 𝑥𝑗 and cluster center 𝑏𝑖. 

The minimization of objective function 𝐽(𝐵, 𝑈, 𝑋) can be brought by an iterative process in which updating of 

membership 𝑢𝑖𝑗 and the cluster centers are done for each iteration. 

𝑢𝑖𝑗 = [∑(
𝑑2(𝑥𝑗 , 𝑏𝑖)
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)
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where 

∀𝑖 ∈ {1. . 𝐶}, ∀𝑗 ∈ {1. . 𝑁}

{
 

 
𝑢𝑖𝑗 ∈ [0,1]

0 <∑𝑢𝑖𝑗

𝑁

𝑗=1

< 𝑁
.  (4) 

 

∀𝑗 ∈ {1. . 𝑁} ∑𝑢𝑖𝑗

𝐶

𝑗=1

= 1. (5) 

The algorithm of the FCM consists then of the reiterated application of (2) and (3) until stability of the solutions. 

 

3. The Possibility Theory 

Possibilistic logic was introduced by Zadeh (1978) following its former works in fuzzy logic (Zadeh, 1965) in order to 

simultaneously represent imprecise and uncertain knowledge. In fuzzy set theory, a fuzzy measure is a representation of 

the uncertainty, giving for each subset 𝑌 of the universe of discourse 𝑋 a coefficient in [0,1] assessing the degree of 

certitude for the realization of the event 𝑌. In possibilistic logic, this fuzzy measure is modeled as a measure of 

possibility Π satisfying: 

Π(X) = 1 𝑒𝑡 Π(ϕ) = 0 
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(∀(𝑌𝑖))Π (∪
𝑖
𝑌𝑖) = 𝑆𝑢𝑝

𝑖
Π(𝑌𝑖) 

An event 𝑌 is completely possible if Π(𝑌) = 1 and is impossible if Π(𝑌) = 0. Zadeh showed that Π could completely 

be defined from the assessment of the certitude on each singleton of 𝑋. Such a definition relies on the definition of a 

distribution of possibility 𝜋 satisfying: 

𝜋:𝑋 → [0,1] 

𝑥 → 𝜋(𝑥) 𝑆𝑢𝑝
𝑥
{𝜋(𝑥) = 1}⁄  

Fuzzy sets 𝐹 can then be represented by distributions of possibility, from the definition of their characteristic function  

𝜇𝐹: (∀𝑥 ∈ 𝑋)𝜇𝐹(𝑥) = 𝜋(𝑥) 

Distributions of possibility can mathematically be related to probabilities, and they moreover offer the capability to 

declare the ignorance about an event. Considering such an event 𝐴 (e.g., voxel v belongs to tissue 𝑇, (where v is at the 

interface between two tissues), the probabilities would assign 𝑃(𝐴) = 𝑃(𝐴) = 0.5, whereas the possibility theory 

allows fully possible 𝛱(𝐴) = 𝛱(𝐴) = 1. We chose to model all the information using distributions of possibility, and 

equivalently we represented this information using fuzzy sets. 

The literature classically distinguishes three modes for combination of uncertainty and imprecise information in a 

possibility theory framework: 

The conjunction: gather the operators of t-norms (fuzzy intersection), this mode of combination must be used if 

measurements are coherent, i.e. without conflict. 

The compromise: gather the median operator and some average operators, it must be used when measurements are in 

partial conflict. 

The Disjunction: gather the operators of t-conorms (fuzzy union), it must be used when measurements are in disaccord, 

i.e. in severe conflict. 

4. The Fusion Process Steps 

A general information fusion problem can be stated in the following terms: given l sources 𝑆1,  𝑆2, … , 𝑆1 representing 

heterogeneous data on the observed phenomenon, take a decision 𝑑𝑖 on an element 𝑥, where 𝑥 is higher level object 

extracted from information, and 𝑑𝑖 belongs to a decision space 𝐷 = {𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑛}. In numerical fusion methods, 

the information relating 𝑥 to each possible decision 𝑑𝑖 according to each source 𝑆𝑗 , is represented as a number 𝑀𝑖𝑗, 

having different properties and different meanings depending on the mathematical fusion framework. In the centralized 

scheme, the measures related to each possible decision 𝑖 and provided by all sources are combined in a global 

evaluation of this decision, taking the form, for each 𝑖: 𝐹(𝑀𝑖1, 𝑀𝑖2, 𝑀𝑖3, … ,𝑀𝑖𝑛), where 𝐹 is a fusion operator. Then a 

decision is taken from the set of 𝑀𝑖 , 1 ≤ 𝑖 ≤ 𝑛 in this scheme, no intermediate decision is taken and the final decision is 

issued at the end of the processing chain. In decentralized scheme decisions at intermediate steps are taken with partial 

information only, which usually require a difficult control or arbitration step to diminish contradictions and conflicts 

[5]. The three-steps fusion can be therefore described as: 

Modeling of information in a common theoretical frame to manage vague, ambiguous knowledge and information 

imperfection. In addition, in this step the 𝑀𝑖𝑗 values are estimated according to the chosen mathematical framework. 

Combination: the information is then aggregated with a fusion operator 𝐹. This operator must affirm redundancy and 

manage the complementarities and conflicts. 

Decision: it is the ultimate step of the fusion, which makes it possible to pass from information provided by the sources 

to the choice of a decision 𝑑𝑖. 

5.  Proposed Method 

According to the data fusion process, our method consists on three steps below: 

A. Modeling Step 
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In the framework of possibility theory and fuzzy sets [7], the 𝑀𝑖𝑗’s represent membership degrees to a fuzzy set or 

possibility distribution π , taking the form for each decision 𝑑𝑖 and source 𝑆𝑖: 𝑀𝑖𝑗 = 𝜋𝑗(𝑑𝑖). Particularly, in our study 

this step consists in the creation of WM, GM, CSF and background (BG) fuzzy maps for both T2 and PD images using 

the FPCM algorithm then 𝑢𝑖𝑗 = 𝜋𝑗(𝑑𝑖). 

B. Fusion Step 

For the aggregation step in the fusion process, the advantages of possibility theory rely in the variety of combination 

operators, which must affirm redundancy and manage the complementarities. And may deal with heterogeneous 

information. It is particular interest to note that, unlike other data fusion theories like Bayesian or Dempster-Shafer 

combination, possibility theory provides a great flexibility in the choice of the operator, that can be adapted to any 

situation at hand [4]. If 𝜋𝑇
𝑇2(𝑣) and 𝜋𝑇

𝑃𝐷(𝑣) memberships of a voxel 𝑣 to tissue T resulting from step 1 then a fusion 

operator 𝐹 combine these values to generate a new membership value and can managing the existing ambiguity and 

redundancy. The possibility theory propose a wide range of operators for the combination of memberships [8]. 

For our MR images fusion, we chose a context-based conjunctive operator because in the medical context, both images 

were supposed to be almost everywhere concordant, except near boundaries between tissues and in pathologic areas. In 

addition, the context-based behavior allowed to take into account these ambiguous but diagnosis–relevant areas. Then 

we retained an operator of this class, this one is introduced in [8]: 

If 𝜋𝑇
𝑇2(𝑣) and 𝜋𝑇

𝑃𝐷(𝑣) are the gray-levels possibility distributions of tissue 𝑇 extracted from T2 and PD fuzzy maps 

respectively and 𝐹 design the fusion operator, then the fused possibility distribution is defined for any gray level 𝑣 as: 

𝜋𝑇(𝑣) = max(
min (𝜋𝑇

𝐼𝑖(𝑣), 𝜋𝑇
𝐼𝑗(𝑣))

ℎ
,min (max (𝜋𝑇

𝐼𝑖(𝑣), 𝜋𝑇
𝐼𝑗(𝑣)) , 1 − ℎ)) 

where 𝐼𝑖 , 𝐼𝑗 ∈ {T2, PD} and ℎ is a measure of agreement between 𝜋𝑇
𝐼𝑖 and 𝜋𝑇

𝐼𝑗
: ℎ = 1 −

∑ |𝜋𝑇
𝐼𝑖(𝑣) − 𝜋𝑇

𝐼𝑗(𝑣)| |𝐼𝑚𝑎𝑔𝑒|⁄𝑣∈𝐼𝑚𝑎𝑔𝑒  

C. Decision Step 

A segmented image was finally obtained using the four maps computed in step 2 by assigning to the tissue 𝑇 any voxel 

for which it had the greatest degree of membership (i.e maximum of possibility rule) [5]. 
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It should be noted that the stability of this approach depend to the stability of the algorithm used in the modeling step 

[8]. 

6. Experimental Results 

Since the ground truth of segmentation for real MR images is not usually available, it is impossible to evaluate the 

segmentation performance quantitatively, but only visually. However, Brainweb1 provides a simulated brain database 

including a set of realistic MRI data volumes produced by an MRI simulator. These data enable us to evaluate the 

performance of various image analysis methods in a setting where the truth is known. 

To have tests under realistic conditions, one volume was generated with a thickness of 1 mm and a level of noise of 3%. 

We fixed at 20% the parameter of heterogeneity. 

 

Figure 1. Simulated T2 and PD images illustrate the fusion 

The different segmentations are showing in figure 2 below: 

 

Figure 2. (a) T2 segmented with FCM algorithm (c) PD segmented with FCM algorithm (d) Image of fusion 

To compare the performance of these three models of fusion produced by 𝐹 operator, we compute different coefficients 

reflecting how well two segmented volumes match. We use a different performance measures: 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝑂𝑣𝑟𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑆𝐼) =
2. 𝑇𝑃

2. 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
. 

Where TP and FP stand for true positive and false positive, which were defined as the number of voxels correctly and 

incorrectly classified as brain tissue by the automated algorithm. TN and FN stand for true negative and false negative, 

which were defined as the number of voxels correctly and incorrectly classified as non-brain tissue by the automated 

algorithm. The comparative results are presented in table 1 below: 

Table 1. Comparative results 

 
T2/PD Fusion PD alone T2 alone 

CSF WM GM CSF WM GM CSF WM GM 

Ovrl. 0.90 0.93 0.92 0.58 0.76 0.70 0.67 0.90 0.83 

Si. 0.94 0.96 0.95 0.78 0.83 0.80 0.83 0.92 0.86 

The results in Table 1 show a considerable improvement for all tissues using T2/PD fusion than T2 only and PD only. 

                                                           
1 www.bic.mni.mcgill.ca/brainweb. 
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Finally, we have also compared the performance of our proposed algorithm to that of well-known methods and other 

published reports that have recently been applied on brain tissue segmentation on Brainweb datasets for the 

segmentation of MR images in CSF, WM and GM tissues. They are summarized in table 2, these include the proposed 

work in [9] and the published approach of fusion in [10]. The results are reported in table 2 below using Accuracy 

coefficient [9], and Dice coefficient [11]. 

Table 2. Results on Brainweb phantom images for nine methods and the approach we propose 

 Inu. 

Noise 

20% 

0% 3% 5% 

Measurement Approach     

Accuracy 

coefficient (%) 

Published 

work in [9] 

(FDS1) 

Min Acc. - 95.95 - 

𝐴𝑐𝑐̅̅ ̅̅ ̅ - 96.95 - 

Max Acc. - 97.51 - 

Published 

work in [9] 

(FDS2) 

Min Acc. - 96.11 - 

𝐴𝑐𝑐̅̅ ̅̅ ̅ - 97.04 - 

Max Acc. - 97.58 - 

Dice 

coefficient 

Published 

work in [10] 

CSF 0.87 0.85 0.83 

WM 0.96 0.95 0.88 

GM 0.90 0.88 0.78 

Dice 

coefficient 

Our 

proposed 

aproach 

CSF 0.96 0.94 0.91 

WM 0.97 0.96 0.93 

GM 0.96 0.95 0.90 

Accuracy 

coefficient (%) 

Our 

proposed 

aproach 

Min Acc. - 97.09 - 

𝐴𝑐𝑐̅̅ ̅̅ ̅ - 97.16 - 

Max Acc. - 97.86 - 

'-' that means no result is given in this case on the reference 

The methods compared in table 2 have been run on images which have 0%, 3% and 5% of noise, 20% of intensity 

inhomogeneity (Inu.) and voxel size of 1mm3. 

Regarding the performance of the fusion based methods, the proposed evidential fusion approach described in [9] is the 

worst (in terms of average accuracy 𝐴𝑐𝑐̅̅ ̅̅ ̅, minimum accuracy Min acc. And maximum accuracy Max acc.) and the 

published work in [10] is the next worst, because the first one use focal elements and masses to represent data and the 

Dempster-Shafer rule to combine evidence. And in the second one, the data is modeled by the FCM algorithm, that is 

considered poorly to classify the pixels when they are situated very far to cluster centers. However, our approach is 

close to those proposed in [9] and [10]. Results of comparison show clearly the potential interest of our approach for 

magnetic resonance imaging (MRI) brain segmentation. 

7. Conclusion 

In this paper, a new multispectral fusion approach for the segmentation of MR images is discussed. We outlined in here 

some features of possibility theory context, which can be very useful for medical images fusion. And which constitute 

advantages over classical theories. The results reported in this paper show the superior capabilities of fusion approach 

compared to the taking into account of only one weighting in MR image segmentation. As a perspective of this work, 

the cooperation of the algorithms of classification to modeling a data is desired. In fusion step, further studies to 

construct other adaptive operators is necessary. In addition, we can integrate other numerical, symbolic information, 

experts’ knowledge or images coming from other imaging devices include computer tomography (CT), the newer 

positron emission tomography (PET) or a major functional modality SPECT in order to improve the segmentation of the 

MR images or to detect anomalies in the pathological images. 
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